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Abstract

Data from mobile phones is constantly increasing in accuracy, quantity, and ubiquity. Meth-
ods that utilize such data in the field of transportation demand forecasting have been pro-
posed and represent a welcome addition. We propose a framework that uses the resulting
travel demand and computes fuel consumption. The model is calibrated for application on
any range of car fuel efficiency and combined with other sources of data to produce urban
fuel consumption estimates for the city of Riyadh as an application. Targeted traffic conges-
tion reduction strategies are compared to random traffic reduction and the results indicate
a factor of 2 improvement on fuel savings. Moreover, an agent-based innovation adoption
model is used with a network of women from Call Detail Records to simulate the time at
which women may adopt driving after the ban on females driving is lifted in Saudi Arabia.
The resulting adoption rates are combined with fuel costs from simulating empty driver trips
to forecast the fuel savings potential of such a historic policy change.
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Chapter 1

Introduction

1.1 Overview and Motivation

This thesis is the product of several motivations on my part and on the part of my advisor,

Prof. Marta Gonzalez. First, it is an attempt to build upon the travel demand computed

from Call Detail Records (CDRs) to estimate fuel consumption and show that the ubiquity of

data being produced today has uses far beyond its original intention. Second, it is a scientific

exercise in modeling the effects of the liberalization of restrictions on women driving in Saudi

Arabia. The results show how we can start from several disparate data sources, combine

them with a framework and human simulation model to produce tangible results that are

then verified against state of the art techniques and ground truths.

The reason the methods outlined below are pertinent and realistic is thanks to the

wealth of data being collected from mobile phones today. With penetration rates of over

85% in developing countries and up to 100% in some developed countries, mobile phones

are constantly and precisely recording our movement and our lives. This is a far cry from

the level of data that is used in a household travel survey which depicts a typical day and

cannot robustly consider the effects of weather, holidays, and other day-today factors on

travel demand. In order to harness useful insights from such new data, we must develop

techniques that utilize its potential. Apart from straight forward origin-destination (OD)

travel demand which is used in infrastructure decisions, environmental studies, etc. such

data can also be used to answer specific policy questions through simulation and modeling

15



human behavior.

The motivation to compute travel demand from Big Data sources such as mobile

phone traces or CDRs comes as a response to the difficult alternative of building discrete

choice models and conducting expensive and time-consuming stated preference surveys. Pre-

vious work has shown that these new techniques, such as TimeGeo (1), are faithful to the

state of the art methods and verified against real surveys and accepted truths. We extend

the current framework which identifies stays, generates trips, and estimates travel demand,

to add the ability to estimate fuel consumption. This energy consideration comes at a

time when oil-producing countries are suffering from the low prices of oil since 2016. Saudi

Arabia's economy is undergoing immense changes to diversify its economy and decrease its

reliance upon the price of one commodity. For this reason, we have developed a framework

to accurately estimate urban fuel consumption.

The methods are also applied to simulate the possible fuel savings potential of women

starting to drive in Saudi Arabia. Since the 1970s, women have been banned from driving

for cultural and supposedly religious reasons. There were some protests by activist women

in the 1990s but they were immediately put down. With the recent increase in young

Saudis returning after studying abroad, the ruling family, especially the young crown prince

Mohamed Bin Salman, is looking to appease the new generation and improve Saudi Arabia's

international reputation. One of the new changes is the promise that the ban on women

driving will be lifted in June 2018. We take advantage of the fuel consumption framework

we developed as well as gender-identified subset of users to simulate the empty driver trips

generated around women's mobility needs. With these we apply a diffusion model similar

to the spread of disease or the adoption of a new technology in the market to relate the fuel

savings with time under several scenarios.

The methods used utilize and contribute to the current knowledge in three distinct

areas: Energy consumption with GPS, travel demand from CDR, and adoption modeling

for women driving for the first time. The contributions of this thesis are summed up as

follows: First, we calibrated a previously developed fuel consumption model (StreetSmart)

and applied it to varying fuel efficiencies in car fleets; Second, the model was used along with

travel demand estimated by CDR-based traffic assignment to approximate fuel consumption
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rates in Riyadh, Saudi Arabia; Third, we examined the effects of the proposed method by

comparing the effects on fuel consumption of different traffic relief policies; Fourth, we model

the associated empty driver trips made to accommodate the ban on women driving in Saudi

Arabia and model the fuel savings potential of the adoption of driving after the ban is lifted.

The following section outlines the previous knowledge and where the current thesis fits into

it.

1.2 Literature Review

1.2.1 Travel Demand and Call Detail Records

The traditional engineering method of estimating travel demand used travel diaries and sur-

veys and followed a four-step model. Trip generation, trip distribution, mode choice, and trip

assignment produced an origin-destination flow matrix aggregated by Traffic Analysis Zone

(TAZ). Since then, improved computing has enabled trip-based modeling to capture more

idiosyncrasies and individual-level variations in the data. Ever increasing storage capacity

and faster processing, both local on hand-held devices as well as cloud-based, has resulted in

incredibly massive amounts of data such as location, elevation, purchases, tweets, check-ins,

and even heart-rate to be stored and logged for billions of people around the planet.

Data collected by telecommunications providers for billing purposes has been used to

shed light on human urban mobility since it was found that humans have very predictable

routines and are slow to discover new places (2). For the purposes of transportation, algo-

rithms and methods for stay extraction (3), OD extraction and validation (4-7), travel speed

estimation (8, 9) and activity modeling (10, 11) have been developed to benefit from CDR

data. An example of home and work identification from stay and pass-by locations is shown

in Figure 1-1.

CDR typically contains a timestamp, location coordinates, duration of the call or

text, and a unique identifier for the user. The coordinates in the CDR records obtained from

the city of Riyadh, Saudi Arabia for this project were of the cell towers used by the phone

and not of the phones themselves. This resulted in an OD model aggregated at the TAZ

17
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Figure 1-1: Stay and pass-by identification from filtered points showing home and work location

examples. Source: (1)

level and greatly simplified the analysis. The TimeGeo framework (1), which in turn was

built on previous work on CDR (12, 13), is the basis from which the OD flows used in this

project are derived. A summary of how trip generation is derived from the CDR records is as

follows. First, stays are identified apart from pass-by points as locations where the user spent

a significant time within a threshold radius. Based on the time and frequency of the stay

locations, they are labeled as one of home, work, or other. This label feeds into a heuristic

that informs the trip generation. For example, users start and end each day at their home

location and they commute to work with a departure time drawn from local and national

household travel surveys. Once all trips have been generated the flows that they represent,

based on how often a user is observed in the dataset, are then iteratively assigned to roads

and the resulting traffic flows are calculated. This work describes using the resulting flows

in conjunction with speed profiles observed from a high frequency GPS dataset to estimate

fuel consumption on roads.

1.2.2 Fuel Consumption Estimation Models

The estimation of energy consumption from location data is prevalent in the literature with

several models that utilize different factors. Since smartphone market penetration is almost

complete in the Transportation Networking Companies (TNCs) industry (14), GPS tracking

has been successfully used to estimate air pollution (15), instantaneous fuel consumption

(16-20), and traffic conditions (21-25). Most studies that use GPS data to estimate fuel

consumption have focused on individual user fuel consumption for route optimization(18, 20).
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Fuel consumption and emissions models have been extensively developed in the liter-

ature (26-33). They are generally split between models that estimate the fuel consumption

by balancing the engine's carbon intake and combustion and those that attempt to use

mode-specific variables, such as speed and acceleration, to fit a model that estimates fuel

consumption (32). Of those models that use instantaneous mode-specific variables, some

estimate air pollution and emissions(15, 27, 28, 30), fuel consumption (18-20, 31) or both

(16, 17, 29). Most previous attempts at estimating instantaneous fuel consumption and

emissions do not incorporate GPS data but rely instead on On-Board Diagnostics devices

(OBD-II) that measure fuel consumption and emissions (16-18, 29). The models that have

attempted to use GPS data to estimate fuel consumption do so without consideration to the

different fuel economies found in today's cars (19, 20, 31) and do not account for the total

demand.

Our foray into fuel consumption aims to contribute to this evident lack in the frame-

work. GPS data is used to compute fuel consumption rates per street for a variety of car

fuel economies. This is then combined with traffic flows from an optimization algorithm to

give a comprehensive picture of urban fuel consumption for an entire city, by time of day.

This framework is then applied to Riyadh for verification and analysis.

1.2.3 Social Diffusion Adoption Models

The study of diffusion stems from rural sociology in the early 20th century and was solidified

by a study on the spread of hybrid seed corn in rural Iowa (34). In 1969, Bass published a

paper outlining the detail of what will become the most popular diffusion model. It assumes

that potential adopters are influenced into adopting by innovation and imitation. Innovation

can be the result of a media campaign whereas imitation comes from the interaction with

other people. The resulting S-curve shows a distinction between the adoption of the phe-

nomenon by early adopters, early and late majority adopters, and finally laggards. The Bass

diffusion model takes as input aggregate numbers and its results are also aggregated and

thus do not take into account the individual interactions between people or nodes. To make

use of the social networks that are represented in telecommunication records (phone, text,

email or social media), several studies have been conducted to simulate diffusion on an agent
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based level (35-39). This new framework has been proposed in the literature which leverages

network information for the imitation parameter, the threshold of probability above which

a node decides to adopt. These have been more successful than the differential equation

framework at describing diffusion with the Bass diffusion model.

-100

75

4

50

Takeoft Point

25

arty
Adopters Early majry Late Ma ority La ards

a ors 2.5% %4%3%

Figure 1-2: Everett Rogers' innovation adoption curve showing the difference between early, middle,
and late adopters. Source: (40)

The parameters used for the Bass diffusion curve are the main area of debate when

using the model for a particular product or phenomenon. Since the adoption of driving

for the first time has never been recorded, electric car sales offer a reasonable proxy for its

parameters. A summary of the sources of parameter values was compiled by Massiani and

Gohs (41). They have found that a considerable number of papers and studies use previous

parameters than are based on little more than conjecture by an expert (42-45). Other sources

of parameter values can be non-peer reviewed such as Masters theses or reports from the

private sector (46). Finally, when observable data is unavailable for a certain product in a

specific market, similar markets or products are used as a proxy and parameters are fitted to

observed sales data (47-49). Based on the results of the study by Massiani and Gohs, several

scenarios of parameters were chosen to represent the adoption of Saudi women. A couple
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of scenarios were added to mathematically model the results of surveys where women were

asked about when they intended to drive, if at all, once the ban is lifted. This is presented

in Chapter 4.4.

1.3 Thesis Outline

The remainder of this thesis presents a framework to utilize GPS and CDR to compute fuel

calculation and test several policy application in Riyadh, Saudi Arabia.

Chapter 2 describes the method used to calibrate a model which uses speed profile (or

driving schedules) to estimate fuel consumption given certain parameters. The process uses

the results of an experiment where several cars outfitted with On Board Diagnostic Devices

were driven around a track and their fuel consumption as well as their speed profiles were

recorded. The model was calibrated for every type of fuel efficiency by categorizing vehicles,

including motorcycles, buses and trucks, into 14 fuel efficiency ranges or bins. Parameter

values for each bin were derived and later used on a real world application in Riyadh.

Chapter 3 presents the framework developed for fuel estimation from the model and

applied to several traffic reduction policy scenarios. It was published as a paper in the

Transportation Research Record in 2018.

Chapter 4 applies the fuel consumption framework on a subset of women and the

empty driver trips that they incur. The travel demand of the city of Riyadh is used to

compute the total urban fuel consumption which is verified against official reports and com-

parable cities. Moreover, driver trips were simulated and their fuel consumption calculated.

The Adoption of driving by women is modeled in 4 different scenarios and the associated

fuel savings from avoided empty driver trips are computed.

Chapter 5 presents the conclusion and summary of findings as well as areas of potential

future work.
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Chapter 2

Calibrating the Fuel Consumption Model

2.1 Introduction

Fuel consumption is the result of the function of the power needed by the vehicle to overcome

resistance integrated over time. This relationship between fuel and the variables that describe

the vehicle and its movement is fit into a simple yet comprehensive model. The StreetSmart

model was developed in 2011 at MIT to utilize accurate mobile phone sensor data to predict

fuel consumption. It is part of a growing body of work that leverages GPS and Wi-Fi

sensors on mobile phones to measure traffic. It goes beyond other efforts by using speed

profiles with acceleration information over just average speed along a trip. The model fits

data on the speed profiles to approximate four energy indices that capture different aspects of

fuel consumption in a vehicle trip. The variables in the power function that are dependent

on a vehicle's characteristics such as area, mass, accessories, etc. are replaced by these

energy indices which are estimated by regression. For this project, we used the measured

fuel consumption and speed profiles reported by an experiment conducted at the University

of Illinois to get initial values for these energy indices.

The Illinois experiment analyzed and smoothed the speed profile data of four cars

driven around a track with stop-and-go movements. The dataset contained raw video data

as well as files with measured performance properties such as speed, acceleration, fuel effi-

ciency, air mass flow rate etc. For our purposes, the data used were speed, time, and fuel

consumption. The experiment consisted of 9, and sometimes 10, different cars driven around
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a 30 meter diameter track. The next section will provide details on how we used the raw data

to estimate energy indices of the StreetSmart model for 14 ranges or bins of fuel efficiency

in cars.

2.2 StreetSmart Model Sensitivity Analysis

The StreetSmart model was developed by measuring the energy required by vehicles for vari-

ous movement conditions. It estimates the fuel consumption with data from GPS coordinates

from smartphones and ground truth fuel consumption data from On Board Diagnostics II

(OBD-II) devices. Using the details of a trip's speed profile, the model successfully predicts

fuel consumption with over 96% accuracy [261, a substantial improvement over models that

only consider constant average speeds. Average speed estimations do not account for the

stop and go effect of traffic, which is a significant factor leading to an increase in fuel con-

sumption. In other words, average speed simplification results in lower, or more optimistic,

fuel consumption estimates since drag is lower at low speeds.

After testing different variables for their use in predicting fuel consumption, the model

employs a combination of four variables to predict fuel consumption as shown in 2.1. The

first term accounts for energy wasted while the car is idling with the engine turned on; the

second accounts for energy used with time spent moving; The third accounts for energy used

due to acceleration and deceleration over a distance; the fourth accounts for energy used

with distance traveled. Each term is multiplied by a specific energy index, ki, which depends

on the vehicle efficiency, such that:

FC = k1Tidle + k 2 Tmove + k3 J |adx + k4 L; (2.1)

where FC is fuel consumption in US gallons and ki,k2,k3, and k4 are the energy indices

calibrated with data separately for each bin of vehicle efficiency. Tidle and T,,v, are time

spent idling and moving respectively in seconds, a is acceleration in m/s 2, and L is the

distance driven in km.

The energy indices varied between the different models of cars. A chart of their

difference is shown in Figure 2.1. To understand the effect on fuel consumption of each
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Figure 2-1: Values of Energy Indices k resulting from the regression
profiles in the Illinois experiment

of fuel consumption and speed

energy index alone, a sensitivity analysis was conducted where each index was varied between

its observed minimum and maximum while keeping the other 3 such that fuel efficiency is

at the average of 20.5 miles per gallon (mpg). The results on the fuel efficiency are shown

in Figure 2.2. It was found that the change in fuel efficiency for each index was 3.5, 15.1,

and 26 mpg respectively. Evidently, fuel efficiency is less sensitive to k, and k3 and more

sensitive k2 and k4.

2.3 Results and Energy Indices

Following (50), we further tested the StreetSmart model's indices by regression of the idle

fuel consumption and moving fuel consumption separately using data from an experiment

conducted at the University of Illinois by [27]. A graph of speed profiles showing idle and

moving times is showin in Figure 2-3. To verify the benefit of using the model, its results

were compared to a baseline estimation using average speed and the United States' Depart-

ment of Energy's (DOE) graph of fuel economy variations by speed as shown in Figure 2-4.

The StreetSmart model achieved inaccuracies of about 4% while the baseline method had

inaccuracies of up to 29%. The details of the comparison are summarized in Table 2.1.
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Figure 2-2: Sensitivity Analysis of k parameters. Values of k are varied individually while the other

indices are set such that fuel efficiency is at 20.5 mpg and the result on fuel efficiency is graphed

To apply the StreetSmart model on a known distribution of car fuel economies, the

first step is to relate the energy indices specific to each car fuel efficiency or economy. The

variables with the highest influence over fuel consumption were the second and fourth indices

representing time moving and the distance traveled respectively. This suggests that the first

and third terms, representing the influence of speed profiles, have a lower impact on the

overall estimate of fuel consumption. However, results shown in section 3.3 show that all

terms are useful since speed profiles improve the accuracy of estimation.

To calibrate the model and get energy index values for use on the scale of a city,

we used the fuel economies reported by the Environmental Protection Agency's (EPA) 2016
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Figure 2-3: Speed profiles showing idle and moving times. Source: StreetSmart experiment (50)

report to arrive at ranges of each index for different cars, categorized by their fuel economy

[FE guide]. The EPA uses a standard speed profile to test for a car's urban fuel economy, the

FTP-75, shown in Figure 2a [EPA test procedure]. We used the mode specific variables from

the FTP-75 speed profile with the reported fuel economy to calibrate the energy index ranges

for each bin shown in Table 2.2. A standard deviation of 1 mpg was used to create Gaussian

distributions of fuel economies to set the range of index values for each bin. This resulted in

a smooth transition between the fuel economies when the entire city's fleet efficiency profile

Table 2.1: A Comparison of Fuel Consumption Estimates from -the StreetSmart Model and the
DOE Fuel Economy Fit on Data From the Experiment Conducted by (51))

Car No. (Illinois Test A) : 6 7 8 9
OBD-I FC [US Gall 0.0246 0.0220 0.0356 0.0211
DOE Fitted Curve [US Gal] 0.0247 0.0253 0.0252 0.0245
StreetSmart FC [US Gal] 0.0243 0.0230 0.0371 0.0210
% diff. StreetSmart -1.2% 4.2% 4.2% -0.6%
% diff. DOE Fitted Curve 0.4% 14.7% -29.3% 16.0%
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Figure 2-4: Department of Energy Fuel Efficiency vs Average Speed Curve (52)

was recreated. Using these ranges and the distribution of fuel economies found in the EPA

report, we successfully recreated the distribution of fuel economies (shown in in Figure 2-5b)

with the StreetSmart model

b C
- -UK

800

Time (si FUel Econoy k FU1 ECOnMYk"

Figure 2-5: (a) FTP-75 EPA's standard speed profile used for calculating the reported inner-city
fuel economies of cars. (b) The distribution of fuel economies recreated by the StreetSmart model
shows the same distribution as that of the reported fuel economies. (c) The distribution of fuel
economies based on Riyadh's fleet of cars compared to those of Poland and the UK shows that the
distributions are similar but shifted from one another. The car fleet of Riyadh is less fuel efficient
than that of Poland which is less than that of the UK

For verification, the energy index ranges for each bin are then used to recreate the

fuel economy distribution of the fleet of cars in Riyadh using the car makes and models from

motor vehicle crash statistics data provided by the city of Riyadh. Data on car crashes from

January 2013 until October 2015 in the city of Riyadh were used as a proxy for Riyadh's

fleet composition. The different energy indices, which produce different fuel consumption

rates, are combined in proportion to Riyadh's fleet bin distribution. For validation, the fuel

economy distribution of Riyadh's fleet was compared to two cities in Europe chosen on the

basis of similar population size or Gross Domestic Product and the results show similar trends
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Table 2.2: Results of the Calibration of the StreetSmart Model. Ranges of ki Parameters for Each
Bin of Fuel Economy

Bin FE
1 [10
2 [12
3 [14
4 [16
5 [18
6 [20
7 [22
8 [24
9 [26
10 [28
11 >3
12 (Bus) 6.3
13 (Truck) 17.
14 (Motorcycle) 43.

Range [MPG]
- 12)
- 14)
- 16)
- 18)
- 20)
- 22)
- 24)
- 26)
- 28)
- 30)

27
)

FE Range [km/1]
[4.25 - 5.10)
[5.10 - 5.95)
[5.95 - 6.80)
[6.80 - 7.65)
[7.65 - 8.50)
[8.50 - 9.35)
[9.35 - 10.20)
[10.20 - 11.05)
[11.05 - 11.90)
[11.90 - 12.75)
>12.75
2.68
7.34
18.49

exist in the relative variety of fuel economies in all cities. The data on fleet compositions of

the two European countries were acquired from an in-depth study of the fleets of all European

countries 1311. As can be seen in Figure 2-5c, the comparison in the distributions of fleet

fuel economies between the three areas indicates that the car fleet of Riyadh is less energy

efficient those of Poland and the UK. The usage of country level fleet composition for Poland

and the UK compared to city level for Riyadh represents a limitation in this comparison

but the results adequately verify the credibility of the fleet composition used in this study.

With the relative fuel economies of Riyadh's fleet and the calibrated StreetSmart model, we

discuss next how we integrate speed profiles from GPS data to estimate fuel consumption at

the urban scale.
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37.0
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Chapter 3

Fuel Consumption Application for Traffic

Congestion Policies

In many oil producing countries with substantial fuel subsidies, a fall in oil revenue and

increasing domestic consumption has put increasing strain on government budgets (53).

Countries in the Gulf Cooperation Council, including Saudi Arabia and the UAE, have

launched programs to reduce government expenditure on energy subsidies (54). In Saudi

Arabia, energy subsidies are estimated at 9.3% of GDP, with 1.4% for petroleum subsidies

alone. Decreasing energy subsides can be achieved in a number of ways but congestion

relief offers a simple and direct path to lower fuel consumption. As the burden of fuel

subsidies continues to grow, it has become increasingly important for these countries to find

simple and accurate methods to quantify the effects of policies on congestion relief and fuel

consumption in cities. Recent technological advances in collecting and analyzing big data

offer a potential method to measure how policy changes impact fuel consumption. With

the advent of ubiquitous sensing devices, Transport Network Companies (TNCs), and new

methods of estimating flow, we propose a method to answer such questions that can be

further applied anywhere in the world and extended to model emissions and air pollution.

Call Detail Records (CDRs) produced passively by mobile phones represent a cutting

edge method to estimate travel demand. Most traffic studies currently use local and national

household travel surveys to estimate the rate of trip production between different zones

of the city but such surveys are expensive to conduct and only cover a small sample of
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the population. Leveraging on previous work (12, 55, 56), CDRs can provide simple and

effective methods for estimating Origin-Destination (OD) flows using location data collected

from millions of individual mobile phone users.

This chapter is structured as follows. In section 2.1, we describe the cleaning of the

GPS data and the extraction of speed and acceleration profiles on each street in specific

time windows in a typical week to represent different snapshots of traffic throughout the

road network of Riyadh. In section 2.2 we describe the application of the model combined

with flow data to visualize the fuel consumption across different time periods. Moreover,

we present the results of the targeted and random flow reductions and their effects on fuel

consumption via the presented model vs. baseline estimates. Finally, in Section 3 we discuss

the results and the conclusions derived from the study.

3.1 Methodology

3.1.1 From GPS Data to Speed Profiles

We extracted speed profiles from a large dataset of GPS tracking points of taxi trips from a

local Saudi Arabian TNC company over the period of May 2015 until December 2016. Speed

profiles are the result of both driving styles and traffic conditions. Driving styles of taxis

may be different from those of personal vehicles, affecting the results in a small extent, but

we assume speed profiles are mainly a reflection of traffic conditions which would affect taxis

and personal vehicle trips similarly. The dataset included trip duration and length, pick up

and drop off times, and a chronologically ordered list of GPS coordinates. To ensure that

the traffic is representative of year-round conditions we compared the rate of trip production

during Ramadan of 2015 and 2016 with non-Ramadan trip production rates. We found

that Ramadan trip production rates are much fewer so their impact on the average traffic

speed profile for a specific street is negligible. For this reason, we kept the Ramadan trips

in the analysis to benefit from the higher amount of data on the street level. A graph of

the average number of trips per hour during Ramadan, non-Ramadan, and combined can be

seen in Figure 3-1.
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Figure 3-1: Average hourly taxi trip production rates in Riyadh in Ramadan, non-Ramadan, and
combined.

Before use, the data was filtered to remove trips that were outside Riyadh and the

GPS routes were cleaned and modified to correct for measurement errors. We detected errors

in the GPS points and fixed them using the following algorithm. Since the GPS coordinates

were given as an ordered list without a timestamp, and are known to be collected at regular

intervals, the interval or frequency of recording was calculated as the total duration of the

trip divided by the number of points recorded. Errors were detected as spikes in speed that

are greater than 160 km/h since the taxi's fleet and the road conditions typically preclude

speeds above that. Two different causes of error were detected and repaired using different

methods. In the first case, errors were caused by missing points due to a lack of network

signal. This would result in a spike in speed for one segment but not the following segment,

which would revert to realistic speeds and GPS points. The number of skipped points was

estimated from the average of the speed before and after the single speed spike. Second, for

errors caused by a GPS point that is in an obviously anomalous location, the speed spike

occurs in two simultaneous segments, one to jump to the wrong location and another to

return to the realistic location. This error was fixed by removing the erroneous point. This

simple method was able to adequately correct the GPS coordinates.

We also cleaned the taxi data using an algorithm developed by Jiang et al. (57)

to detect long periods of immobility, or stays, that can be interpreted as parking in our

dataset. This may occur if a client asks to keep the meter running while they finish an

errand. The reason for the splitting is not to affect the recorded speeds on the streets where
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the taxi is effectively parked. We chose the minimum thresholds for idling time and distance

by inspecting the distribution of stay durations throughout the week. A minimum value of

2, 200s (around 37 min) was chosen to allow for the majority of traffic stays during peak

and off-peak hours. A maximum distance for a trip to be split around a stay was 10 m. This

number reflects the relatively high precision of the GPS points. In other words, a trip that

remained within a 10 m radius for longer than 37 min was split into two trips, removing the

37 min or longer section of immobility.

After filtering and cleaning GPS routes for the city of Riyadh, we obtained nearly

43, 000 trips that were analyzed by a custom mapping algorithm to assign full GPS routes

to edges in the road network. For more accurate mapping, longer edges in the road network

were split into shorter segments to ensure that nodes are no more than 10 m apart. The

mapping algorithm was implemented using the following procedure:

1. For each point i in the GPS trajectory, we identify the set of nodes (Ni) in the road

network that fall within a 25 m radius.

2. We constructed a path network G consisting of the nodes Ni.

3. For each point i in the GPS trajectory, we used the Dijkstra algorithm to find the

fastest route from every node in Ni to every node in Nie. For each route, we added a

representative edge to G with the route's total travel time as the weight.

4. For each edge, we added a time penalty based on the distance of the target node to

the original GPS coordinate at a rate of 1 second per additional meter past the closest

node.

5. Any gaps in G were identified to determine contiguous sequences of paths that represent

segments of potential routes.

6. For each contiguous sequence, we identified the fastest path in G as the most likely

route taken by the vehicle.

For verification purposes, trip distances, free flow and observed travel times as well

as fuel economy estimates are plotted in Figure 3-2. Fuel economy is defined as the distance
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traveled per liter of fuel consumption. In Figure 3-2a, we verified that the reported distances

were generally consistent with the sum of the distances calculated between every two con-

secutive GPS points in each trip using the Haversine formula. In Figure 3-2b the free flow

times, computed as the sum of the free flow times of every matched segment in each trip

is compared to the observed flow times as reported in the taxi data. The comparison only

considered the observed total times from trips that were successfully matched with streets.

The figure shows consistent results with observed travel times during the morning peak hour

being slower than the free flow times of each trip. As a baseline comparison to using speed

profiles from taxi data, we calculate fuel economy with the StreetSmart model assuming a

constant speed and one fuel economy bin based on the Hyundai Elantra, the most common

car according to the accident data ( Figure 3-2c). We plotted the results if speed profiles

are used with only one fuel economy bin and if all bins are used in proportion to the fleet

of Riyadh from the crash statistics data. It shows a very close distribution to the simpler

assumption that all cars are the most common car fuel economy, and in high contrast to

the result given by not using the speed profiles. Incorporating speed profiles in the model

results in higher fuel consumption, or much lower fuel economy, which is more accurate and

important for policy projections. This constitutes the core benefits of integrating the more

accurate fuel consumption model.
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Figure 3-2: Data Verification figures using trips in the morning peak time period of weekdays from 8
- 9 AM. (a) Histogram of Reported and calculated Trip Distances. (b) Histogram of free flow travel
time and Observed travel time in matched trips. (c) Histogram of Fuel economies using constant
speed, speed profiles, and 1 bin and all bins.

3.1.2 Fuel Consumption Results

With the StreetSmart model calibrated and speed profiles extracted from GPS data, we can

now estimate fuel consumption for three typical time periods representing distinct traffic
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conditions. The time periods are morning peak (8 - 9 AM), midday off-peak (12 - 13 PM),

and evening peak (17 - 18 PM) during weekdays. For every edge in the road network, we

calculated fuel consumption per car based on each speed profile matched to that edge. The

estimates were computed for each bin of fuel economy in the StreetSmart model. For each

edge, the average fuel consumption rate per car was multiplied by the flow of cars per hour

as computed by a version of the Iterative Traffic Assignment (ITA) algorithm to get a fuel

consumption rate per hour, with car volumes included.

The flow was calculated from OD matrices previously derived from CDR data in

Riyadh by (12), in cars/hour over morning, midday, and evening time periods. Following

(12), a factor of 1.5 was applied to the average morning flow of the morning and evening

time periods to determine peak hour demand. The congested time estimates correlated

successfully with the ones acquired from Google Maps (see comparisons in (56)).

Fuel Consumption Rate

As presented in (56), the ITA algorithm assigns trips in a series of four increments. It

incrementally assigns 40%, 30%, 20% and 10% of the OD flows to the fastest routes in the

road network. After each iteration, the congested time of each edge is updated so that

the effects of congestion can be factored into the assignment. The resulting flow volume

is multiplied by the fuel consumption rate per car to arrive at hourly fuel consumption as

shown in Equation 3.1 which is normalized by edge length.

FC= f1We[f] x h car] (3.1)
Le[ml

where FC is the rate of fuel consumption in [L ], flowe is the flow on edge e as estimated by

the assignment algorithm, f cre is the rate of fuel consumption per car on edge e as estimated

by our application of the StreetSmart model, and L, is the length of the edge in meters.

The results of the model are shown in the choropleth maps in Figure 3-3 below. For

the fuel consumption rate per street, we used a weighted average of fuel consumption by

bin proportional to Riyadh's fleet. The maps show that the most fuel consuming streets are

the grid highways of the city. As expected, the flow of cars and total fuel consumption per
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meter of road is found to be higher in the peak periods of the morning and evening than the

midday off-peak. The evening peak shows slightly higher fuel consumption than the morning

peak, indicated by more red streets. We used quantile breaks on the fuel consumption rate

values of all time periods combined to display the streets that are the most fuel consuming.

A high fuel consumption rate per meter of road is due to high fuel consumption rate per car

and high car flow values. We observe that King Fahd Road is by far the most fuel consuming

road in the city, especially in the area bounded by the old city center from the south and

the Northern Ring road from the north.

morning peak midday off-peak evening peak

I 
NI

\ 0.6 - 1.3 1/m-hr
0.2 - 0.6 m-hr
0 - 0 2 1/m-hr

Figure 3-3: Choropleth Maps of fuel consumption rates [Liter/meter.hour] by the StreetSmart model
on streets matched with GPS data for typical time periods morning peak (8 - 9 AM) weekdays,
midday off-peak (12 - 13 PM) weekdays, evening peak (17 - 18 PM) weekdays.

The taxi GPS data necessary to calculate a fuel consumption on each street did not

cover the entire network of streets. Similarly, the traffic assignment of ODs did not use all of

the city's streets and the majority of roads used were also matched with at least one speed

profile from the taxi GPS data. Specifically, 56%, 57%, and 63% of streets were covered for

the morning,midday, and evening time periods respectively.

Relevance of integrating GPS data

For the morning time period, a simulation of all OD trips in the city is made and the path,

defined as the sequence of edges taken from origin node to destination node, is defined using

the shortest path algorithm as in the ITA algorithm. In the simulation, OD pairs with flow

values that are less than one car/hour are omitted to ensure each flow represents a discrete
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trip. We assign a car fuel economy bin at random to each trip in proportion to the probability

of that bin in Riyadh's fleet. Using the StreetSmart model, we estimate fuel consumption

and trip time as the sum of the their values on each edge in the trip's path. For verification,

total trip times derived via the demand model which were previously verified against Google

Maps estimates (56) are plotted against the trip times derived via the GPS data. As shown

in Figure 3-4a, travel times via GPS data are generally higher than their counterparts from

the simulation but their correlation is satisfactory.

Two sample speed profiles used by the StreetSmart model are plotted with the con-

stant speed assumed by the baseline comparison. As expected, not all trip times are equiv-

alent to their speed profile counterparts and the constant speed is generally lower than the

peaks of the speed profile. Extracted speed profiles do not always end at 0 km/h speed since

the originally matched trips on these edges may not be stopping at that edge. This overes-

timation of speed at the end of a trip represents a negligible increase in fuel consumption

estimation. The lower constant speed assumption used in the baseline comparison results in

fuel consumption estimates that are consistently lower than those from using speed profiles

from GPS data. Thus, the effect of the accelerations and deceleration on the StreetSmart

model are observed to be significant and not negligible which shows the benefit of using GPS

data in the fuel consumption model. The distributions of fuel consumption per trip using

speed profiles and constant speed are shown in Figure 3-4c along with the fuel economies. It

is clear that the acceleration and detailed speed profiles are not negligible in the estimates.

These results bring to the urban scale the results of Figure 3-4c.

The effect of reducing flows on overall fuel consumption is shown in figure 3-4d.

Trips were removed from the simulation described above via three rankings and the resulting

fuel saving potential is shown, normalized by the total fuel consumption of each method.

Random trip reduction results in a perfectly linear fuel saving effect. In contrast, we see

the best case scenario, where trip reduction of the worst fuel consuming trips per meter

are ranked. As expected, targeted reduction results in higher fuel savings with the same

number of reduced trips. More importantly, when comparing the speed profile estimates

(method proposed here) vs. constant speed fuel estimates (baseline) differences emerge.

Constant speed targeting shows a higher return on fuel savings because the variance of the
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Figure 3-4: Fuel consumption estimates at urban scale. (a) Comparison of the travel time of the
routes in the constant speed model via travel demand vs. the input used in our method using
GPS data (b) Sample speed profiles in two routes used to estimate fuel consumption overlaid with
the constant speed used for comparison (c) Estimates of fuel consumption and fuel economy in
the morning peak via our method (speed profiles) and the base line method (constant speed) (d)
Random and targeted fuel savings vs. number of reduced trips.

distribution of fuel consumption estimates using constant speed is less than that of the speed

profiles. In other words, the fuel economy distribution of the constant speed estimates shows

higher proportions at the high end of the distribution than the high end of the speed profile

distribution shown in Figure 3-4c. This would explain the higher fuel savings observed when

the trips are ranked by constant speed fuel consumption per meter. However, since the

constant speed estimates are not as accurate as those derived using speed profiles, the fuel

savings are spurious.

The real gain in using speed profiles to estimate fuel consumption over the baseline

constant speed assumption is in the city-wide total fuel consumption per hour estimate. The

constant speed assumption underestimates the city-wide fuel consumption for the morning
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hour by 60% compared to using the speed profiles.

The relative gain in fuel saving potential of targeting the highest fuel consuming trips

over random trip reduction is approximately 10% if 14.5% of trips are reduced. In other

words, if 14.5% of trips are reduced, the policy targeting the highest fuel consuming trips

per m would save 10% more fuel for every morning peak hour. When 14.5% of targeted trips

are reduced, 25% of fuel consumption for the morning peak hour is saved. These results are

encouraging but the ratio is not as high as the effect of similar targeting policies on household

energy consumption (58), where the increase over random is 51%. These differences can be

explained by the more normal distribution of fuel economy of the trips which renders the

effects of targeting to be much less dramatic than the more broad distribution found in house

energy consumption.

3.2 Discussion and Conclusion

We present a data fusion method to estimate fuel consumption at the urban scale. We

leverage a travel demand model that uses mobile phone data and integrate speed profiles

from taxi GPS data that covered most of the street network of Riyadh. To identify fleet

distribution, we used car crash statistics data as a proxy with the assumption that the

distribution of car makes and models is representative of Riyadh's car fleet distribution. The

method developed here and the calibration of the StreetSmart model for fuel consumption

can easily be extended to any other region. It is significantly faster than if speed profiles were

simulated by software which would require a large amount of time and computing resources

(59).

The fuel consumption model was verified to produce better results than than the

DOE fuel economy by speed graph and tested on real OBD-II fuel consumption measure-

ments before being calibrated to be used on any car fuel economy. The resulting calibration

results are presented in Table 2.2. We used the calibrated StreetSmart model with speed

profiles from GPS data to produce estimates which were compared with the baseline with-

out GPS data and assuming constant speed. The results show that the differences of using

speed profiles is significant, justifying the introduction of the more elaborate model in policy

40



estimates.

As a proof of concept, we applied the calibrated StreetSmart model to test a policy

of flow reduction, both random and targeted to the least fuel efficient trips and simulated

the effect on the rate of fuel consumption in the city. We showed that the difference in fuel

consumption reduction between targeted and random schemes was around 10% more fuel

savings for 14.5% trip reduction. Interestingly, 25% of city-wide fuel savings potential can

be achieved by removing only 14.5% of trips ranked by the worst fuel consuming trips per

meter .

While this project has demonstrated the potential of data-driven models to estimate

the effects of policies on fuel consumption, it can benefit from further study to understand

the impacts of several simplifications and assumptions. There are three main areas which

require further research:

1. To correctly assess the benefit of our straightforward approximation over the compu-

tationally costly alternative, speed profiles of each car across every origin-destination

trip should be simulated and the results compared.

2. The GPS data used in our model covered most but not all of the street network. A

more accurate fuel consumption calculation can be achieved with more data, covering

a higher proportion of flow over a longer time period.

3. The trip assignment method used is an efficient and reasonably effective method to

estimate overall congestion based on a simplified method of route choice. However, the

baseline estimates would benefit from trip assignment derived from a dynamic traffic

assignment model.

We hope the method used to obtain the results of the fuel reduction strategies can be

implemented for other fuel or emissions reduction strategies, assuming the conditions remain

relatively unchanged. For example, the composition of the Riyadh fleet remains similar and

that streets remain unchanged. For future implementations, the composition of the fleet

can easily be adjusted since the method uses bins to account for all car types. However,

a significant change in the road network layout or the traffic conditions would require new
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datasets (Road network and GPS routes for speed profile extraction) to recompute modular

road-by-road fuel consumption estimates for each bin of car type.

Current fuel consumption models are adapting to the wealth of data available from

ubiquitous sensing devices such as smart-phones. Our project aims to show the relative gain

in accuracy of incorporating both fuel economy distribution considerations and speed profiles

derived, in our case, from GPS devices used by a local taxi company. The method devel-

oped in this paper can be adapted to also measure emissions. It can be further augmented

to analyze the economic and environmental impacts of policies targeting specific trips by

conducting a network analysis to identify the affected trips. The tools developed in this

work have the potential to assess the consequences of a variety of policies under different

circumstances and in any region of the world.
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Chapter 4

Fuel Effects of Women Adopting Driving

in Riyadh

4.1 Introduction

In a recent policy change, it was announced that women will be allowed to drive in Saudi

Arabia in June 2018 (60). This change will certainly have significant effects on traffic, fuel,

and emissions in the middle eastern kingdom. In 2017, women made up just over 16% of

the labor force (61). The trend since the early 1990s shows a 3-fold increase from just over

5.4% in 1992 to current levels. This trend is expected to continue going forward with the

government's commitment to easing social constraints and increasing the participation of

women in the labor force to 30% by 2030. With 70% of the Saudi Population under the age

of 30 and many having studied abroad, pressure is mounting for them to enjoy some of the

social freedoms taken for granted outside the kingdom.

A major strategy outlined in Vision 2030, a general reform plan set forth by Mohamed

Bin Salman (MBS), the country's young crown prince, is to decrease Saudi Arabia's heavy

financial reliance on oil. In 2018, subsidized retail gas prices in Saudi Arabia were almost

doubled from 0.75 to 1.37 riyals per liter (from 0.76 USD to 1.38 USD per gallon) as part

of the ongoing effort to promote more efficient use of the government's resources. Using a

tool previously developed at MIT for estimating fuel consumption, we attempt to gauge the

effect on fuel consumption of allowing women to drive in Riyadh, Saudi Arabia's capital city.
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To our knowledge no other projects have attempted to quantify the adoption rates of women

driving and its consequences on fuel consumption at the urban scale.

Until June 2018, male drivers, whether family or hired, must accompany all commute

trips made by women to work or university. We differentiate between essential trips made

by women, with both the women and the driver in the car, from empty return trips made by

the drivers alone. We combine Call Detail Records (CDR)-based travel demand modeling

with a model of how drivers arrive in time for a woman's essential trips to produce trip flows.

This enables us to simulate empty driver as well as essential trips for a subset of the users

whose gender has been identified and compute their fuel consumption. No other work has

recorded the adoption of driving by a population with previously no access to driving. We

model the adoption of driving by women on an agent-based Bass diffusion curve (35) and

assume that once driving is adopted by a woman, all non-essential empty driver trips can be

avoided and thus estimate the possible savings of fuel over time. Our method does not take

into account the latent increased potential for trips that may be made once the women is

free to make trips without a male driver. This would need surveys and a stated preference

travel demand model which is a possible next step.

The structure of the chapter is as follows. Section 4.2 describes the datasets used in

our model. Section 4.3 describes our methods for trip generation and for simulating empty

driver trips which compliment essential trips made by women as well as verification of the

resulting trip flows. Section 4.44 contains a description of the fuel consumption calculation

and adoption model for driving and its repercussions. Finally, section 4.5 will discuss policy

conclusions and next steps.

4.2 Data Description: CDR and Gender labeled Users

4.2.1 Data description

CDRs are extremely valuable in producing travel demand estimates. Following the tools

developed in (2, 56, 57), we used the extracted travel demand from CDRs from a mobile

telephone company in Riyadh over a period of one month in December 2012. Each CDR
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record contains an anonymous user ID, coordinates, and timestamp for every instance of

a phone call or SMS. The coordinates recorded are those of the nearest cell tower used.

Fuel consumption was computed following the method described in Chapter 3, using GPS

speed profiles from a local Transportation Networking Company (TNC) and a model that

was calibrated for use on cars of any fuel efficiency. We also derived the composition of

fuel efficiencies of Riyadh's car fleet using as a proxy the motor vehicle crash statistics from

January 2013 to October 2015 provided by the city of Riyadh. These data were combined to

predict the fuel consumption in Riyadh during a typical weekday. This project was aided by

the identification of a subset of women in the CDR population thus enabling a simulation

of the additional empty driver trips needed to accommodate the mobility needs of women

hitherto banned from driving in the kingdom.

4.2.2 Gender Labeling

The gender of 20,000 CDR users (10,000 women and 10,000 men) were labeled by manually

identifying the points of interest (POIs) that are restricted to only women or men as described

in detail in (62). Since the work done in (62), an expanded set of POIs that are restricted

to women only, like Princess Noura University (PNU) during class hours, have yielded more

users identified as females. Other locations include female/male only universities, a football

stadium, and female-only shopping malls in Riyadh city. Additional measures were taken to

ensure that the users identified were of women and not male residents in the PNU dormitories.

Only cell towers near the lecture buildings were used and users who stayed overnight or during

non-lecture times were filtered out since they could be custodial staff or faculty. Finally, we

identify the gender of the users based on the number of distinct gender-specific locations

visited. The resulting CDR users were confidently identified to be female and were used in

the rest of the project to simulate empty driver trips for our fuel consumption estimations.

4.2.3 Expansion Factors

Figure 4-1 shows the distribution of the home locations of the CDR users in the whole

CDR dataset and the gender labelled subset. Following (13), home and work locations were
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identified for each user as the stays with the most visits during 7 pm - 8 am and 8 am - 7

pm respectively on weekdays. The weekday in 2012 in Saudi Arabia started on Saturday

and ended on Wednesday. Since our dataset does not include every resident of the city, the

residents that were observed in each zone were used to represent the whole residents of that

zone by expanding them by a factor equal to the zone's total population to the observed

subset. Expansion factors for each Traffic Analysis Zone (TAZ) for the CDR data set are

shown in Figure 4-l a, c, and d. in Figure 4-la, a map shows the distribution of the population

across the city. A low expansion factor means the ratio of users in our dataset to the residents

of the TAZ, as indicated in the census, is low. A high expansion factor means there are few

users in our dataset compared to the residents of the TAZ. In comparison with the expansion

factors of the gender-labeled subset of users whose expansion factors have a median of 200

to 300, the whole dataset is satisfactorily representative of the population in Riyadh with

a median expansion factor of 17. There is no statistical significance to expanding the small

gender labeled subset since it would not be representative of the entire population.

4.3 Trip Generation and Fuel Consumption Methods

4.3.1 Trip Generation and flows

Travel demand between the TAZs was computed by following the methods outlined in (13).

Users with fewer than one per week home stays were filtered out of the trip generation to

ensure the CDR data adequately represents a user's travel patterns. Similarly, users who

visited their potential work locations less than once a week were not assigned a work and

those locations were labelled as other. In effect, 36% and 53% of male and female users

respectively were found to have a work location which reflects the reality that not all citizens

commute to work or school on a daily basis.

With the user's home and work locations identified, a trip was simulated between

every two consecutive stay locations within an effective day (from 3 am to the following

3 am). Trip departure time was randomly sampled from the distribution found in the US

National Household Travel Survey (NHTS 2009 (63)) corresponding to the day and purpose
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Figure 1 Expansion Factors in Riyadh CDR users
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Figure 4-1: Expansion Factors of CDR users, (a) Choropleth map of expansion factors for all CDR
users, (b) Choropleth map of expansion factors for gender-labeled CDR users, (c) distribution of
expansion factorsfor all CDR users, (d) scatter of CDR population vs census population for every
TAZ in blue and after expansion in red, (e) ditribution of expansion factors for gender-labeled CDR
users, (f) scatter of CDR population vs census population for every TAZ by gender

of the trip. NHTS of the USA was used since no such data exists for Saudi Arabia. Finally,

if a user did not record a stay at her/his home at the beginning (or end) of an effective day,

her/his first (or last) trip was started (or ended) at the home location.

The distribution of trips by purpose and gender is shown in a Joyplot in 4-2a. For

Home Based Work (HBW) trips, females have more pronounced extremes than do males

whose midday is a gradual increase towards the evening peak. Both female and male HBW

trips in Riyadh have a slightly later start time and earlier end time than the US NHTS

which suggests a shorter work period than the US. Home based Other (HBO) trips are

almost identical for females and males and generally have a morning peak only, with almost
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no HBO trips made in the evening. Non-Home Based (NHB) trips represent the compliment

of the HBO trips with a gradual distribution in the evening and night and none in the

morning.
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Figure 4-2: Features of Mobility by Gender, (a) a Joyplot showing the trip departure time distri-
bution for male and female users by trip purpose HBW,HBO,an NHB compared to the distribution
from the NHTS, (b) A map of the home and work locations of users colored by gender, (c) outer:
Average locations visited per day by gender, inner: Lth most visited locations by gender, (d) Radius
of Gyration and Average Stay Duration distributions by gender, (e) Mobility Diversity distribution
by gender

Human mobility is characterized by frequent return to previously visited locations (2).

This is confirmed in our dataset as shown in 4-2c inner plot, about 60% of stays occurring in

the 5 most visited locations and 70% in the top 10 locations. Several features of the mobility

patterns of males and females were also computed and their distributions shown in Figure

4-2. The features that showed very similar results between the genders were the Lth most

visited location, average locations per day, and average stay duration. Other features showed

a noticeable difference between the genders, like Mobility Diversity and more significantly
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Table 4.1: Percent of Trips by Purpose and Time of Day Compared to NHTS and MHTS

HBW [%] HBO [%J NHB [%J Morning (%] Midday [%] Evening [%I Rest-of-Day [%J
Male CDR 1 42 57 24 16 26 34
Female CDR 2 41 57 24 16 28 33
MHTS 12 49 39 21 34 33 13
NHTS 14 55 30 19 37 31 13

the radius of gyration (RoG). The median RoG of females is less than that of males, at 9.8

and 14.3 km respectively. This implies that female users do no venture as far from their set

of visited locations as do male users. The Shannon entropy mobility diversity, defined by

4.1, was also computed for male and female users following Pappalardo et al. (64).

S(u) eEE P(e) 10 p(e) (4.1)
log N

where e = (o, d) represents a trip between an origin phone tower and a destination phone

tower, E is the set of all the possible OD pairs, p(e) is the probability of observing a movement

between o and d, and N is the total number of trajectories of individual u.

For verification, we compare the percentage of trips by purpose and time of day to the

Massachusetts Household Travel Survey (MHTS) conducted in 2010/2011 and the National

Household Travel Survey conducted in 2009. We find that the Home Based Other (HBO) of

the MHTS and NHTS compare well with the observed HBO in our gender-labeled subset in

Riyadh. The main departure is in the Home Based Work (HBW) trips in our gender-labeled

population. This may be a result of the lack of identified work places in the subset used.

The identification process used an all women university and a male-only stadium during the

month of December. This bias in the identified population may lead to a smaller proportion

of daily work/study commute trips, especially in December when universities usually have a

semester break. As for the time of day of the trips, more trips were made in the night time

in Riyadh and in the early morning. This may be explained by the difference in weather

between Riyadh and the US. Riyadh's middle eastern climate means the most direct sunlight

and hottest time of day is the midday and early evening hours.

The flows resulting from the trip generation described above cannot be expanded to

represent the entire population of Riyadh for several reasons. First the numbers of identified

users are too small to be a representative sample of the almost 6 million inhabitants of
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Riyadh. The expansion factors, as shown in Figure le are on average 200 to 300. Such

an expansion risks overestimating the trip-making tendencies based on a few select users.

Another reason is that the gender-labeled subset produces about 3 times more flows in total

compared to 10 random samples of the same number of phone users. This is because the

method used to identify gender ensured that the users had a high usage frequency. When

compared to randomly drawn users, the difference in trip generation emphasized how the

gender-labeled sub-sample is not representative of the entire population. The gender specific

POIs chosen may tend to be biased towards a young adult population with less children

and older citizens. This bias should be considered when analyzing the results which may be

skewed in favor of young adults who are highly educated, in the female case, and interested

in sports in the male case.

4.3.2 Driver Trip Simulation

According to a survey conducted in 2017 by IPSOS, 47% of women are driven by a family

member and another 21% have a household driver in their employ. The rest may take taxis,

TNCs, or commute by riding their institution's private buses. So a fact of life for around

68% of Saudi Arabian women is that a male driver must drive them for every car trip they

take. For our simulation of this reality we have made several basic assumptions based on

knowledge of the local cultural norms.

As depicted in Figure 4-3a, a driver must make empty trips around the essential trips

performed by a woman. The driver in these scenarios can be any male whether employed

or related to the woman whose trips are being made. Before the woman's first trip in an

effective day, the driver commutes to her home location from a randomly assigned driver

home location across the city. Since we are only interested in the effects on fuel consumption

of the empty trips made by the driver without the women, we consider the women's actual

trips to be essential and thus not considered as a potential source of fuel savings. The driver

then waits at the women's location unless her stay at that location is longer than a cut off

time limit set to 2 hours. If the woman's stay is indeed longer than 2 hours, he returns

to the women's home location immediately after dropping her off. In reality, this may be

the necessary for the driver to make other household trips like run errands or drive another
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female member of the same household. The same routine happens for trips of any purpose

and any time of day. Finally, after the last trip of the effective day, the driver returns to the

same randomly assigned driver home location and returns for the next essential trip by the

women, not necessarily on the following day.
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Figure 4-3: Driver Trip Simulation, (a) Departure time distribution of empty driver and essential
female trips, (b) diagram of the relation between empty driver and essential female trips

4.4 Calculating Fuel Consumption

4.4.1 Fuel Consumption Model

The Fuel estimation framework can be summed up as follows. Travel demand for the entire

city was calculated by expanding the flow observed by the CDR user population. The routes

taken for each trip were computed using an Iterative Traffic Assignment (ITA) algorithm

that staggered the assignment of cars iteratively by 40%, 30%, 20% and finally 10% and

updated the congested time on each street between the iterations (56). Speed profiles for

each street detected in the TNC dataset was recorded and fuel consumption was calculated

for each street using the calibrated StreetSmart model. Every street matched with a speed

profile received an attribute of fuel consumption per meter for every bin of fuel efficiency

representing the Riyadh fleet of cars as observed in the crash statistics provided by the city.
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An improvement on the previous framework developed in Chapter 3 is the now comprehensive

fuel consumption rate per meter on every street in the network of Riyadh even on streets

not previously matched with a speed profile. For those streets without a speed profile, the

congested time of the street was used to calculate a constant speed which in turn was used

in the StreetSmart model to compute fuel consumption for every bin of fuel efficiency (65).

The results of the ITA were used to simulate a trip for every flow value greater than

one. Each simulated trip had a path attribute as a list of streets followed. It was assigned a

car fuel efficiency bin following the distribution of Riyadh's car fleet. Finally trip properties

such as total trip time, distance, fuel consumption, and fuel efficiency were computed for

each simulated trip. The distributions of each property are shown in Figure 4-4a and b.

The trip times, distances, and fuel consumption follow an expected distribution with mean

values that are reasonable for a city of Riyadh's size. The distribution of fuel efficiency of

the trips is a similar shape to the fuel efficiency of the city's fleet as shown in 3-2.

4.4.2 Verification of Aggregate Fuel Results

The fuel consumption was calculated using travel demand that was expanded to represent the

entire population of Riyadh based on census population values from 2012. Streets that were

not matched with GPS data in the dataset were filled with fuel rates assuming a constant

speed with time equal to the congested time output by the ITA algorithm. The resulting

totals of fuel, reported in 4.2, allegedly represent the urban fuel consumption of Riyadh over

the course of one typical weekday. To verify that these totals are in agreement with reality, we

compared them with several different sources of transportation fuel consumption in Riyadh.

The computed total is 12.72 million liters (80,036 US Barrels) per day. According to the

Energy Information Administration and the Saudi Arabian Monetary Agency, the transport

sector in 2013 consumed 1.3 million barrels per day (66). That means our estimate for Riyadh

represents 6.2% of the reported consumption for the country. Given that our method only

models personal vehicle trips and does not account for either other modes like freight and

airplanes or other cities in the country, the estimate of 6.2% is well within reason. The ITA

results are verified against the recorded TNC travel times on the streets that were matched

as shown in 4-4c.
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Table 4.2: Fuel Consumption

Fuel [Liters]
Female Essential
Empty Driver

Male
Total Gender labeled
Total Expanded

Estimation Totals for Male and

Morning Midday
94,879
166,414
68,095
329,389
3,750,546

52,372
69,511
41,600
163,484
3,528,630

Female and Empty Driver Trips

Evening Rest of Day

29,748
43,711
21,655
95,116
2,955,463

59,432
88,733
47,144
195,309
2,490,059

If we compare the calculated fuel to Motor Gasoline consumption from the US Energy

Information Administration, we find that our estimate for Riyadh alone is very close to

the measured estimates for counties in the region with comparable population sizes. The

12.72 million liters gives 1.86 liter per day per capita which is very close to the reported

consumption of Kuwait, Bahrain, Qatar, and UAE (2.31, 1.62, 1.83, 1.86 respectively) and

reasonably close to those of Singapore and Luxembourg (0.55 and 2.18). This assures us

that our estimate for fuel consumption for Riyadh for the entire population is reasonably

accurate and comparable to measured and reported truths. Since the same technique was

used for the subset of gender-labeled users and the simulated Empty driver trips associated

with the women, the fuel savings potential can be computed with confidence. The results of

fuel consumption are broken down by time of day and trip occupant in 4.2.
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4.4.3 Model of Adoption of Driving by Women

In order to predict the time in which these fuel savings may occur, we must first model

the time it will take for women to accept driving and integrate this new phenomenon into

their routines. Adoption models have been used to measure and predict markets and the

spread of disease for the greater part of the 20th century. For our adoption model, we chose

the Bass diffusion curve, developed in 1969 by Frank Bass, which models the adoption or

sale of a new technology stochastically on the basis of two simultaneous processes. The

first is innovation whereby a portion of the susceptible population spontaneously decides

to adopt due to advertising or originality, and the second is imitation whereby some users

decide to adopt after a certain proportion of the population adopts the technology first. This

curve is used widely in the industry and the scientific community to model social adoption

of phenomena as well as market penetration of new products (67). The network of female

users, as represented in our dataset of CDRs, gives us an added component that can enhance

the modelling capabilities of the simple Bass model.

From the phone call records of the female identified subset of users we constructed an

undirected, unweighted graph of the women. Since the women were identified as such by their

frequent and consistent presence at an all-women's university, it is no surprise that we found

that 90.2% of the women were part of one connected component as shown in 4-5a. The colors

chosen for the visualization are the result of a community detection modularity algorithm

and the node sizes represent the betweenness centrality of each node. The knowledge of their

relationships as observed by their phone calls enables us to use an infection algorithm, such

as Susceptible-Infected-Recovered (SIR) model (68), to model the spread of the adoption of

driving as the spread of a disease or a social phenomenon.

The difference between the Bass model, an aggregate system-level model, and the SIR

model, an agent-based model (ABM), is the level at which the stochastic process of conversion

is executed. Whereas in the Bass model, aggregate ratios of infected to susceptible nodes are

used to calculate the number of newly adopted people at every time step, in the agent based

model where a node's neighbors are known, the ratio used is that of infected neighbors to all

neighbors. For our use, we extended the traditional SIR model, called the SIRa model, to
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include a spontaneous infection parameter as described in (68). The SIRa model requires 3

parameters, a is the innovation parameter, 3 is the imitation parameter, and gamma is the

recovery parameter (which is set to 0 for our implementation). The parameters p and q of

the Bass model are not directly transferable to the parameters of the SIRa model. For this

reason, in order to simulate the Bass curve with SIRa model on our network, a conversion

was necessary following (69).

The choice of p and q, and subsequently a and 3, follows several scenarios to represent

both the values found in the literature as well as recent surveys conducted by several media

firms in Saudi Arabia. The Bass curve was fitted to electric car sales in a recent study

that extensively reviewed parameter choices in the literature pertaining to car sales (41).

Car sales are used as a proxy to licensing and adoption of driving by women since they

were the closest proxy found in the literature and carried similar weight with respect to

lifestyle decisions albeit they are not as culturally sensitive as the issue of women driving in

Saudi Arabia. The original estimates of the study by Massiani and Gohs found that yearly

calculated adoption p values ranged from 0.000013 to 0.00322 and q values from 0.2319 to

1.2513. The surveys conducted by IPSOS and PwC, shown in 4-5b as points, also suggest

the rate of women who intend to start driving in the short-term future. Using these two

sources, four scenarios were used to represent the varying adoption speeds by the subset of

women in our dataset. These range from ambitiously fast in Scenario 1 to modestly fast in

Scenario 4.

Results of Adoption and Fuel Consumption

Under the most ambitious adoption scenario, the rate of innovation exceeds imitation, and

the diffusion does not follow the traditional S-curve. Moreover, the IPSOS survey claimed

that 24% of respondents intended to drive immediately, perhaps indicating they already

drove outside the country previously. In 4-5b, the proportion of women in our subset who

have adopted driving is related on the right-side y-axis to the associated potential of fuel sav-

ings, taking into account that only 68% of women incur empty driver trips. The maximum

potential of fuel consumption is liters and is achieved at different times in each scenario.

It ranges from 2 years to 14 years. The surveys we used as a starting point for the adop-
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Figure 4-5: Network and Adoption Scenario Results, (a) degree distribution of the female gender-
labeled CDR users network of communications and the largest component in the network visualized,
(b) Adoption Scenarios and their associated Ratio of Women driving and fuel savings potential

tion scenarios were not rigorously administered and thus their representation of the average

Riyadh woman is questionable. The more realistic scenario would lie somewhere in between

the options modeled here.

4.5 Discussion and Conclusion

4.5.1 Limitations and Assumptions

These empty driver trips represent an unnecessary waste of fuel which can be a source of

economic benefit both for the employers and the country's subsidized fuel program. The

fuel consumption associated with each trip is computed following the method developed and

verified in Chapter 3. The main assumption in our current framework is that the empty

driver trips simulated in the section above will be cut once a woman has the right and

ability to drive herself and her associated driver trip costs can be saved. There are several

limitations in our method. First, the framework assumes that women will not make more

trips than those currently made with a male driver and assumes no latent travel demand

exists for women in Saudi Arabia. Second, we assume that once a woman is able and willing

to drive, the driver's Empty Trips are removed once and for all with no reverting to pre-

driving habits. Third, the effect on traffic flow and consequently driving speed profiles are

not taken into account on an urban scale. These simplifications enable us to calculate the
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fuel savings potential of women driving in Saudi Arabia but the nuances of the actual fuel

savings are dependent on more factors than we can model at this time with the information

at hand.

The first assumption of no latent travel demand is uncertain since opinion surveys

have shown that women intend to work more once this policy change liberates them from

their current dependence on a male driver. 55% of the respondent of the IPSOS survey

think that traffic will get worse once the ban is lifted. In such a conservative society where

women rarely have access to public space, a car's mobility and privacy may offer an attractive

alternative to the limited and highly controlled environments found both at home and at

commercial spaces. This private space may lead to unnecessarily long trips and an increase in

travel demand that is not captured by our model. To incorporate such latent travel demand,

a discrete choice model can be made with the results of stated preference surveys.

The second assumption is an optimistic result of a change in attitudes and culture.

As fuel prices continue to increase and women start to make their own trips, hired driver's

will in the long run be a less economical and attractive option. Once hired drivers are let

go, the burden of rehiring them would inhibit the old empty driver habits from returning.

Finally, the third simplification is a consequence of our dataset and the framework

developed to estimate traffic in Chapter 3 which uses a static dataset of GPS points to

calculate acceleration and idle time on each street. To account for the differences in traffic

after the lifting of the ban would require new GPS datasets not available at the time of this

project.

Moreover, the flow estimated for the entire city of Riyadh as an output of the expan-

sion of the observed users to represent Riyadh's population's flow was not changed since our

gender-labeled subset is not representative of the entire female population. This is because

it is effectively too small - 10k women and 10k men - to be representative of the whole pop-

ulation of Riyadh. Despite these simplifications our results are built on sound assumption,

stated preferences, and verified against reported urban fuel estimations and travel demand

values.
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4.5.2 Policy Recomendations

After considering the limitations of the current framework, it is still useful to glean insight

on the behavior of women and the associated economic effects of lifting the driving ban.

According to our results, empty drivers incur from 132 to 176% of additional fuel consumption

over essential female trips. The potential of savings here is significant and the speed with

which it can be realized depends mainly on the adoption scenario of the women.

Our estimates show that the maximum fuel savings is likely to be achieved before

14 years if the conservative adoption scenario is followed. This ultimately depends on the

innovation and imitation of other women in cutting empty driver trips. For imitation, we

have seen that the our subset of women were very highly connected with only less than

10% not in communication with the rest of the female population. This indicates that

imitation will occur effectively. What policy makers can focus on is increasing the innovation

parameter. This can be achieved by simplifying the process and encouraging the population

to decrease empty driver trips through advertising campaigns and positive messages in the

media showing the drawbacks of empty driver trips. On the other hand, it is important to

use this opportunity to encourage car pooling and mass transit among women to avoid a rise

of extra trips that can cause high traffic and undo the benefits we foresee.
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Chapter 5

Conclusion

Big Data is being collected from a constantly growing market of smart phone users, both

passively and actively and in more creative ways every year. This treasure of data does

not have to mean an end to privacy but a boon for data-driven policies and solutions. We

have shown how different sources of data can be used to produce meaningful results in

transportation planning; From a faster, more representative and more robust travel demand

model, to the simulation of policies for traffic congestion relief and women driving in Saudi

Arabia. The applications are as varied as the sources of data and the questions that are

relevant at the moment. One thing is certain, however, the importance of incorporating

more data into our models will only increase as the potential improvement in prediction

increases as well.

5.1 Summary

The project showed the calibration of a robust fuel consumption model that uses speed

profiles for use on a range of fuel economies. The resulting parameters are shown in Chapter 2

and were applied on the fleet composition of Riyadh to compute total urban fuel consumption

in Chapters 3 and 4. This was aided by several sources of data such as Call Detail Records

and GPS traces of a local taxi company. The CDRs were used first to estimate travel demand

and to ultimately get car flow along each street of the city. They were also used after gender

identification to build a network of women by their communications. The GPS points were
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cleaned and matched to streets along the city and the resulting speed profiles per street were

used to get fuel consumption per street.

The framework was applied successfully to test several traffic relief policy scenarios.

The results showed that the efficacy of targeting the most fuel consuming trips, shown to be

on the high speed peripheral highways as well as stop-and-go inner roads, yielded double the

fuel savings compared to random reduction. Another application of the fuel framework was

the modeling of empty driver trips around the identified subset of female CDRs. The drivers

generated trips that would be rendered unnecessary when women begin to adopt driving

in Saudi Arabia in the summer of 2018. The speed with which these fuel savings can be

achieved was found by modeling the adoption of driving by women on an agent-based Bass

diffusion curve. The findings suggest that, with the right encouragement and policies, the

maximum savings can be achieved within 14 years. Our methods made several assumptions

and thus have limitations that will be summarized in the next section.

5.2 Limitations of the Framework

First, the GPS data used to acquire speed profiles on the streets did not cover all of the

streets of Riyadh. Therefore, our solution was to use the same fuel consumption model on

those streets but revert to the average speed on those streets as computed by an iterative

assignment algorithm (ITA). Furthermore, the ITA itself was not a dynamic equilibrium

algorithm, but rather a static assignment with 3 updates between staggered assignment

intervals. Our method can benefit from an improvement on this traffic assignment algorithm.

Second, the method used to calculate the fuel savings potential of women driving in

Saudi Arabia only calculates the possible reduction of trips from removed empty driver trips.

It does not model the potential increased demand in trip making on the part of women. It

must be noted that the question was never if fuel will be saved when women drive, rather

how much will be saved and when. The specific assumptions of this application are summed

up in Chapter 4.5.1.

Third, our method is simple and re-usable as long as the conditions of the city remain

relatively unchanged. For example, the composition of the Riyadh fleet remains similar and
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that streets remain unchanged. For future implementations, the composition of the fleet

can easily be adjusted since the method uses bins to account for all car types. However, a

significant change in the road network or the traffic conditions would require new datasets

(Road network and GPS routes for speed profile extraction) to re-compute modular road-

by-road fuel consumption estimates for each bin of car type.

5.3 Future Work

We hope the method used to obtain the results of the fuel reduction strategies can be imple-

mented for other pollutants or emissions reduction strategies. It can be further augmented

to analyze the economic and environmental impacts of policies targeting specific trips by

conducting a network analysis to identify the affected trips. The simulated trips give a gran-

ular picture of distances, travel times, and fuel consumption. This granularity can be used

in discrete choice models as well as individual user analysis. For example, as in our case of

identifying women and men and modeling scenarios of their choices, another subset of users

can be identified and their individual trip properties modeled to test relevant policies. The

tools developed in this work have the potential to assess the consequences of a variety of

policies under different circumstances and in any region of the world.

Finally, as we encourage a healthy scientific replication of our results, we have made

our code available on Github at www.github.com/adhamkalila/riyadhfuelconsump. The

datasets used are protected against distribution so the code published was cleaned from any

raw data and only results necessary for recreating figures were pickled and shared.
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