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Abstract

Mobile phone technology generates vast amounts of data at low costs all over the
world. This rich data provides digital traces when and where individuals travel, im-
proving our ability to understand, model, and predict human mobility. Especially in
this era of rapid urbanization, mobile phone data presents exciting new opportunities
to plan transportation infrastructure and services that meet the mobility needs and
challenges associated with increasing travel demand. But to realize these benefits,
methods must be developed to utilize and integrate this data into existing urban and
transportation modeling frameworks.

In this thesis, we draw on techniques from the transportation engineering and
urban computing communities to estimate travel demand and infrastructure usage.
The methods we present utilize call detail records (CDRs) from mobile phones in
conjunction with geospatial data, census records, and surveys, to generate represen-
tative origin-destination matrices, route trips through road networks, and evaluate
traffic congestion. Moreover, we implement these algorithms in a flexible, modular,
and computationally efficient software system. This platform provides an end-to-end
solution that integrates raw, massive data to generate estimates of travel demand
and infrastructure performance in any city, and produces interactive visualizations
to effectively communicate these results. Finally, we demonstrate an application of
these data and methods to evaluate the impact of ride-sharing on urban traffic.

Using these approaches, we generate travel demand estimates analogous to many
of the outputs of conventional travel demand models, demonstrating the potential
of mobile phone data as a low cost option for transportation planning. We hope
this work will serve as unified and comprehensive guide to integrating new big data
resources into transportation modeling practices.

Thesis Supervisor: Marta C. Gonzalez
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Overview and motivation

According the United Nations Population Fund (UNFPA), 2008 marked the first year
in which the majority of the world’s population lived in cities. Rapid urbanization
places enormous strain on already burdened transportation infrastructure critical to
providing residents with access to places, people, and goods. Delays and poor levels of
service resulting from such congestion waste time and money and exacerbate harmful
vehicle emissions.

Effectively moving people and goods—the fundamental task of transportation plan-
ners, modelers, and engineers—is increasingly challenging in this era of rapid popu-
lation growth in cities. Meanwhile, transportation services and infrastructure effect
economic growth and quality of life within cities. Given the direct and varied im-
pacts it has on society, the transportation industry attracts planners, engineers, and
economists to address these complex challenges.

Interdisciplinary approaches are key to understanding and modeling human mobil-
ity patterns and future mobility needs. The economists’ principles of supply, demand,
and pricing, along with the planners’ concepts of transportation system dynamics, un-
derpin much of the framework for modeling human mobility. Combining broad and
varied expertise, cities can adopt strategies to plan more efficient, sustainable, and

equitable transportation systems.
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Travel demand models are essential for managing existing transportation systems
and planning for future development. Demand estimates output from such models are
relied upon for transportation plans, environmental impact studies, and infrastructure
investment and prioritization decisions [11]. Travel demand models widely-used in
industry fall into two main categories: the traditional four-step or trip-based models,

and the newer activity-based or schedule-based models.

But despite the sophistication of these models, they require quality input data
for development, calibration, and validation. Accordingly, a large amount of time
and money are spent on data collection. Data demands include detailed data on
transportation networks, capacities, and levels of service, as well as behavioral data
collected from surveys. In addition to sociodemographic information, household travel
surveys provide travel-activity diaries detailing specific trips and travel characteristics
of the respondent. Because they are expensive and intrusive, such surveys typically
describe just one recent day, limiting their ability to capture irregular and/or leisure

activities.

In contrast to survey data, ubiquitous mobile computing, namely the pervasive
use of cellular phones, has generated a wealth of data that can be analyzed to under-
stand and improve urban infrastructure systems. The penetration of these devices is
astounding with six billion mobile phones nearly tripling the number of internet users.
Penetration rates of over 100% are routinely found in the developed word, e.g. 104%
in the United States and 128% in Europe! and rates are of over 85%?2 are observed
developing contexts. These devices and the applications that run on them passively
record social, mobility, and a variety of other behaviors of their users with extremely
high spatial and temporal resolution.

However, before the benefits of this massive, passive data can be realized within

the transportation domain, methods must be developed and assessed with respect to

their applicability and limitations. In particular, mobile phone data has the potential

LGSMA European Mobile Industry Observatory 2011 http: //www.gsma.com/publicpolicy/wp-
content/uploads/2012/04/emofullwebfinal .pdf

2ITU. (2013) ICT Facts and Figures http://www.itu.int/en/ITU-D/Statistics/Documents/
facts/ICTFactsFigures2013-e.pdf
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to complement or substitute for household travel surveys. However, despite the fact
that it can be gathered more frequently and economically, mobile phone data lacks
information about a respondent (e.g. age or income) or his/her trip (e.g. purpose
or mode) [70, 81, 44]. Furthermore, mobile phone data contains traces of a user at
approximated locations when his/her phone communicates with a cell phone tower,
providing an inexact and incomplete picture of daily trip-making. Accordingly, much
research has focused on developing methods to extract meaningful information about
human mobility from mobile phone traces.

Adding to the existing body of work using mobile phone data, we present method-
ology to go from raw mobile phone data to road usage, analogous to the trip genera-
tion, trip distribution, mode choice, and traffic assignments procedures of traditional
travel demand models. By paralleling the framework commonly used by transporta-
tion planners and modelers, we are able to compare and contrast these methods and
results with traditional survey data and models. Moreover, we present a flexible,
modular, and computationally efficient software system to integrate these algorithms
and visualize results in any city for which mobile phone data is available. Lastly, we
present an application that utilizes all of these methods to evaluate the impact of
ridesharing on urban traffic.

The gamut of travel demand estimation using big data resources is presented
through the methods, validation, implementation, and applications described in this
thesis. Demonstrating the validity of mobile phone data as an end-to-end solution for
travel demand estimation will hopefully support the incorporation of new big data

resources into transportation demand modeling approaches.

1.2 Literature review

Researchers across different domains approach travel demand modeling in different
ways. Here, we present an overview of bodies of work in two communities, in particu-
lar: transportation engineering and urban computing. The transportation engineering

community typically uses models to derive demand and behavior based on socioeco-
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nomic, land use, and transportation characteristics. The urban computing community
brings together statistical models, data mining, and machine learning techniques to
extract mobility patterns from large amounts of data. As automatically collected
data is becoming more widespread, the boundary between these communities is di-

minishing.

1.2.1 Transportation engineering

Travel demand models are widely used for transportation policy, planning, and en-
gineering applications in order to estimate infrastructure capacity requirements, fi-
nancial and social viability, and environmental impacts of proposed transportation
projects. The fundamental task of these models is to adequately model the travel
decision process, a problem simplified by aggregating decisions and decision-makers
in space (e.g. dividing a study area into zones) and time (e.g. discrete time periods).

Travel demand models were first developed in the US in response to post-war de-
velopment and economic growth, with the first comprehensive application being the
Chicago Area Transportation Study in the 1950s. This study implemented a four-
step model, modeling estimation procedures in four sequential steps: trip generation,
trip distribution, mode choice, and trip assignment. Federal legislation introduced
in the 1960s requiring urban transportation planning institutionalized the four-step
model. In the 1970s additional legislation called for improved models, with particu-
lar emphasis on multimodal and environmental planning, leading to the development
and integration of more sophisticated demand and assignment methods into four-step
models. Growing recognition of the limitations of the four-step modeling approach
in the late 1970s and 1980s led to Travel Model Improvement Program®, which has
worked towards advancing modeling capabilities and supporting transportation pro-
fessionals since the early 1990s. Efforts in the last few decades can be characterized
as improving state-of-the-practice conventional models while further developing state-
of-the-art methodologies [57].

Approaches to modeling travel demand fall into three main categories—trip-based,

3http://www.fhwa.dot.gov/planning /tmip/
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Figure 1-1: Schedule-based, tour-based, and trip-based travel demand modeling
frameworks.  Trip-based models represent unlinked trips, tour-based models chains
these trips into tours, and schedule-based models schedule these tours. Source:
http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-201j-
transportation-systems-analysis-demand-and-economics-fall-2008/lecture-
notes/MIT1_201JF08_lec05.pdf

tour-based, and schedule-based, as summarized in Figure 1-1. Trip-based models
represent unlinked trips, tour-based models chains these trips into tours, and schedule-
based models schedule these tours. The four-step model is an example of a trip-based
approach, while newer activity-based models use the schedule-based approach.

Four-step models—still the most widely used model in practice—are developed, up-
dated, and applied by many metropolitan planning organizations (MPOs) and plan-
ning agencies across the US and abroad. In contrast to microscopic agent-based
models, this framework aggregates travelers and trips at the level of traffic analysis
zones (TAZs) rather than simulating travel behavior of individuals. Each of the four
steps are described in more detail below:

1. Trip generation: This step determines trip origins and destinations based on
the distribution of households, employment, and land use. More specifically, trip

productions are estimated based on household characteristics such as size, income,
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car ownership, density, and accessibility. Similarly, trip attractions are estimated
using land use, employment by sector, and accessibility data. The models in this step
typically use regression [37, 48, 56, 62|, cross classification [68], and growth factor

analysis.

2. Trip distribution: This step estimates the distribution of trips as a function
of the generalized cost of travel between origins and destinations. Trip distribution
uses the origins and destinations estimated in the first step as marginal totals from
which to estimate the elements of a trip matrix. Various aggregate models of trip
distribution have been proposed [63, 82, 90, 91, 92, 95]. Among all these efforts,
the gravity model, which assumes that the number of movements between an OD
pair decays with their distance or cost, is the most widely used [95, 28, 33]. When
an empirical OD matrix is available from survey data, for example, a method called
iterative proportional fitting (IPF) method can be used [75]. This procedure adjusts
matrix values from the input (or seed) matrix, in order to match the input row and

column totals (or marginals).

3. Mode choice: This step computes the share of origin-destination (OD) trips
that use each available transportation mode. This step is dominated by discrete
choice models [16, 15, 59, 27|, which model choices between discrete alternatives
using an economic utility-maximization framework. Here, a decision maker selects the
alternative (in this case mode) with the highest utility among all the alternatives in the
choice set. The utility of an alternative is modeled as a function of the characteristics
of traveler (i.e. socioeconomic characteristics) and the characteristics of each travel
mode (i.e. levels of service such as time and cost). Logit models, which can take
on a nesting structure to model hierarchy in the decision-making process, are most

commonly used to compute mode shares.

4. Trip assignment: This step allocates origin-destination trips of a given mode
to a particular path or route. Route choice can be modeled as a deterministic choice
(i.e. shortest path or minimum generalized cost), or a stochastic choice (i.e. discrete
choice using a logit model). Moreover, modeling approaches can use non-equilibrium,

heuristic assignment methods (i.e. all-or-nothing or incremental traffic assignment)
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or equilibrium methods (i.e. user optimal or system optimal). Lastly, traffic as-
signment can be dynamic (DTA) which uses an equilibrium approach at fine-grain
temporal intervals (i.e. real-time or pseudo real-time) [58], or static assignment, which
assumes fixed-demand typically at the interval of an hour. All of these assignment
methods incorporate the relationship between volume, capacity, and travel time using
volume-delay functions such as the Bureau of Public Roads (BPR), conical congestion
function, and Akcelik flow delay function.

As we use iterative traffic assignment (ITA) due its computational advantages in
subsequent chapters, we present more detail on the limitations of this traffic assign-
ment heuristic. ITA is a static, non-equilibrium method which assigns batches (e.g.
40%, 30%, 20%, 10%) of trips serially and updates costs between increments, an im-
provement over all-or-nothing assignment. However, it does not represent the optimal
traffic assignment outcome. The smaller the increments, the closer this method is to
user equilibrium algorithms, and the closer the solution is to the Wardrop principles
[88], or Nash Equilibria, where in the final traffic conditions, no driver has an incentive
to change their route as all driver paths minimize their total travel time.

Despite its wide-use, the four-step model has several limitations, including:

1. demand is modeled for trips rather than activities, which governs trip-making

in reality; and

2. trips are the unit of analysis, therefore interdependence of trips cannot be cap-

tured; and

3. aggregating trips by discrete spatial, temporal, and demographic characteristics

introduces errors; and

4. the sequential nature of the four-step procedure does not enable interdependence

of these choices.

These limitations led to the development of activity-based models, which use a
schedule-based approach illustrated in Figure 1-1. Under this method, travel demand

is derived from demand for activities rather than trips themselves, sequences of trips
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are modeled as interdependent tours, and activity and travel scheduling constraints
impact travel decisions [7, 18, 69, 83]. Activity-based models replace the trip genera-
tion and distribution of four-step models, instead modeling the number, purpose, and
sequence of tours. First, the model predicts activity patterns, including a primary
tour type and the number and purpose of secondary tours. Next, the model estimates
the timing, destination, and mode of primary tours, followed by that of the secondary
tours. Despite its benefits, activity-based models have much larger choice sets and are
therefore computationally burdensome, and are still unable to completely represent

schedules and constraints.

Both four-step and activity-based models rely heavily on survey data for develop-
ment, calibration, validation. These models combine meticulous methods of statistical
sampling in local [31, 76] and national household travel surveys [81, 70] to process and
infer trip information between areas of a city. Travel surveys are typically adminis-
tered by state or regional planning organizations and are integrated with public data
such as census tracts and the demographic characteristics of their residents, made
available by city, state, and federal agencies. While the surveys that provide the
émpirical foundation for these models offer a combination of highly detailed travel
logs for carefully selected representative population samples, they are expensive to
administer and participate in. As a result, the time between surveys range from 5 to

10 years in even the most developed cities.

The estimates these surveys and models produce are critically important for un-
derstanding the use of transportation infrastructure and planning for its future[86,
79, 54, 51, 43, 42, 41, 52, 25, 13]. As data becomes better and more widely available,
models continue to improve, and computational resources increase, they are increas-
ingly useful and accurate tools for transportation planning applications. Modeling
methods are increasingly moving from aggregate to disaggregate models and from
static to dynamic procedures, as with more detailed agent-based, microsimulation
models. Such trends also support more detailed representation of behavior, captur-
ing more heterogeneous populations and preferences, and complex, interdependent

trip-making.
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Given the complexity of travel demand estimation procedures, several widely-used
commercial software packages exist to implement these models. The vast majority
of travel demand models used in practice are implemented in TransCAD, Cube, or
Emme. These three software platforms consist of standard GIS capabilities as well
as built in functions supporting travel demand forecasting, including four-step and
activity-based modeling procedures. These proprietary software platforms are up-
dated to incorporate state-of-the-art methods and use menu-based graphical user
interfaces (GUIs) for ease of use, but are expensive and are considered by some to be

black bozes, with their inner workings unknown to most users.

1.2.2 Urban computing

The interdisciplinary field of urban computing has emerged in recent years, developing
computational methods focused on supporting livable, efficient, and sustainable cities
for generations to come [47]. Central to this research are estimates of where, when,
and how people move within a city and use its facilities. Here, we focus on methods
of urban computing as they relate to human mobility patterns.

Given the h.eterogeneity of urban populations, as well as the imfnense number of
activities and spatial and temporal options in which to perform to these activities,
mobility estimates have proved difficult to attain. Moreover, stochasticity is present
not only in individuals’ choices of locations, times, and activities, but also their
travel modes, routes, and trip sequences used to perform these activities. Despite
this complexity, however, researchers have found that human mobility can in fact be
characterized by regularity and preferential attachment, enabling the development of
models to predict mobility patterns |78, 77, 38, 40, 20].

At the same time, technological advances such as increased storage capacity and
cloud computing has made it possible to capture petabytes of data from individuals
worldwide, from internet usage, credit card transactions, GPS-equipped vehicles, and
transit smart cards. These data streams produce massive amounts of time-stamped
location data saved in real-time [30, 21, 34]. However, these data pale in comparison

to that produced by mobile phones around the globe. Given the frequency of use and
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penetration of these ubiquitous devices, they serve as effective sensors of our daily

movemernt.

Mobile phones provide digital footprints of our whereabouts anytime we send a
text, make a phone call, or browse the web. Moreover, even when we aren’t interacting
with our phones, they periodically communicate with cellular network access points
and towers. And given the ability to store such data at decreasing costs year after
year, such data is increasingly being collected by mobile phone providers. This rich
source of data presents new opportunities to understand, infer, and predict human
behavior [35]. In developing countries, which often lack reliable data resources such
as local and national surveys, mobile phones are a particularly promising source of
mobility information. Especially in these contexts, mobility data from mobile phones
could be crucial for modeling epidemic spreading, disaster and emergency evacuation

response, and effective resource allocation.

Data generated by the pervasive use of cellular phones has offered insights into ab-
stract characteristics of human mobility patterns. Recent work has found that individ-
uals are predictable, unique, and slow to explore new places 38, 20, 32, 78, 77, 24, 23].
The availability of similar data nearly anywhere in the world has facilitated compar-
ative studies that show many of these properties hold across the globe despite differ-
ences in culture, socioeconomic variables, and geography. The benefits of this data
have been realized in various contexts such as daily mobility motifs [73, 74], disease
spreading [12, 89] and population movement [53]. While these works have laid an
important foundation, there still is a need to integrate these data into transportation

planning frameworks.

Individual survey tracking and stay extraction [8], OD-estimation and validation
[22, 60, 87, 46], traffic speed estimation [9, 94], and activity modeling [64, 67] have
all been explored using new massive, passively collected data. However, these studies
generally present alternatives for only a few steps in traditional four-step or activ-
ity based models for estimating travel demand or fail to compare outputs to travel
demand estimates from other sources. Moreover, many methods offered to date lack

portability from one city to many with minimal additional data collection or calibra-
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tion required.

1.3 Outline

The remaining chapters of this thesis present methods and applications using mobile
phone data for travel demand estimation.

Chapter 2 presents methods, results, and validation of estimates of origin-destination
trips by purpose and time of day using mobile phone data. The results of this chap-
ter are analogous to outputs of the first two steps of four-step travel demand models:
trip generation and trip distribution. Chapter 3 follows with methods, results, and
validation of estimates of vehicle trips and road usage, analogous to the last two steps
of four-step travel demand models: mode choice and traffic assignment. The methods
described in both chapters are applied to mobile phone data in Boston, demonstrat-
ing the applicability and validity of these methods compared with local and national
survey data.

Chapter 4 presents an overview of a portable, efficient software platform built
to implement the Ihethods presented in Chapter 2 and 3. This system enables re-
searchers to import mobile phone data sets to produce trip matrices and road usage
in any city. Moreover, the platform visualizes these outputs to effectively communi-
cate mobility patterns to planners, stakeholders, and decision-makers. The platform
is an alternative to expensive proprietary transportation software packages and built
specifically to handle massive mobile phone data sets and additional, open-source
data. Results are presented for five cities in the US, Latin America, and Europe,
demonstrating the flexibility and extensibility of the platform.

Chapter 5 presents an application of the methods developed in previous chapters.
Here, we evaluate the impact of ridesharing on urban traffic. Assuming hypothetical
adoption rates of ridesharing, we estimate the number of rideshare vehicles and change
in total, network-wide vehicles. Here, we use travel demand estimated in Chapter 2,
and modify methods in Chapter 3 to measure the impact of rideshare service on urban

congestion in Boston.
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Each chapter begins with an introduction, follows with descriptions of data and
methods, and concludes with a discussion of results and conclusions. Although each
chapter can stand-alone, they reference and build upon ideas and methods covered in
previous chapters. Accordingly, each chapter provides context useful for understand-
ing subsequent methods and applications. Finally, we summarize the over-arching
results, limitations, and applications of this work in Chapter 6. Appendix A provides
pseudo-code describing the algorithms presented in Chapters 2 and 3 as they are

implemented in Chapter 4.
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Chapter 2

Inferring origin-destination trips by

purpose and time of day

2.1 Introduction

The ubiquity of cell phones, along with rapid advancement in mobile technology, has
made them increasingly effective sensors of our daily whereabouts [49]. Call detail
records (CDRs) from mobile phones contain time-stamped coordinates of anonymized
customers, thereby providing rich spatiotemporal information about human mobility
patterns. Since CDRs are automatically collected by cell phone carriers for billing
purposes, this data can be gathered more frequently and economically than travel
survey data collected once (or twice) a decade for transportation planning purposes.
Additionally, mobile phone data offers digital footprints at a scale and resolution that
may not be captured by surveys that typically record one day of travel diaries per
household.

Despite these advantages, mobile phone data lacks information typically avail-
able from travel surveys about a respondent (e.g. age or income) or his/her trip
(e.g. purpose or mode) [70, 81, 44]. Furthermore, CDRs contain traces of a user at
approximated locations when his/her phone communicates with a cell phone tower,
providing an inexact and incomplete picture of daily trip-making. Accordingly, much

research has focused on developing methods to extract meaningful information about
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human mobility from mobile phone traces as well as understanding its limitations.

It has been demonstrated that CDR data can be used to infer origin-destination
(OD) trips using microsimulation and limited traffic count data [46]. At the level
of the individual, daily trip chains/trajectories constructed from mobile phone data
are consistent with household surveys [47, 73]. Further, road usage inferred from the
CDR data has been validated against GPS speed data [87] and highway assignment

results from a travel demand model [45].

There is still work to be done to explore the usage of phone data to generate
trip distributions of different modes, purposes, and times of day. As a step in that
direction, this research proposes a methodology to extract OD trips by purpose and
time of day from CDR data. This segmentation captures distinct trip-making patterns
pertinent for transportation planning applications. Moreover, other than CDR data,
the techniques presented in this paper rely only upon nationally-available survey data

to allow transferability of the methodology to other study areas in the US.

Extensive research has been conducted into OD estimation, as these trips pro-
vide the basis for transportation feasibility and impact studies. Conventional OD
estimation approaches rely on surveys and/or travel demand models to provide trip
matrices. Often, such trip matrices are calibrated or updated using traffic counts and
estimation techniques such as maximum likelihood, generalized least squares, and op-
timization [79, 25, 13, 93|. This research provides a realistic, cost-effective alternative
to these traditional OD data sources and estimation approaches. By presenting a
systematic and replicable procedure to extract data relevant to the transportation
community, we hope this work will help to facilitate the use of mobile phone data in
practice.

In this chapter, we demonstrate methods to analyze mobile phone records for the
Boston metropolitan area. In Section 2.2 and Section 2.3, we present an overview
of the data and the methods developed to produce OD trips by purpose and time
of day. In Section 2.4, we summarize and validate our results against independent
data sources for the study area, including the US Census and household travel sur-

veys. Based on these findings, we conclude with a discussion of the limitations and
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applications of CDR data in the context of transportation planning and modeling.

2.2 Data Description

The studied dataset contains more than 8 billion anonymized mobile phone records
(from several carriers) from roughly 2 million users in the Boston metropolitan area
over a period of two months in the Spring of 2010. Although the CDR data spans 60
days, the data provider reindexed the anonymous user IDs for most of the users after
the 17th day of the dataset. Effectively, we observe some users for at most 17 days,
some users for at most 43 days, and still others for up to 60 days.

Each record contains an anonymous user ID, longitude, latitude, and timestamp
at the instance of a phone call or other types of phone communication (such as sending
SMS, etc.). The coordinates of the records are estimated by service providers based
on a standard triangulation algorithm, with an accuracy of about 200 to 300 meters.
In typical mobile phone data sets, locations are represented by cell towers rather
than triangulated coordinates and therefore have a lower spatial resolution [77, 87];
however, the method proposed here holds for such cases, as demonstrated in Chapter

4.

2.3 Data Processing

2.3.1 Stay Extraction

The first step to reliably infer activities and trips from CDR data is to filter out
noise resulting from (1) tower-to-tower call balancing performed by the mobile ser-
vice provider, creating the appearance of false movements, and (2) inexact signal
triangulation. Furthermore, we wish to distinguish users’ stationary stay locations
(when/where users engage in an activity) from their moving pass-by locations (when/where
users are en-route to activities). To do so, we develop a method based in the work
of Hariharan and Toyama, [39] for processing GPS traces. The spatial and temporal

filtering methods are discussed below and illustrated in Figure 2-1.
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Figure 2-1: Extracting stay and pass-by areas from the phone data for an anonymous user
in the 2-month period

Let sequence D; = (d;(1),d;(2),d;i(3), ..., di(n;)) be the observed data for a given
anonymous user i, where d;(k) = (¢t(k),z(k),y(k)) for k = 1,...,n;, and t(k),z(k),
and y(k) are the time, longitude, and latitude of the k-th observation of user i. First,
we extract points d;(k) that are spatially close (i.e. within roaming distance of 300
meters) to their subsequent observations, say, d;(k + 1), di(k + 2),...,d;(k +m). To
reduce the jumps in the location sequence of the mobile phone data, we assume that
di(k), ....d;(k +m) are observed when user i is at a specific location, i.e., the medoid
of the set of locations (z;(k),yi(k)), ..., (zi(k +m),y;(k +m))’, which is denoted by

ey

Med((zi(k),yi(k)), ... (zi(k +m), ys(k +m))').

This treatment respects the time order at first, to ignore noisy jumps in estimated
location, but then disregards time ordering to apply the agglomerative clustering
algorithm [39] to consolidate points that are close in space but may be far apart in
time. The points to be consolidated together form a cluster whose diameter is required
to be no more than a certain threshold (set as 500 meters). Again we modify the
observation locations to the corresponding medoids of the clusters (see Figures 2-1a
and 2-1b).

Next, we impose the time duration criterion on the clean data, and extract the
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stay locations whose durations exceed a certain threshold (set as 10 minutes). In the
example presented in the figure we extract 31 distinct stay locations from the 1,776
phone records in the two-month period of the exhibited anonymous user (see Figure
2-1c). The rest of the points are called pass-by points, at which we don’t observe any
lengthy stays. Note that it is possible that the user stays in some of these pass-by
locations as well as locations that we don’t observe. In these cases, information about
time and location is totally or partially latent to us as we don’t observe it from the
phone records. However, all the stay locations frequently visited by the user ought to
be extracted from the mobile phone data, if the observation period is long enough.
As such, the pass-bys are filtered out and the stays are assumed to be trip origins or
destinations, between which trips are made. Analysis of the pass-by points is out of
the scope of the present work, in which we focus on simple trip chains with origins

and destinations labeled as: home, work, or other.

2.3.2 Activity Inference

Trips are induced by the need or desire to engage in activities [65] and therefore un-
derstanding patterns and types of activities is crucial in estimating travel demand.
It has been demonstrated that human mobility patterns are characterized by regu-
larity with frequent returns to previously visited locations [78, 77, 40]. Due to this
predictability, we are able to reasonably infer stay activities for users’ most visited
locations (i.e. home and work).

Accordingly, our first task is to label the stay regions in order to assign trip pur-
pose. For each user, the stay extraction process detailed above results in a timestamp
and duration for each observed visit to a stay location. For this study, we assign
an activity type of either home, work, or other to each users’ stay locations. Future
research can expand the other designation to activity types such as school, shopping,
recreation, social, etc., using land use information.

Each user’s home location is identified as the stay with the most visits on (i)
weekends and (ii) weekdays between 7 pm and 8 am, representing the time windows

in which we expect users to spend substantial amounts of their time at home. In
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addition to inferring trip purpose, the home stay location of each user is used to filter
out users with too few data points and expand the data from phone users to study
area population, as summarized in Section 2.3.3.

A work location is identified as the stay (not previously labeled as home) to which
the user travels the maximum total distance from home, maz(d*n), where n is the
total number of visits to a given stay on weekdays between 8 am and 7 pm and d
is the distance between the latitude-longitude coordinates of the home stay and the
given stay using plane approximation. This assumption is based on the rationale and
historical evidence [50, 72| that for a given frequency of visits, longer distance trips
are more likely to be work trips than shorter distance trips, which are more likely to
be for non-work purposes (i.e. to the nearby grocery store).

If the user visits the identified work stay less than 8 times (n<8; once a week,
on average) or the distance is less than 0.5 km (d<0.5), then the activity of the stay
region is identified as other rather than work. In effect, not all users are assigned a
work stay, accounting for the fact that not all users commute to a job. Subsequently,
all the remaining stay locations not identified as home or work are designated as
other. These classification assumptions serve to avoid falsely identifying a location
as work that is either not visited frequently enough or close enough to a user’s home
that it could reflect signal noise rather than a distinct location.

We acknowledge that under these simple assumptions we may misidentify users’
true home and work locations and, by extension, their trip purposes. However, based
on comparisons with census data (presented below) this procedure give us very good
estimates of the distribution of home and work locations and home-work flows in our
study region. Note that these assumptions are related to the duration and spatial
resolution of this dataset, and it may be necessary to adjust them for applications of

other datasets.

2.3.3 Filtering and Expansion

For users with too few stay locations, the CDR data may not fully represent their

travel patterns. Accordingly, users with fewer than 8 (one per week, on average) visits
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to designated home stays are filtered out. This filter serves the additional purpose of
ensuring with a reasonable degree of certainty that the designated stay is the user’s
home, a key assumption in our method of upscaling users to population. Note that
this filtering process necessarily excludes visitors, for whom a home location is not
observed in the studied dataset. Future research could look at extracting visitor trips
from CDR data using an assumption other than home location to upscale these trips.

After this filtering, 335, 795 users remain in the Boston CDR dataset. This sample
size is an order of magnitude larger than in most household travel surveys, and should
increase given longer periods of observation. To upscale these users to total population
of the study region, the number of home stays were aggregated to the 974 Census
tracts in the study area. An expansion factor was then calculated for each tract as
the ratio of the 2010 Census population and the number of residents identified in the
CDR data. For the 10 Census tracts with fewer than 10 CDR residents, the scaling
factor is set to 0 to ensure that we don’t overweight users that are not representative
of a given Census tract. The 1st, 2nd, and 3rd quartiles of the expansion factors are
9.4, 14.2, and 25.1, respectively, as illustrated by the tight probability distribution of
expansion factors in Figure 2-2a. The spatial distribution illustrated in Figure 2-2b
suggests that the tracts in the western portion of the study area tend to be more
heavily weighted. CDR data for a period greater than 60 days would likely have
lower expansion factors and an improved spatial distribution of users, however, we

show that already this limited data set gives reasonable results.

2.3.4 Trip Estimation

With stays for each user designated by activity type and expansion factors to upscale
users to population, average daily origin-destination trips can be constructed by time
of day and purpose—home-based work (HBW), home-based other (HBO), and non-
home based (NHB). This segmentation allows us to capture distinct trip-making
patterns and is consistent with segmentation in the trip distribution stage of trip-
based travel demand models.

Since the timestamp and duration associated with each stay reflect the observed
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Figure 2-2: (a) Probability distribution of Census tract expansion factors. (b) Thematic
map showing the spatial distribution of Census tract expansion factors.

(based on phone usage) rather than true arrival time and duration of a user, we infer
trip departure hour using probability density functions to account for this uncertainty.
The publicly-available 2009 National Household Travel Survey (NHTS) [84], filtered
for respondents residing in a consolidated metropolitan statistical area (CMSA) or
MSA with populations greater than or equal to 3 million, is a reasonable source as
it approximates temporal travel patterns of major US cities comparable to Boston,
while allowing for transferability of this methodology to other US cities. Using this
departure time data, we generate six hourly distributions for weekdays and weekends

and the following trip purposes: HBW, HBO, and NHB.

For each user, it is assumed that a trip is made between two consecutive stays (7, i+
1) occurring within a 24-hour period beginning and ending at 3am. The trip occurs at
a point in time spanned by the range [s;+d;, s;41], where s is the observed arrival time
and ¢ is the observed duration of a stay. The departure hour is randomly generated in
this time window using the NHTS distribution that corresponds to the day (weekday,

weekend) and the trip purpose identified from the origin and destination stay activities
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(HBW, HBO, NHB).

Furthermore, it is presumed that a user starts and ends each 24-hour period at
home such that if a user is not recorded at his/her home stay for the first (last)
record of the 24-hour period, his/her first (last) trip begins (ends) at his/her home
stay. The first (last) trips are assumed to occur at point in time spanned by the
range [3AM, s;11] ([s; + 6;,3AM]), where s is the observed arrival time and ¢ is the
observed duration of a stay. As before, the departure hour is randomly generated
in this window using the NHTS distribution that corresponds to the day (weekday,
weekend) and the trip purpose based on the destination (origin) stay activity (HBW,
HBO).

Through this process, we construct trips on all days we observe each user. The
frequency of weekday observations per user is illustrated in Figure 2-3. The distribu-
tion of total weekday trips per user is shown in Figure 2-3a, with first, second, and
third quartiles of 33, 58, and 96 trips, respectively. The reindexing of anonymous
user IDs mentioned previously in Section 2.2 is evident in the two peaks of the distri-
bution of the number of weekday days we observe each user, as seen in Figure 2-3b.
Despite this reindexing, we achieve a sufficiently large number of observation days
per person, with first, second, and third quartiles of 11, 17, and 21 days, respectively.
Dividing each user’s total weekday trips by his/her total weekday days, we get the
distribution of average weekday trips shown in Figure 2-3c. The distribution has a
long tail, however, the first, second, and third quartiles are 2.6, 3.2, and 4.3 average
trips per weekday, respectively, demonstrating that the vast majority of users have a

reasonably small number of daily trips.

In order to obtain average daily OD trips, each user’s trips are multiplied by the
expansion factors described in Section 2.3.3 for the user’s home Census tract and
divided by the number of days from which we constructed the user’s trips. For users
assigned a work stay, weekday trips are only constructed on days in which the user
is observed at his/her work stay to ensure we capture representative weekdays of
commuters. Unlike traditional travel surveys which ask a respondent details about

one or a few recent days, this method has the advantage of capturing many days per
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Figure 2-3: Frequency of weekday observations per user. (a) Probability distribution of
total weekday trips per user. (b) Probability distribution of total weekday days per user.
(c) Probability distribution of average weekday trips per user.

user and thus variations in his/her daily travel behavior. Lastly, each user’s average
daily trips are aggregated into Census tract pair trip matrices by day type (weekday,

weekend), purpose (HBW, HBO, NHB), and hour of departure.

2.4 Results and Validation

2.4.1 Productions and Attractions

Accurately extracting and upscaling users’ stays is crucial to trip generation. Due to
the regularity of human behavior [78, 77, 40|, we are able to infer users’ home and
(if applicable) work stay locations from CDR data. For this dataset, we find that we
can reasonably represent the spatial distribution of home and work locations when
aggregated to the 164 study area cities and towns [55]. Refer to Section 2.4.2 below
for more information on the impact of aggregation level on accuracy. Figure 2-4a
shows a comparison of home locations by town from 2010 Census data and the raw
and upscaled CDR data.

As we would expect since tract population was used to upscale the data, the
number of residents in each town is almost identical to that of the upscaled CDR
data. However, the slope of a best-fit line through the raw CDR data is close to 1,
which speaks to the fact that the overall distribution of raw CDR users is fairly rep-

resentative and a simple factoring method is in fact appropriate to expand the phone
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Figure 2-4: (a) CDR residents vs. 2010 Census population by town before and after pop-
ulation expansion. (b) CDR vs. Census Transportation Planning Products (CTPP) [85]
workers by town before and after population expansion.

users to population. Similarly, Figure 2-4b shows a comparison of work locations
aggregated by town. As with the raw CDR data on the home-end, the distribution of
raw workplaces is fairly consistent with the 2006-2010 Census Transportation Plan-
ning Products (CTPP) [85] data (slope approximately 1), and the upscaling method
adjusts well for the difference in magnitude. This strong correlation is noteworthy
considering that each users’ home and work locations were scaled based on their home

location only.

2.4.2 Trip Distribution

With the establishment of reasonable distributions of trip productions and attractions,
we next validate the distribution of trips using two local surveys. The 1991 Boston
Household Travel Survey (BHTS) contains information on 39, 300 trips made by 3, 737
households [17], while the 2010/2011 Massachusetts Travel Survey (MHTS) contains
data on 153,099 trips made by 32,739 people [61]. We find that the CDR trips
compare well with trips from these data sources by time of day and purpose. Figure

2-5 illustrates the distributions of hourly departure times for (a) HBW, (b) HBO,
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Source  HBW HBO NHB Morning Mid-day Evening Rest-of-day

6a-9a 9a-3p 3p-7p 7p-6a
CDR 18% 51% 31% 16% 27% 27% 30%
BHTS 20% 48% 32% 18% 32% 33% 17%
MHTS 12% 49% 39% 21% 34% 33% 12%
NHTS 14% 55% 30% 19% 37% 31% 13%

Table 2.1: Average weekday trip shares by purpose and period from CDR data, 1991 Boston
Household Travel Survey (BHTS) [17], the 2010/2011 Massachusetts Travel Survey (MHTS)
[61] and the 2009 National Household Travel Survey (NHTS) [84].

(c) NHB, and (d) total average weekday trips. Note that we also benchmark against
the NHTS departure time distributions, which were used to infer departure time for
the CDR trips. Accordingly, differences between each of the hourly NHTS and CDR

distributions reflect the observed arrival and duration times of CDR stays.

Most notably, there are consistently more CDR trips in the late night hours than
that of the surveys. While this may be due to a slight mismatch between the frequency
of calling and trip-making throughout the day, it may also highlight an advantage of
CDR data to capture late night trips not typically reported in survey responses of an
average day. Regardless, most transportation planning applications focus on trips in
the morning and evening peak periods, when congestion is most prevalent, and for
which we compare well. Similar trends are evident for average weekday trip shares

segmented by key time periods, as presented in Table 2.1.

Furthermore, the relative share of average weekday trips for each trip purpose is
comparable for the CDR and survey data. Table 2.1 shows that the shares of HBW,
HBO, and NHB CDR trips are within the ranges of trip purpose shares across all three
surveys. This again suggests that our inferences of home, work, and other activities,

as well as their relative prevalence in the data set, seem reasonable.

To draw comparisons on the magnitude of daily CDR trips, we MHTS data, which
includes weights to expand respondents to population estimated from the 2006-2010

American Community Survey [61]. Table 2.2 shows a comparison of average weekday

40



08— : sep s eSO —

‘ (b .
16% (b) —CDR —BHTS —MHTS —NHTS

—12% |
= ‘

P(

8% |
a4% |

0%
20%

16%

—12%

h

8% |

4% |

0% |
03 05 07 09 11 13 15 17 19 21 23 01 03 05 07 09 11 13 15 17 19 21 23 01
Departure hour, h Departure hour, h

Figure 2-5: Distribution of average weekday hourly departure time from CDR data, 1991
Boston Household Travel Survey (BHTS) [17], the 2010/2011 Massachusetts Travel Survey
(MHTS) [61], and 2009 National Household Travel Survey (NHTS) [84] for (a) Home-based
Work Trips, (b) Home-based Other Trips, (¢) Non-home Based Trips, and (d) All Trips.

trips by purpose and period of the day for the CDR trips and weighted MHTS trips.
The survey reports more daily trips than we observe in the CDR data, with most of
the difference coming from the NHB trip segment. Still, the total CDR and MHTS
trips imply reasonable numbers of average weekday trips per person-3.50 and 4.24,

respectively.

Lastly, Table 2.2 presents a comparison of the spatial distribution of daily CDR
and MHTS trips at the tract-pair and town-pair level. The correlation coefficients of
the trip matrices improve significantly with aggregation to the 164 study area cities
and towns. In particular, the HBW and AM correlations at the tract-pair level see the
largest improvement. This may be indicative of the role of the size of tracts, which
are considerably smaller in downtown Boston where many of the morning commute
trips end. We discuss the relationship between aggregation level and correlation in

more detail in Section 2.4.3 below.
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HBW HBO NHB AM MD PM RD  Total
6a-9a 9a-3p 3p-7p Tp-6a

CDR Trips (in Millions)  2.81 7.84 473 246 412 415 465 1537
MHTS Trips (in Millions) 2.14 899 7.18 399 6.24 6.06 231 1861
Tract-pair Correlation 030 064 058 042 065 0.54 040 0.58
Town-pair Correlation 096 097 098 097 098 097 096 0.98

Table 2.2: Average daily trips by purpose and period from CDR data and the 2010/2011
Massachusetts Travel Survey (MHTS) [61], as well as the correlation coefficients of CDR
and MHTS tract-pair and town-pair trips.

Source  Daily HBW  Inter-tract Inter-town Average Trip
Trips, Millions  Share, %  Share, %  Length, Miles

CDR 2.11 94 68 9.67
Census 2.10 90 68 10.72

Table 2.3: Comparison of average weekday HW CDR and 2006-2010 CTPP [85] flows.

2.4.3 Home-Work Flows

Commuting trips represent a key travel market and source of daily roadway conges-
tion, and accurately representing these trips is an important step in validating trips
estimated from CDR data. Accordingly, we next compare with lows between people’s
home and work locations, as reported by the 2006-2010 Census Transportation Plan-
ning Products (CTPP) [85]. Distinct from the average daily HBW trips compared
in Section 2.4.2, these flows simply link home and work, ignoring that people’s daily
trip chains may in fact include work trips to/from locations other than home.

Table 2.3 summarizes statistics that support the comparison of CDR and CTPP
home-work (HW) flows. In addition to the total magnitude of trips, the similarities
between the percentages of inter-tract and inter-town flows and average trip length
give a high-level indication that the distributions of HW flows are similar.

At the flow level, we find that the correlation between CDR and CTPP HW tract-

to-tract and town-to-town flows is 0.45 and 0.99, respectively, indicating that the level
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Figure 2-6: (a) Probability density distributions of aggregation area size by designated areas
(tract or towns) and variable buffers. (b) Correlation between HW CDR and 2006-2010
CTPP [85] flows corresponding to the aggregation levels in (a).

of aggregation of trips has a significant impact on accuracy. We demonstrate that as
we gradually increase average aggregation size using variably-sized buffers around each
origin and destinationtTract (Figure 2-6a), the correlation between CDR and CTPP
HW trips increases as well (Figure 2-6b). We find that using small aggregation buffers
has the most significant impacts on correlation, while having minimal influence on
average aggregation size (as illustrated by the fact that the distribution for the 0.5
mile buffer obscures that of the tract-level aggregation in Figure 2-6b). In effect,
using a 0.5 mile buffer aggregates the small, dense tracts (i.e. in the city center) and
results in a notable improvement in accuracy. In the absence of meaningful districts
or communities to which to aggregate, this can inform suitable distance thresholds

for trip clustering to overcome limitations of sparse data and/or spatial inaccuracy.

We further investigate comparisons of the data sets using town-pairs flows. Figure
2-7a shows the CDR and CTPP HW flows for all of the intra-town and inter-town
pairs, which have correlations of 0.99 and 0.95, respectively. It is evident from Figure
2-7a that town pairs with many trips validate better than those pairs with few trips,
especially those with fewer than about 500 daily trips. This trend is likely due to
sparsity in data for these smaller markets. Figure 2-7b and Figure 2-7c illustrate
spatially the HW flow distribution for key markets (inter-tract pairs with greater

than 1,000 daily trips) for the CDR and Census data, respectively. Inspecting the
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[85] flows. (b) Spatial distribution of daily inter-town HW CDR flows (>1,000). (c) Spatial
distribution of daily inter-town HW 2006-2010 CTPP [85] flows (>1,000).

figure, it is evident that the CDR data captures very similar patterns to that of the
CTPP commuting data, with the majority of flows directed in and out of Boston as

well as a few shorter distance markets in the suburban towns.

2.5 Conclusions

In this chapter, we detailed steps necessary to extract average daily origin-destination
trips by purpose and time of day from mobile phone call detail records (CDRs). The
proposed techniques were applied to CDRs in the Boston metropolitan area and
validated against local and national surveys. The methods are transferable to other
study areas and could be reproducible by researchers and practitioners using mobile
phone and census data.

Emphasizing the importance of data preprocessing, much of the methods serve to
filter out noise and extract accurate travel patterns representative of the study area.
While this processing reduces the immensity of the CDR data, we are left with a
sample size that is an order of magnitude larger than most household travel surveys.
Further, we observe many days per user, allowing us to capture variation in daily

behavior, including weekends, not typically reported household travel surveys.
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We find that the size of the areas used to aggregate trips is a very important
factor in how well the CDR and survey data compare. We observe significantly
higher trip correlation when aggregating origins and destinations to 164 cities and
towns rather than the 974 Census tracts in the study area. This improvement in
accuracy is seemingly an effect of aggregating small Census tracts (i.e. in the city
center), for which CDR data may not have a sufficiently-large sample size or the
necessary spatial accuracy. In general, aggregating trip origins and destinations to
areas greater than 1 square mile produces agreement with survey data. As mobile
phone providers collect more dense data such as GPS traces or wifi access points,
spatial and temporal data sparcity will decrease, and accordingly, aggregation size can
decrease relative to a given level of precision. Although we can reasonably represent
average daily activity and trip patterns with CDRs, data limitations preclude its use

in applications requiring richer data such as real-time, dynamic OD estimation.

Aggregating to towns results in similar distributions of upscaled home and work
locations inferred from the CDR data and the home- and workplace-based tabula-
tions from the 2006-2010 US Census Transportation Planning Package (CTPP) [85].
Additionally, our inferred distributions of trips by hour of the day and purpose are
comparable with the 1991 Boston Household Travel Survey [17], 2010/2011 Mas-
sachusetts Travel Survey [61], and the 2009 National Household Travel Survey [84]
(filtered for trips in MSAs and CSAs with populations greater than 3 million). Fi-
nally, the spatial distribution of home-work flows is highly correlated with that of the

CTPP, a well-established nation-wide source for tract-to-tract commuting data.

In validating OD trips by purpose and time of day, we demonstrate that CDR data
can be effectively used to represent distinct mobility patterns across market segments
typically relevant to transportation planning applications. In particular, CDR data
can be used to augment or complement traditional survey data, which provides de-
tailed information about a respondent and his/her trip but is more costly and onerous
to collect. Transportation models rely heavily on survey data for inputs, calibration,
and validation, and CDR data can be a valuable new resource. Furthermore, the

outputs of our proposed methodology are analogous to the outputs of the trip gener-
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ation and distribution steps of traditional four-step travel demand models. In areas
where public transportation is significant, OD matrices developed from CDRs can be
post-processed to obtain mode-specific trip tables, equivalent to the mode split step.
As such, CDR data can be very useful for planning applications and/or study areas

where running such a model is either not feasible or not necessary.
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Chapter 3

Estimating vehicle trips and road

usage

3.1 Introduction

Understanding demand for transportation infrastructure is crucial for designing acces-
sible, equitable, and sustainable cities. In the US, in particular, most of this demand
utilizes private vehicvles to move around cities, using a network of highways and local
roads. Especially on weekday mornings and evenings when commuters travel to and
from work at similar times, many roads become congested as the number of vehicles
using a roads exceed its capacity. As a result, travelers lose time and money to traffic
delays, and vehicle emissions worsen.

To understand the demand for and impacts of a new transportation facility, trans-
portation planners have typically relied upon travel demand models to estimate ve-
hicle demand and traffic patterns. In particular, with person trips estimated from
the first two steps of a four-step travel demand model, the third step estimates mode
choice, generating OD matrices for vehicle trips based on the relative attractiveness of
all competing modes. The fourth step then allocates vehicle trips to a road network,
estimating the route of every vehicle and road segment level of service characteristics
such as volume and travel time.

In this chapter, we build on the methods presented in Chapter 2 to estimate vehicle
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trips and road usage from OD person trips inferred from mobile phone data. Our
approach offers a simplistic approximation of the outputs of a mode choice model
using OD commuting shares from the Census to convert person trips into vehicle
trips. We then implement a computationally efficient traffic assignment algorithm to
route vehicle trips in a road network. By comparing the results of these methods with
survey data, we demonstrate the ability of these approximations to represent vehicle

trip and road usage patterns in Boston.

3.2 Data

3.2.1 OD trips inferred from mobile phone data

As in Chapter 2, we utilize a mobile phone CDR dataset for the Boston metropolitain
area. A summary of the dataset and methodology to extract OD trips is presented
in this section, but refer to Chapter 2 for a detailed description.

CDRs in Boston are first converted into clustered locations or stay points at which
users engage in activities for an observed duration. These locations are inferred to be
home, work, or other depending on observation frequency, day of week, and time of
day, and represent a user’s origins and destinations. Next, we construct trips between
two consecutive stay points in a day. Since the arrival time and duration at these
locations reflect the observed (based on phone usage) rather than true arrival time
and duration, we probabilistically infer departure hour A using the NHTS survey data
on trips in major US cities.

For each user u, we generate trip matrices t;; by summing the number of trips
from origin Census tract i to destination tract j. By dividing these trips by the num-
ber of days n on which we observed the user, we compute average daily transition
probabilities—the probabilities that a user makes a trip between any origin and des-
tination pair ¢j on an average weekday. Lastly, user trips are multiplied by expansion
factors w based on the population of a user’s home Census tract. Summing across all

individuals’, we compute average daily trip matrices T;;, as summarized in Equation
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3.1.

U

Ty(h) = tig(u, h) /n(u) * w(w) (3.1)

u=1

3.2.2 OD vehicle trips from the Massachusetts Household Travel

Survey

In Chapter 2, average daily tract-pair trips from the Massachusetts Household Travel
Survey (MHTS) were compared with the OD trips inferred from CDR data. In this
chapter, we now compare outputs of our vehicle trip estimation with vehicle trips
reported by the MHTS. Additionally, we can apply our traffic assignment algorithms
to the MHTS OD vehicle trips matrices and compare traffic conditions and travel
times with that of the OD trips and road usage inferred from CDR data. Further,
the MHTS explicitly asked respondents for the travel time of trips, which can be
compared with that of the MHTS trips routed using our traffic assignment algorithms

to assess the accuracy of this method.

3.2.3 GIS/Survey

e Road network: For traffic simulation, we use a GIS shapefile from the local
transportation authority containing road characteristics such as speed limits,

road capacities, number of lanes, and classifications [26].

e Census tracts: CDR trips are aggregated to the spatial resolution of 974 study
area Census tracts, which contain roughly 5000 residents each. We use a GIS
shapefile as well as population estimates from the American Community Survey

to expand observed users to total population [1, 2].

e Communities: CDR trips are aggregated to 174 areas (163 study area towns and
11 Boston neighborhoods), referred to as communities in this chapter. Note that
in Chapter 2, the aggregation level that we referred to as town consisted of 164

areas—163 towns and Boston. We divided Boston into 11 neighborhoods for
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this analysis to calculate mode share at a finer resolution since mode shares
vary across Boston depending on transit access. We used a GIS shapefile of
town boundaries developed by MassGIS to map Census tracts to these com-
munities, but further split Boston into neighborhoods using local knowledge of

neighborhood boundaries [55].

e Census commuting trips: The 2006-2010 Census Transportation Planning Prod-
ucts (CTPP) Part 3 provides commuting characteristics between Census tract
pairs [85]. This nationally-available dataset provides tabulations across 16 dif-

ferent travel modes, which we use to infer mode shares.

3.3 Vehicle trip estimation

Capturing spatial variation in mode shares is essential to estimating reasonable dis-
tributions of vehicle trip patterns from the person trips inferred from CDR data. To
infer travel mode, we use the CTPP commuting data aggregated from Census tract
pairs ¢j to community pairs IJ in order to minimize the effects of matrix sparsity
and small sampling size. We compute (i) drive-alone and taxi mode share d;;, (ii)
carpool mode share cr;, and (iii) non-auto mode share o;;. These mode shares are
mutually exclusive and exhaustive, such that > (d;; + ¢;5 + ory) = 1. Community
pairs with sampling issues, including few total trips or zero auto trips, are assigned
average mode shares depending on their geography: Urban-Urban, Suburban-Urban,
or Suburban-Suburban. Communities lying within Boston’s 1-95 highway ring are
designated as Urban, and all other communities are designated Suburban.

For every tract-pair and hour, we use the community-pair mode shares to compute
the number of total vehicles V;; (Equation 3.4). Total vehicles are comprised of
single-occupancy vehicles vq;;(h) computed by multiplying tract-pair 45 person trips
by the drive-alone mode share of the corresponding community-pair IJ (Equation
3.2). Similarly, carpool vehicles v, ;;(h) are computed using the carpool mode share
divided by the average vehicle occupancy of study area carpools p (p = 2.18 in Boston;

Equation 3.3).
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va,i5(h) = Tij(h) * drs (3.2)
Ve,ij(h) = Tij(h) % crs/p (3.3)
Vij(h) = vai(h) + ves5(h) (3.4)

Next, we estimate peak hourly vehicle trips, as is conventionally done in travel
demand models before static traffic assignment is performed. To do so, we compute
peak hourly factors as the ratio of the maximum number of vehicle trips in a time
period to the total number of vehicle trips in the time period. For the AM period (6
to 9 am), we compute peak hourly factors of 0.438 and 0.419 for the CDR and MHTS
vehicle trips, respectively. Similarly, for the PM period (3 to 7 pm), we calculate
peak hourly factors of 0.284 and 0.288 for CDR and MHTS vehicle trips, respectively.
By comparison, if trips are evenly distributed across the 3-hour AM and 4-hour PM
periods, the peak hourly factors would be 0.333 and 0.250, respectively. Lastly, we
can compute the peak hourly vehicle tribps in a given time period by summing the
vehicle trips for each OD pair across all hours in the period and multiplying by the

corresponding peak hourly factor.

3.4 Traffic assignment

On most city roads, free-flow speeds are rarely achieved due to congestion. As a
result, traffic patterns may significantly change the time costs associated with using
a particular route. In conventional four-step travel demand models, vehicle trips are
allocated to road networks using a traffic assignment algorithm that captures the
impact of congestion on travel time and route choice.

In this chapter, we distribute trips on the roadway network using Incremental
Traffic Assignment (ITA) [3, 63]. Our ITA algorithm assigns trips in a series of
increments and updates the costs of edges in the network based on the number of

vehicles that were previously assigned to that road between increments. For example,
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the first increment assigns 40% of trips for each pair assuming each driver experiences
free-flow speeds. The travel time cost associated with every road segment is then
adjusted based on how many drivers were assigned to that road and the total number
of cars a road can accommodate in unit time. The next 30% of drivers are then routed
in the updated conditions. This process is repeated until all users have been assigned

a route.

Although this incremental approach allows us to capture the impact of congestion
on travel times of each subsequent batch, once a driver has been assigned a route
it does not change. Consequently the approach does not converge to Wardrop’s
equilibrium even for very small increment sizes. Despite its shortcomings, however,
ITA is attractive for its ease of implementation. A more detailed description of ITA
and other static and dynamic traffic assignment methods are discussed in detail in

the literature review in Section 1.2.1.

For traffic assignment, we also utilize centroid connectors to distribute trips to
road segments. This method, frequently used in travel demand models, assumes that
trips begin and end at the geographic centroid of their origin and destination zones.
For every zone, one or more links is added from each centroid to a nearby road
segment intersection. In effect, OD demand is routed along a road network first by a
centroid connector from the origin centroid and finally by a centroid connector to the
destination centroid. Centroid connectors can therefore be thought of as proxy links
for local roads that feed into the more major roads represented in a road network,
but that are not themselves represented. Accordingly, we route tract-pair trips using
centroid connectors that are given low speeds (10 mph; to add time representative of
that needed to get in and out of a neighborhood, for example) and unlimited capacity
(so that congestion is not introduced during assignment). Note that intra-tract trips
(trips beginning and ending within the same tract) are not routed under this method.

Relating travel performance to traffic conditions has been a long standing prob-
lem in transportation. Many different characterizations exist, ranging from conical
volume-delay functions to more complex approaches [19, 80, 4]. One of the most

simplistic and common metrics used in determining the travel time associated with a
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specific flow level is the ratio between the number of cars actually using a road (vol-
ume) and its maximum flow capacity (volume-over-capacity or V/C). At low V/C,
drivers enjoy large spaces between cars and can safely travel at free-flow speeds. As
roads become congested and V/C increases, drivers are forced to slow down to insure
they have adequate time to react. Based on the volume-over-capacity (V/C) for each
road, costs are updated according to Eq. 3.5. The Bureau of Public Roads’s (BPR)
default guidelines use a = 0.15, 5= 41

teurrent = theeflow : (1 + O‘(V/C)E) (35)

As often done in traffic assignment modeling, we modify the default coeflicients
of the BPR function in order to better represent local traffic patterns. By comparing
the reported travel time from the MHTS survey with that of MHTS vehicle trips
assigned using ITA, we select @ = 0.85 (compared with the default value of 0.15),
but maintain the default value for 5 (4). « = 0.85 is in line with transportation
literature, which typically increases the value of a for highways and major roads.
Lastly, we underestimate total travel time using ITA without applying time penalties
for intersection and traffic light stops and queues. To account for such delays, we add

two minutes to all travel times.

Although simplistic, total travel times after these adjustments correspond well
to the travel times reported in the MHTS survey, as shown in Figure 3-1. Figure
3-1a and Figure3-1b compare the distributions of AM and PM peak travel times for
the MHTS tract-pair vehicle trips estimated using both ITA and User Equilibrium
(UE) assignment methods with the average travel time reported by respondents in the
MHTS survey. Some of the differences between the reported and assigned MHT'S trips
may be due to imperfect and/or biased recollection. For example, the peaks at 30,
45, and 60 minutes are likely to be caused by the fact that many people approximate
and report travel times at these key 15-minute increments. However, differences are

also due to traffic assignment itself, which merely approximates average traffic flow

!Travel Demand Modeling with TransCAD 5.0, User’s Guide (Caliper., 2008).
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Figure 3-1: Travel time (in minutes) distribution of assigned CDR and MHTS trips, as well
as average travel time as reported in the MHTS survey for (a) AM and (b) PM peak hourly
vehicle trips.

for static hour-long periods. We see, however, that despite ITA not approaching
an optimal equilibrium solution, it produces results very similar to the UE method.
Therefore, whether or not these observed differences are due to response bias or
assignment error, in general, traffic assignment-and ITA in particular-is a suitable

approximation of road usage.

3.5 Results and validation

In order to validate both our methods of converting person trips to peak hourly
vehicle trips and allocating these vehicle trips to road segments, we compare with
that of the Massachusetts Household Travel Survey (MHTS). We first compare and
contrast aggregate statistics between the CDR and survey data, indicative of the
validity of our methods at a high level. We then go a step deeper, evaluating travel
time distributions for tract-pair OD trips. Lastly, we look at the properties of road
segments themselves, which provide insights into congestion levels resulting from our

traffic assignment methodology.
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AM MD PM RD  Total
6a-9a 9a-3p 3p-7p T7p-6a

CDR trips (in Millions) 1.85 299 3.07 344 1136
MHTS trips (in Millions) 1.79 318 290 1.23 9.09
Community-pair correlation 0.87 0.88 0.87 0.81 0.89

Table 3.1: Average daily vehicle trips by period from CDR data and the 2010/2011 Mas-
sachusetts Travel Survey (MHTS) [61], as well as the correlation coefficients of CDR and
MHTS community-pair trips.

3.5.1 Vehicle trips

Among other information, MHTS respondents, who are associated with expansion
factors in order to be representative of the entire population, reported the departure
hour, mode, and travel time of recent trips. For this analysis, we aggregate expanded
vehicle trips to the same time periods used in Chapter 2: morning (AM, 6a-9a),
mid-day (MD, 9a-7p), evening (PM, 3p-7p), and rest-of-day (RD, 7p-6p). Table 3.1
summarizes the total number of vehicle trips for both the CDR and MHTS datasets.
The number of vehicle trips in each time period is very similar across the two data
sets, except for the rest-of-day period, a trend previously illustrated by the person
trip totals in Table 2.2. Moreover, the community-pair correlations between the two
data sets are high. Given the agreement in magnitude and distribution, our method
to convert person trips to vehicle trips appears reasonable on the aggregate.

The magnitude of total vehicle trips in Table 3.1, however, is noteworthy when
you recall the relative magnitudes of total person trips in Table 2.2. Total person
trips from the survey are greater than that of the CDR trips, whereas the opposite is
true with respect to vehicle trips. 11.36 million vehicle trips implies 0.74 vehicle trips
per person trips from the CDR data, while 9.09 million vehicle trips implies just 0.49
vehicle trips per person from the MHTS data.

Figure 3-2a and Figure 3-2b illustrate the correlation between MHTS and CDR
vehicle trips spatially for the AM and PM periods, respectively. We see that for

community-pairs with higher vehicle trips, the correlation between the CDR and
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Figure 3-2: 2D histogram of community-pair MHTS and CDR vehicle trips in the (a) morn-
ing (AM, 6a-9a) and (b) evening (PM, 3p-7p) peak periods.

survey trips are very similar. Moreover, we see that CDR trips are distributed over
many more community-pairs, with many having less than 10 trips. For the MHTS
survey, however, the smaller sample size and larger expansion factors results in a
much sparser matrix, with all community-pairs having over 10 trips. Despite these
differences, for community-pairs with at least 100 trips a day, the two sources have

similar vehicle trip matrices.

3.5.2 Road usage

With general agreement between the vehicle trip distributions, we next evaluate the
traffic patterns resulting from allocating these trips to a road network. We are able
to estimate average OD travel times for the peak AM and PM vehicle trips from
the MHTS survey using our traffic assignment algorithm. Comparisons between traf-
fic patterns estimated from the CDR data and that from the MHTS survey data
are impacted by differences in magnitude and distribution of trips (as estimated in
Chapter 2), in addition to errors due to our methods of approximating vehicle trips
and simulating traffic conditions presented in this chapter.

Table 3.2 summarizes the aggregate results from assigning tract-pair AM and PM
peak hourly vehicle trips. Note that the vehicle trips listed here are inter-tract only,
since intra-tract trips are not assigned to the road network (as described in Section

3.4). The magnitude of peak hourly inter-tract trips are similar for the MHTS and
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Trips (thousands) Time (minutes) Distance (miles)
AM PM AM PM AM PM

MHTS 6464 717.8 24.3 21.2 8.8 7.8
CDR 687.5 694.9 29.1 22.1 10.1 8.2

Table 3.2: Inter-tract vehicle trips, average travel time, and average distance for the AM and
PM peak hours from CDR data and the 2010/2011 Massachusetts Travel Survey (MHTS)
[61].

CDR data, as are the average travel time and distances.

Next, we compare the travel times of assigned MHTS and CDR trips at the
tract-pair level. Figure 3-3a and Figure 3-3b illustrate the tract-pair travel time
correlation across the two data sets in 2D-histograms with bin sizes of two minutes.
The correlations between OD travel times for the AM and PM peaks are very high,
at 0.96 and 0.98, respectively. Considering that the tract-pair correlations between
person trips presented in Table 2.2 are considerably lower, this suggests that assigning
trips reduces some of the noise present in the tract-pair trip matrices. For example, the
origin tract of a trip may or may not reflect the true origin due to spatial inaccuracy
and noise in the CDR data, but given that the true origin is likely to be in a nearby
tract otherwise, the travel path and by extension travel time will be similar regardless
of spatial errors. Accordingly, the correlation between MHTS and CDR tract-pair
travel times is higher than that of the tract-pair trips themselves.

Delving deeper, we next compare the results of our vehicle estimation and traffic
assignment at the level of roads. Figure 3-4a and Figure 3-4b illustrate the correlation
between MHTS and CDR road segment volumes. The AM and PM peak hourly
correlations of 0.92 and 0.91, respectively, again indicate reasonable results, with road
segments serving high volumes of trips (e.g. highways) having the highest correlation.
In contrast, there is much more variability across road segments serving less demand. '

While the MHTS data set does not have trips with weights less than 34.8, the
methods we use to extract trips from the CDR dataset allows for trips with magni-

tudes less than 1. Accordingly, the CDR trip matrix is far less sparse than that of
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Figure 3-3: Distribution of average tract-pair travel time (in minutes) of assigned CDR and
MHTS trips for (a) AM and (b) PM peak hourly vehicle trips.

s (@) AM | p= 0.92 % (b) PM | p= 0.91
10 T T T 10 T e 3 10°
4 10° E
10 104 10* 10*
10*
10° 10* 10}
(] £ v 10°
E 0° g 0"
3 1W0f 3 g ERa E E
s | 105 32 w E
) °
E 10* 10% E, E 10 10° -E—
= =
]
10° 10 10° 10°
’ 101° i 10
w7 5 10 p u
rid 10" i
“ A,’ 10!
102 5 1 | . 102k d _is L W IRPPTITY PRI | I
102 100 10° 100 100 100 10 10° 100 100 10° 100 100 100 10' 107
CDR Volume CDR Volume

Figure 3-4: Distribution of road segment volumes of assigned CDR and MHTS trips for (a)
AM and (b) PM peak hourly vehicle trips.

o8



(a) Road Segment Volume (b) Volume over Capacity

10 . — 107 . : — T
102t " TN LA 10
‘b-" \. 3
o
107 10
_ g 10
-4
g s
2 102 e
10°} d
. CDR AM 10 - CDRAM
6| *—= CDRPM =— CDRPM
10 4 '
| = MHTS AM 107} «— MHTS AM 1A
—s MHTS PM e— MHTS PM i
0] il il b 3 4 10° 5 s 2 1 ;
107 107 10 10° 10! 10° 10° 10 10 10 10 10 10° 10°
Road segment volume, V Volume over Capacity, V/C

Figure 3-5: (a) Road Segment Volume and (b) Volume over Capacity ratio for MHTS and
CDR hourly vehicle trips in the AM and PM peaks.

the MHTS survey, resulting in some road segments having very small CDR vehicle
volumes as evidenced in Figure 3-4. Figure 3->a further illustrates this trend. The
probability distribution for road segments having volumes greater than about 10 are
very similar across AM and PM peak hours and CDR and MHTS trips. However, for
road segments carrying less than about 10 trips, the probability distributions show
that very small CDR volumes are observed for many roads, while MHTS volumes are
never less than 1. A similar trend is illustrated in Figure 3-5b, with many more road
segments having very small volume-over-capacity V/C ratios (e.g. very uncongested).
For MHTS and CDR vehicle trips in both the AM and PM peaks, the majority of
road segments are uncongested (V/C < 1), and we observe the worst congestion for

the AM CDR trips, with a small number of road segments having (V/C > 2).

3.6 Conclusions

Using approaches analogous to the mode choice and trip assignment steps of conven-
tional travel demand models, we demonstrate methods to convert OD trips inferred
from mobile phone data to vehicle trips and allocate these vehicle trips to a road

network. These methods are validated against vehicle trip patterns and travel times
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reported by the Massachusetts Household Travel Survey (MHTS).

Although simplistic, the mode choice approximation allows us to represent the
distribution of vehicle trips reasonably well. Future work should consider developing
more sophisticated methods for modeling mode choice that incorporate characteristics
of trip origins and destinations, such as transit accessibility, auto ownership, and
parking costs, as well as characteristics of the trip itself, such as distance and time of
day.

Using ITA with a modified BPR volume delay function to perform traffic assign-
ment, we are able to match reported travel times from the MHTS survey reasonably
well. Moreover, despite ITA not reaching an optimal routing solution, it produces
traffic patterns very similar to a more sophisticated algorithm that converges to equi-
librium. With reasonable estimates of road usage and traffic congestion, we can
better plan infrastructure, services, and strategies to help mitigate urban traffic and
pollution.

Combined with the methods in Chapter 2 to estimate OD person trips, the meth-
ods presented in this chapter enable us to perform all four steps of traditional travel
demand estimation. These methods therefore provide an alternative to attaining and
running proprietary transportatiori software suites and travel demand models. With
these benefits in mind, we hope this reseach helps support the use of mobile phone

data for transporation planning applications.
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Chapter 4

Integrating travel demand algorithms
and big data sources into a portable

software platform

4.1 Introduction

The rise of ubiquitous mobile computing has led to a dramatic increase in new, big
data resources that capture the movement of vehicles and people in near real time
and promise solutions to some of these deficiencies. With these new opportunities,
however, come new challenges of estimation, integration, and validation with existing
models. While these data are available nearly instantaneously and provide large,
long running, samples at low cost, they often lack important contextual demographic
information due to privacy reasons, lack resolution to infer choices of mode, and have
their own noise and biases that must be accounted for. Despite these issues, their use
for urban and transportation planning has the potential to radically decrease the time
in-between updated surveys, increase survey coverage, and reduce data acquisition
costs. In order to realize these benefits, a number of challenges must be overcome to

integrate new data sources into traditional modeling and estimation tools.

Here we fill this gap with a modular, efficient computational system that performs
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many aspects of travel demand estimation billions of geo-tagged data points as an
input. We review and integrate new and existing algorithms to produce validated
origin-destination matrices and road usage patterns. We begin by outlining the system
architecture in section 4.2.1. In section 4.2.3 we explain our methods of extracting,
cleaning, and storing road network information from a variety of sources. We discuss
recent advances in OD creation from mobile phone data in section 4.3 and implement
a simple, parallel incremental traffic assignment algorithm for these trips in section
4.3.1. We present comparisons of these results to estimates from traditional survey
methods in section 4.4.1. Finally, in sections 4.4.2, 4.4.3, 4.4.4 we present a variety
of measurements that can be made with the proposed system as well as an online,
interactive visualization for conveying these results to researchers, policy makers, and
the public. To demonstrate the flexibility of the system, we perform these analyses
for five metro regions spanning countries and cultures: Boston and San Francisco,

USA, Lisbon and Porto, Portugal, and Rio de Janeiro, Brazil.

4.1.1 Description of Data

Large telecommunications companies, private applications, and network providers
collect and store enormous quantities of data on users of their products and ser-
vices, presenting computational challenges for storing and analyzing them. Billions
of phone calls must be processed, data from open- and crowd- sourced repositories
must be parsed, and results must be made more accessible to individuals that gen-
erated them. At the same time, it is critical that measurements from these new
sources are statistically representative and corrected for biases inherent in new data.
This process requires integration of new pervasive data with reliable (though less ex-
tensive) traditional data sources such as the census or travel surveys. We combine
the following data sets to illustrate the capabilities of the system architecture here

proposed:

1. Call Detail Records (CDRs): At least three weeks of call detail records from

mobile phone use across each subject city. The data includes the timestamp
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and the location for every phone call (and in some cases SMS) made by all
users of a particular carrier. The spatial granularity of the data varies between
cell tower level where calls are mapped to towers and triangulated geographical
coordinate pairs where each call has a unique pair of coordinates accurate to
within a few hundred meters. Market shares associated with the carriers that
provide the data also vary. Personal information is anonymized through the use
of hashed identification strings. For reference, 6 weeks of CDR data from the
Boston area containing roughly 1 billion calls made by 1.6 million unique users
consumes roughly 70 gigabytes of disk space in its raw format. In cities with

longer observation periods, data size quickly becomes a performance issue.

. Census Data: At the census tract (or equivalent) scale, we obtain the popula-
tion and vehicle usage rate of residents in that area. For US cities, the American
Community Survey provides this data on the level of census tracts (each con-
taining roughly 5000 people). Census data is obtained for Brazil through IBGE
(Instituto Brasileiro de Geografia e Estatistica) and for Portugal through the In-
stituto de Nacional de Estatistica. All cities analyzed in this work have varying

spatial resolutions of the census information.

. Road Networks: For many cities in the US, detailed road networks are made
available by local or state transportation authorities. These GIS shapefiles gen-
erally contain road characteristics such as speed limits, road capacities, number
of lanes, and classifications. Often, however, these properties are incomplete or
missing entirely. Moreover, as such road inventories are expensive to compile
and maintain, they simply do not exist for many cities in the world. In this
case, we turn to OpenStreetMaps (OSM), an open source community dedicated
to mapping the world through community contributions. For cities where a de-
tailed road network cannot be obtained, we parse OSM files and infer required
road characteristics to build realistic and routable networks. At this time, the
entirety of the OSM database contains roughly 4 terabytes of geographic fea-

tures related to roads, buildings, points of interest, and more.
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4. Survey and Model Comparisons: Wherever possible, we obtain the most recent
travel demand model or survey from a particular city and compare the results
to those output by our methods. In Boston, we use the 2011 Massachusetts
Household Travel Survey (MHTS) and upscale trips according to standard pro-
cedures, in San Francisco, the 2000 Bay Area Transportation Survey (BATS),
in Rio de Janeiro, a recent transportation model output provided by the local
government, and in Lisbon, the most recent estimates from the MIT-Portugal
UrbanSim LUT model that uses the 1994 Lisbon transportation survey as input

[36]. We found no recent travel survey or model for Porto.

Table 4.1 compiles descriptive statistics for these data sources for each city we

explore in the latter sections of this paper.

Table 4.1: A comparison of the extent of the data involved in the analysis of the subject
cities.

City

Boston SF Bay Rio Lisbon Porto
Population (mil.) 4.5 7.15 12.6 2.8 1.7
Area (1000km?) 4.6 181 45 29 20
# of Users (mil.)  1.65 043 219 056 047
# of Calls (mil.) 905 429 1,045 50 33
# of cell towers N/A 892 1421 743 335
# of Edges (ths.)  21.8 24.3 22.7 28.1 15.1
# of Nodes (ths.) 9.6 113 221 161 86
# of Tracts 732 1139 729 295 272

4.2 System Architecture and Implementation

4.2.1 Architecture

The system architecture to integrate the data sources above must be flexible enough
to handle different regions of the globe which may have different data availability
and quality and efficient enough to analyze massive amounts of data in a reasonable

amount of time. The proposed system must also be modular, so that components
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Figure 4-1: A flowchart of the system architecture.

can be updated easily as new technologies and algorithms become available. To
meet these requirements, we choose an object-oriented approach with loose schema
requirements. A final object is to make results accessible to a range of end users via
online, interactive visualization. To satisfy these constraints, we propose the system

architecture depicted in Figure 4-1.

4.2.2 Parsing, Standardizing, and Filtering User Data

One of the biggest challenges in parsing and analyzing travel survey data is the
incredible variety in data schema, collection, and reporting practices. Each planning
organization typically constructs its own set of data codes and definitions and provides
data in unique formats. This makes it very difficult to compare surveys done in
different cities. Call detail records, on the other hand, are typically available for
many cities from the same provider and in the same format, and in most cases,
translating between the formats of different carriers is simply a matter of shuffling
columns. The first component of our system is a simple architecture to convert all
CDR data to a standard format that can be expected by the rest of the components.

Given the size of these data sets and the rapidly evolving schema requirements

of new models, choosing the proper data structure is critical. Google’s open source
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Protocol Buffer library! is an ideal choice as they provide fast serialization for speed
and space efficient file storage as well as flexible schemas that can be changed without
compromising backwards compatibility. These structures were designed to serve some
of the largest databases in the world and are more than enough for our task.

We take a user centric approach to CDR data. We define a user_ data protocol
buffer message that will form the core data structure for our custom User class in
an object-oriented programing model. Each User object can be assigned a number
of attributes such as the number of calls they make, their home and work locations,
and mobility characteristics such as the average time between calls or the average
distance traveled on each trip. More sophisticated methods can compute the number
and distribution of their trips and even expand them based on census information.
We define similar structures and classes for OD matrices, trips, and census data.
The serialization routines built into the protocol buffer library ensures that storage
of raw data is efficient. To analyze a new city, the user only needs to write two
simple routines, one to parse a single line of the CDR file and populate relevant
user attributes and one to populate census data objects. Standardizing the CDR
data format in this way makes it very easy to compare the output of our estimation

models across different cities.

4.2.3 Creating and storing geographic data

A relational database is used to store road network and census information for every
city in a standard format. Given the current cost of computing resources, these
systems provide adequate performance for storing static GIS and census data and
have convenient, mature interfaces for easy access. We also use this database to
store aggregated results from our estimates so that they can be made available to
interactive web APIs and visualization platforms. We use a Postgres and the open
source spatial extension PostGIS to store and manipulate census and road network
data.

While census tract or TAZ (Traffic Analysis Zone) polygons and demographic

!Google Protocol Buffers https://developers.google.com/protocol-buffers/
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information are stored in this database, it is computationally inefficient to perform
point-in-polygon calculations for each user or call record in our CDR dataset. To
dramatically speed these computations, we rasterize polygons into a small pixel grid,
where pixel values is a unique identifier for the census tract covering that pixel. This
raster is then used as a look-up table to convert the latitude and longitude of calls
into census tract IDs. The rasterization introduces some error along the borders of
tracts, but these errors are minimized by making pixel sizes much smaller than the
size of the raster and resolution of the location estimates of calls (between 10m and

100m).

While the platform supports road networks supplied by local municipalities in the
form of shapefiles, we have implemented a parser to construct routable road networks
from OpenStreetMap (OSM) data due to its global availability. Transportation net-
works in OSM are defined by node and way elements. Nodes represent points in space
that can refer to anything from a shop to a road intersection, while ways contain a
list of references to nodes that are chained together to form a line. In our context,
relevant ways are those used by cars and relevant nodes are intersections within the
road network. Ways and nodes may also contain a number of tags to denote attributes
such as "number of lanes" or "speed limit". Many roads, however, do not include
the whole set of attributes necessary for accurate routing. For example, city roads
often lack speed limit information required to estimate the time cost, which in turn
is used to find shortest paths based on total travel time. To infer this missing data,
our system supports the creation of user-defined mappings between highway types
and road properties. For example, ways tagged as "motorways" are generally major
highways and have a speed-limit of 55 mph in the Boston area. They tend to have
3 lanes in each direction. "Residential" roads, on the other hand, have a speed-limit
of 25mph and 1 lane in each direction. Each road segment is also given a capacity
based on formulas suggested by the US Federal Highway Administration. Using these
mappings, we parse the OSM xml data to create a routable, directed road graph with

all properties required to estimate realistic costs driving down any given road.

We implement two additional cleaning steps to improve efficiency. The first filters
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out irrelevant residential roads. These small local roads are filtered from our network,
as they are not central to the congestion problem, yet tend to increase computation
time significantly. Finally, in OSM data, a node object can refer to many things, for
example an actual intersection or simply a vertex on a curve used to draw a turn. The
latter case results in a network node with only one incoming and one outgoing edge
(assuming U-turns are not allowed). These nodes are superficial and increase network
size and routing algorithm run times needlessly. We simplify networks by removing
these nodes from the network and only connecting true intersections, keeping the
geographic coordinates of the nodes so that link costs still reflect actual geographic
length of roads rather than straight line distances between start and end points.
The parsed and cleaned edges are then loaded into the Postgres database, preserving
attributes and geometry. Pseudo-code of the algorithm to parse and simplify OSM

networks can be found in algorithm A.1 in Appendix A.

4.3 Estimating Origin-Destination Matrices

The following sections review algorithms for transforming billions of geo-tagged data
points into origin destination matrices and assigning these flows to transportation
infrastructure. Some of these algorithms are important for their deviation from tra-
ditional approaches and some are important for their computational efficiency, a re-
quirement when faced with such massive data sets. We adapt (if necessary, for com-
putational efficiency) and integrate the methods presented and validated in Chapter
2 into a full implementation of travel demand estimation for cities.

First, we adapt the spatial and temporal clustering method used to extract stay
locations for Boston CDR data in Chapter 2. Given a user’s trajectory of spatiotem-
poral points P = {p1(z1, Yy, t1), - - -, Pn(Tn, Yn, tn)}, the goal is to discover meaningful
locations at which a user repeatedly stays for a significant amount of time. The
algorithm begins by considering each call in a time ordered sequence. Two consec-
utive (p;, p;+1) points are considered to form the start of a candidate set of points

at the same semantic location if the distance between them is less than a thresh-

68



old Ar;;1; < d. Subsequent points are added to this candidate set if they also
meet this criteria, e.g. p;yo is added if Ariyy,40 < 8. The result is a candidate
set S = {ps(Ts,Ys,ts),---,pe(Tt, Yt t;)} containing a number of consecutive calls. A
candidate set is considered to represent a single candidate stay if time between the
first and the last observation in the subsequence S are separated by a time greater
than a threshold At,,, > 7. The geographic location of a candidate stay is set to
be at the centroid of points in S. Due to noise in locations and daily call frequen-
cies, multiple candidate stays that are actually the same place may be estimated at
a slightly different geographic coordinate on different observation days. To account
for this, a final agglomerative clustering algorithm is used to consolidate candidate
stays to a single semantic location regardless of the temporal sequence of individual
calls. Though many agglomerative clustering algorithms exist, we implement a sim-
ple, efficient grid based approach by assigning each filtered location to a grid cell and
then defining a final stay point as the centroid of all filtered locations in each cell. A
final pass through the original calls assigns any call within a distance § from a stay
point to that stay point regardless of whether or a not a consecutive call was recorded
from that location. This algorithm removes noisy or spurious outliers from the data
set while preserving as much information on visits as possible. It may also be run
on both triangulated and tower-based CDR data, in the latter case it removes noise
associated with calls from the same location being routed through different nearby
towers due to environmental factors. Pseudo-code can be found in algorithms A.2

through A.5 in Appendix A.

With de-noised trajectories of stay points, the next step is to infer contextual in-
formation about each location such as the activity or purpose. Using visit frequencies
and times, we implement the same methods discussed in Chapter 2 to designate stay
points as home, work, and other and estimate average daily trips between consecutive
stay points. We next assign a random departure time for these trips based on the
conditional probability that user departed during an hour between the time they were
last observed at the origin and the time they were first observed at the destination.

This conditional probability function for departure time can be derived from surveys
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such as the National Household Travel Survey (as done for Boston in Chapter 2) or
estimated empirically using observed call frequencies of all users over the course of
the day. Having assigned departure times and purposes to each trip, we can construct
trips made by a given user. Generally, we are interested in trips between geographic
areas such as towns or census tracts so here we convert origin and destination points
to IDs of the tract of zone they are in. The result is a vector of trips between locations

in the city for each user in our data set.

While a trip represents an observation of movement of at least one person between
two locations, we must still be careful to control for differences in market share and
usage rates across a city. We first scale trips based on how often an individual uses
their phone. For each user, we calculate the average number of trips made during a
given time window by dividing the number of trips counted by the number of days
that user was observed making a call, as outlined in Chapter 2. This step effectively
measures the average number of trips a user makes between two locations on a day
given that they are observed in our data set. Due to differences in daily usage of
mobile phones among the population, not every user makes enough calls on a typical
day to infer their movement patterns. For this reason, we must filter out users that
do make enough calls. This step requires trade-offs between sample size and amount
of data we have on each selected user. Because we will eventually be routing these
trips through the transportation network, it is important to correctly estimate the
total number of trips taken as well as the distribution of trips across the city. In
practice, we find that filtering out users who we measure to make fewer than 2.5 trips
per day leaves a large sample size of active users and results in valid estimates of trip
tables and OD matrices as shown in subsequent sections. Those implementing these
methods may find that different filtering criteria produce samples suited for different

tasks.

We then expand the average trip counts of filtered users to account for market
penetration rates. As with survey participants, the ratio of cell phone users to the
population is not uniform within the region. Each user is assigned a home census

tract and expansion factors are computed for each tract by measuring the ratio of the
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number of users assigned there and the reported population. As we saw in Figure 2-2
in Chapter 2, these expansion factors tend to be less than 25 in Boston, but can be
higher in places with lower market share. They are generally much lower than surveys
which may only choose two or three individuals to represent hundreds or thousands in
an area. Each user’s typical daily trip volumes are then multiplied by the expansion
factor corresponding to their home tract and the now represent the movements of
some fraction of the tracts population.

Finally, we may wish to consider only trips via a certain mode, e.g. vehicle trips.
Though CDR data does not provide resolution required to measure mode choice,
vehicle trips can be approximated by methods proposed in Chapter 3, or if data on
mode shares at the origin-destination level is not available, weighting person trips by
vehicle usage rates in the home census tract of users. In this way, full OD matrices for
vehicle or person trips are computed by summing the expanded trip volume computed
for all users between all pairs of census tracts. We also construct partial OD matrices
containing only trips of a certain purpose during a certain time window. Due to
the relative consistency of CDR data around the world, we can adopt this same OD
creation procedure in all cities. Pseudo-code to generate OD matrices can be found

in algorithms A.6 and A.7 in Appendix A.

4.3.1 Trip Assignment

Having estimated OD flows, our next task is to efficiently assign these trips to trans-
portation infrastructure, in this case a road network [10]. The traffic assignment
module in the software platform takes tract-to-tract OD matrices and distributes
trips among nodes, or intersections. A trip originating in a census tract is assigned
uniformly at random to an intersection in that tract and to an intersection within
its destination tract. This distributes flows such as not to create artificial congestion
points and reflects general uncertainty in the exact origin of trips. Future iterations
of the platform could also incorporate additional approaches, such as the centroid
connector method used in Chapter 3 and many travel demand modeling frameworks.

With intersection to intersection flows, the next task is to assign traffic to routes.
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Our system is modular so that it may implement any number of traffic assignment
algorithms. Here, however, we take a simple ITA approach (as in Chapter 3), since it
is computationally efficient for many trip pairs in detailed road networks and allows
us to keep track of each vehicle as it is routed through the network. We develop a
set of tools to perform large scale routing and traffic assignment using parallelization
for speedups. First, the parsed and optimized road network is loaded into a graph
object. In our implementation, we use the Boost Graph Library for its flexibility
and efficiency. We can then compute shortest paths based on a user defined cost
(in this case travel time on road segments). We choose the A* algorithm among the
wide range of shortest path algorithms, as it’s widely used in routing on geographic
networks for its flexibility and efficiency. The A* algorithm implements a best-first-
search using a specified heuristic function to explore more promising paths first. The
euclidian distance between nodes provides an intuitive heuristic that ensures optimal
solutions are found. While this algorithm provides the same results as Dijkstra’s
algorithm, we find that it becomes more efficient to compute paths one by one for

sparse OD matrices.

A simplified schematic explaining our implementation of the ITA procedure can be
seen in Figure 4-2. Though increments must be routed in serial, all routes discovered
within an increment are independent. To speed up the routing process, we divide
all trips in an increment into batches and send these batches to different threads for
parallel computation. Because the road network remains fixed in each increment, we
only need to store a single graph object shared by all threads. When a shortest path
is found, we walk that path and increment counts of the number of vehicles that were
assigned to each road and sum the counts from all batches after the increment has
finished. We also keep track of the origin and destination census tracts of the assigned
vehicles in a bipartite graph for later analysis. After all trips have been routed, we
compute final V/C ratios and other metrics of each segment and update these values
in the database so they can be used for other applications or visualization. Pseudo

code for this ITA procedure can be found in algorithm A.8 of Appendix A.
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Figure 4-2: Our efficient implementation of the incremental traffic assignment (ITA) model.
A sample OD matrix is divided into two increments and then split into two independent
batches each.

4.4 Results

In the following sections we demonstrate the range of outputs provided by our sys-
tem. We first report trip tables and compare origin-destination matrices produced
by our system to available estimates made using travel surveys. We then report road
network performance as well as characteristics of road usage patterns enabled by the

construction of a bipartite road usage network.

4.4.1 Trip Tables and Survey Comparison

In order to understand when and where these new data will be effective and how
the results differ from traditional approaches, we compare the output of our system
to previous travel surveys wherever possible. In four of the cities studied, we find
estimates of travel demand from surveys: the 2011 Massachusetts Household Travel
Survey (MHTS) in Boston, the 2000 Bay Area Travel Survey (BATS) in San Francisco,
a 2013 transportation plan in Rio de Janeiro, and estimates from a 2012 LUT model
in Lisbon [36]. While these surveys do not always produce all estimates we are able
to generate with our system, we make comparisons wherever possible.

Trip tables report the total number of trips of a given purpose or during a given
time of day for a city and represent the total load placed on transportation infras-
tructure. In Table 4.2, we report trip tables for each city in this study. We find close
agreement with trip tables estimated using CDR data and surveys in Boston and the

San Francisco Bay Area and less agreement in Rio de Janeiro. We note, however,

73



Table 4.2: Trip tables estimates. Where possible, our results are compared to estimates
made using travel surveys. For each city, we report the number of person trips in millions
for a given purpose or time. Trip purposes include: home-based word (HBW), home-based
other (HBO), and non-home-based (NHB). Trip periods include: 7am-10am (AM), 10am-
4pm(MD), 4pm-7pm (PM), and the rest of the day (RD). We note that the exact boundaries
of the surveys do not exactly coincide with those used in our estimation so direct comparisons
are not exact. No comparisons could be found for Porto. *Note that the Lisbon Survey only
contains estimates of vehicle trips in millions.

City HBW HBO NHB AM MD PM RD | Total

Boston 5.76 899 6.72 3.71 7.68 5.75 4.33 | 21.47
MHTS  3.22 12.83 949 532 887 820 3.15]25.54
SF Bay 4.07 10.05 7.04 447 781 535 3.53|21.16
BATS 4.60 11.54 4.66 4.18 690 4.22 3.00 | 20.80
Rio 9.92 17.17 11.46 7.71 14.09 10.47 6.29 | 38.55
Survey  2.06 — ~ 1.31 119 1.24 - 3.74
Lisbon 1.08 201 121 079 167 126 0.58 | 4.30
Survey*  0.61 - - - - - - -

Porto 049 087 046 032 070 054 0.27| 1.83
Survey - - - - - - - -

that the 3.74 million person trips estimated for Rio is far too low given the popula-
tion of the region and highlights the difficulty in finding reliable planning resources
in many areas. Finally, we note that in Lisbon, the survey results represent vehicle
trips only, while we report person trips. When adjusting for mode car ownership
rates in Portugal, our numbers align more closely. We were unable to find a survey
or model for comparison in Porto. Note that differences in the size of the study area
for Boston and trip period definitions, and minor modifications to the algorithms to
produce origin-destination trips, result in trip counts different than those presented

in Table 2.2.

In addition to trip tables, it is also necessary to compare the distribution of trips
from place to place around the city. In order to make this comparison, the area
unit of analysis for the survey and our model must be aligned. Given the resolution
of mobile phone data, our system is designed to create ODs at the census tract
(or equivalent) level while many surveys aggregate to larger traffic analysis zones or
super districts. For comparison, we aggregate the OD matrices from CDRs to the

coarser grained resolution provided by the survey and compare results. Figure 4-3
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Figure 4-3: Correlations between OD matrices produced by our system and those de-
rived from travel surveys at the largest spatial aggregation of the two models. In Boston,
this is town-to-town, in San Francisco, MTC superdistrict-to-super district, in Rio, census
superdistrict-to-superdistrict, and in Lisbon, freguesia-to-freguesia. The larger of these area
units (e.g. towns in Boston), the better our correlations, while correlations at the smallest
aggregates(e.g. freguesias in Portugal), correlations are lower.

show correlation histograms comparing OD matrices at the largest spatial aggregation
available produced by our methods and those produced by traditional methods. In
general we find very high correlations in Boston, San Francisco, and Rio, with lower
correlations in Lisbon. Lisbon, however, has the smallest units of aggregation and
these results demonstrate the limitations of these comparisons at very high spatial

resolutions.

4.4.2 Road Network Analysis

The first output of this procedure is volume, congestion (volume-over-capacity), and
travel times for all road segments. Using the outcomes of our analyses, we calculated

the distributions of volumes on roads, along with V/Cs in Figure 4-4. Interestingly,
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Figure 4-4: Distributions of travel volume assigned to a road and the volume-over-capacity
(V/C) ratio for the five cities. The values presented in the legend refers to the fraction of
road segments with V/C > 1.

the results suggest qualitatively similarly distributed volumes and V/Cs for our five
subject cities. Moreover, our findings are consistent with general congestion studies
that identify Rio de Janeiro as one of the most congested cities in the world and the
San Francisco Bay Area not far behind. Smaller cities such as Boston and Porto have

fewer problems with congestion.

4.4.3 Bipartite Road Usage Graph

In addition to measuring physical network properties of roads, the system architecture
enables detailed analysis of individual road segments and neighborhoods within a
city. To this end we create a bi-partite usage graph. Every time a route between two
locations is assigned, we traverse the path and keep a record of how many trips from
each driver source (census tract) used each road. This record is then used to construct
a bipartite graph containing two types of nodes: road segments and driver sources, as
shown in Figure 4-5. Roads are connected to driver sources that contribute traffic to
that segment and census tracts are connected to roads that are used by people who
live here.

This bipartite framework of analysis allows us to augment visualizations of con-
gestion maps in two ways. The first focuses on a single road segment. For example,
when we identify a segment of a highway that becomes highly congested with traffic

jams each day, we can easily query the bipartite graph to obtain a list of census tracts
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Figure 4-5: A graphical representation of the bipartite network of roads and sources (census
tracts), with edge sizes mapping the number of users using the connected road in their
individual routes. '

where drivers sitting in that traffic jam are coming from and where they are going
to. The census tract nodes can also be given attributes from containing any demo-
graphic data a user wishes. With this information, it is possible to identify leverage
points where policy makers can offer alternatives to these individuals or even power
applications such as car sharing, by notifying drivers that others sharing the same
road may be going to and from the same places. Moreover, businesses considering
products or services based on who may be driving by or near different locations may
find value in these detailed breakdowns.

Rather than selectling a road segment node, we may also select a single census
tract, and check its neighbors to construct a list of all roads used by individuals
moving to or from that location. For example, for a given neighborhood in a city
we can identify all major arteries that serve that local population. This information
provides a detailed look at a central location based on how much road usage it induces.
Moreover, geographic accessibility, critical to many socio-economic outcomes, can now

be measured in locations that were previously understudied.

4.4.4 Visualization

To help make these results accessible to consumers and policymakers, we build an
interactive web visualization to explore road usage patterns in each city. Most GIS
platforms can connect directly PostGIS databases to visualize and analyze road net-
works with our estimated usage characteristics. While these platforms are preferred
by advanced users familiar with GIS data, they are opaque to many consumers who

may benefit from more detailed information on road usage. A simple API is imple-
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Figure 4-6: Two screen images from the visualization platform. (a) The trip producing (red)
and trip attracting (blue) census tracts using Cambridge St., crossing the Charles River in
Boston. (b) Roads used by trips generated at the census tract including MIT.

mented to query the database and generate standard GeoJSON objects containing
geographic information on roads as well as computed metrics such as level of service.
We also implement queries to answer questions such as "What are all the census tracts
used by drivers on a particular road?" or "What are all roads used by a given location
in the city?". These data are then parsed and displayed on interactive maps using any
of the available online mapping APIs and D3js allowing users, with functionality that
enables one to select individual roads and areas. Two screen images of this system is

shown in Figure 4-6.

4.5 Conclusion

This chapter has presented a full implantation of a travel demand model that uses
new, big data resources as input. We have presented a system that combines and
i.mproved upon many disparate advanced in recent years to produce fast, accurate,
and inexpensive travel demand estimates. We began by outlining methods to extract

meaningful locations from noisy call detail records and estimate origin-destination
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matrices by counting trips between these places. Normalized and scaled trips counts
are compared to estimates made using survey data in both trip tables and at the
OD pair level. These flows are then assigned to road networks constructed from
OpenStreetMap data using an incremental traffic assignment algorithm. As routes

are assigned, a number of metrics on road usage are measured and stored.
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Chapter 5

Assessing the impact of real-time

ridesharing on urban traffic

5.1 Introduction

In 2014, ridesourcing services Uber!, Lyft?, and Sidecar® launched ridesharing pro-
grams in the US that match customers making similar trips. Ridesharing offers mon-
etary incentives to customers who pay a reduced rate for their trip, as well as drivers
who are able to carry more passengers more efficiently. Ubiquitous technologies have
allowed for the emergence of these real-time ridesharing services, with GPS providing
driver and customer locations and route navigation, smartphone apps affording real-
time ride requests, and social networks establishing trust and accountability between
customers and drivers. Further, advances in computing speed and data storage has
enabled the development of platforms to run rideshare optimization algorithms in
real-time.

Ridesharing has garnered support for its potential to reduce private automobile
use by providing a convenient and affordable alternative to driving alone, translating

to reduced roadway congestion and vehicle emissions in the short-term, and reduced

lyww.uber.com
Zyww.1lyft.com
3www.side.cr
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automobile ownership in the longer term. A recent intercept survey of ridesharing
customers in San Francisco reveals that although ridesharing often substitutes for
longer transit trips, it otherwise complements transit, with many observed trip origins
and destinations near transit stations [66]. However, ridesharing critics are skeptical
about the likelihood that ridesharing will decrease vehicle congestion and emissions,
due to the potential of ridesharing to divert trips from transit or other non-motorized
modes and induce new trips altogether. Furthermore, safety and liability concerns
tied to inadequate driver training and insurance, as well as direct competition with
highly regulated taxi companies, has led some to call for regulations of the app-based
ridesharing industry. As city leaders and policy makers are faced with decisions about
regulating the growing rideshare market, it is becoming increasingly important that
the overall impacts of ridesharing are understood.

Whether or not ridesharing adds to vehicle traffic depends on the balance of
competing forces. On the one-hand, ridesharing may increase traffic by replacing
non-driving modes such as transit, walking, or cycling or inducing new trips. On the
other hand, ridesharing may decrease traffic by increasing vehicle occupancy, serving
the first/last mile of potential transit trips, and reducing private car ownership and
use. This research focuses on understanding the impact of two of these key drivers:
diversion of non-drivers and diversion of travelers from private, single occupancy cars
or taxis. The other factors are likely to occur on a longer time scale and therefore
harder to quantify.

With the uncertainty surrounding the impacts of ridesharing in mind, this research

aims to answer two questions unresolved in existing literature:

e What proportion of trips can be matched by a real-time ridesharing service

given the temporal and spatial distribution of all urban trips and travel modes?

e What is the change in the number of vehicles and traffic congestion given relative

adoption rates of ridesharing from auto and non-auto travelers?

To help answer these questions, we again turn to mobile phone data as a resource

for travel demand estimation. In Section 5.2, we motivate our approach and the
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use of mobile phone data for this application within the context of related work.
We first compare and contrast our data and methods with recent rideshare research
coming from the urban computing domain, demonstrating how we differ from and
add to this body of work. Then, we relate this approach to methods typically in
the transportation industry to evaluate the demand for and impact of a new travel

alternative.

The rest of the chapter follows with discussions of the data, methods, and results.
Using the procedures developed in Chapter 2 and implemented in Chapter 4, we
first estimate average daily origin-destination (OD) trips from mobile phone records.
We then use methods described in Chapter 3 to estimate the proportions of these
trips made by driving and other non-driving modes. Next, we match spatially and
temporally similar trips, and explore a range of adoption rates for drivers and non-
drivers, in order to distill rideshare vehicle trips, and by extension, total vehicle trips.
Finally, we use algorithms described in Chapter 3 and efficiently implemented in
Chapter 4 to allocate these vehicle trips to a road network and evaluate the impacts

of ridesharing on urban congestion.

5.2 Related Work

To-date, much of the research related to ridesharing has focused on understanding
the characteristics of ridesharing trips and users. In a recent survey of app-based, on-
demand rideshare users in San Francisco, researchers found that 45% of ridesharers
stated they would have used a taxi or driven their own car had ridesharing not
been available, while 43% would have taken transit, walked, or cycled [66]. The
authors conclude there is a need for research to explore the impact of modal shift on
vehicle congestion and emissions. This work is a step in that direction and leverages
mobile phone data to understand underlying travel demand not captured by small-

scale intercept surveys.

Santi et al. developed a framework to compute maximum matching of shareability
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networks constructed from an OpenStreetMaps* (OSM) road network and 172 million
taxi trips made in New York City in 2011 [71]. We add to this body of work by
introducing a method that takes into account trip-making by all modes, rather than
just taxis, which represent only a portion of potential rideshare demand. Further,
authors explicitly assume that traffic conditions—which impact the travel time criteria
used by their matching algorithms—will remain largely unaltered by the emergence
of ridesharing. Given their finding that ridesharing could cut total taxi vehicle miles
by 40%, we revisit this assumption in this work; using traffic assignment algorithms
commonly used in transportation planning applications to route total vehicle demand,
we assess the impact of ridesharing on network-wide congestion.

Cici et al. used mobile phone and social network data to evaluated demand for
ride-sharing between strangers, friends, and friends-of-friends in four cities in Spain
and the US [29]. As in this work, the authors use CDR data, however, they focus
on commuting trips between home and work locations inferred from CDR, Twitter,
and Foursquare data. We build on this research by (i) using trips across all purposes,
and (ii) estimating auto mode shares by origin and destination rather than selecting
a portion of the trips as vehicle trips based on a single city-wide mode share, and
(iil) estimating the impacts of ridesharing on urban congestion and travel times rather
than using an online mapping service for static routing and travel time characteristics.

Researchers in [29, 71] focused on addressing the computational challenges of trip-
matching—an NP-hard optimization problem—in real-time and developed heuristics
to quantify potential ride-sharing demand. These algorithms re-route trips in or-
der to match them with similar, overlapping trips, explicitly capturing demand for
ridesharing relative to passenger’s willingness to experience prolonged travel time.
We believe that development of such heuristics are crucial for the effective implemen-
tation of a real-time ridesharing system. In this work we focus on other aspect that

affect rideshare demand and urban congestion, namely:

e Total network-wide trips by mode

4An open source mapping community supporting data on road networks all over the world.
www.openstreetmap.org
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e Rideshare adoption by mode, and the impact of this mode-shift on the number

of network-wide vehicles, and

e Dynamic relationship between demand and traffic congestion.

With this framework, we introduce a novel application to the field of urban com-
puting by evaluating the impact of a new transportation option on urban traffic
using mobile phone location data. With mobile phone data available in real-time,
these methods can be adapted to support real-time rideshare matching applications.

Within the transportation domain, evaluating the demand for and impact of a
new travel mode or option traditionally involves acquiring, adapting, and running a
travel demand model. In particular, mode choice models are often used to estimate
the diversion of trips to new modes or travel alternatives [6, 14, 16]. However, such
models are expensive to develop and calibrate and their availability may be limited.
Instead, we propose a framework to assess overall demand and congestion impacts of
a new mode based on a range of hypothetical adoption levels. This approach offers an
alternative end-to-end solution to quickly and economically perform transportation

scenario analyses in any city for which mobile phone data is available.

5.3 Data

5.3.1 Mobile Phone

To estimate travel demand patterns we utilize mobile phone CDR data in the Boston
metropolitan area, as in Chapters 2, 3, and 4. The CDR dataset contains more
than eight billion mobile phone records for roughly two million anonymized users
over two months in the Spring of 2010. Each record contains an anonymous user ID,
longitude, latitude, and timestamp at the instance of a phone call or other types of
phone communication (such as sending SMS, etc.). The coordinates of the records
are estimated by service providers based on a standard triangulation algorithm, with

an accuracy of about 200 to 300 meters.
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5.3.2 GIS/Survey

As in Chapters 2, 3, and 4, we rely upon a variety of spatial and survey data sources,

summarized below.

e Road network: For traffic simulation, we use a GIS shapefile from the local
transportation authority containing road characteristics such as speed limits,

road capacities, number of lanes, and classifications [26].

e Census tracts: CDR trips are aggregated to the spatial resolution of 974 study
area Census tracts, which contain roughly 5000 residents each. We use a GIS
shapefile as well as population estimates from the American Community Survey

to expand observed users to total population [1, 2].

e Communities: CDR trips are aggregated to 174 areas (163 study area towns and
11 Boston neighborhoods), referred to as communities in this chapter as well
as Chapter 3. Note that in Chapters 2 and 4, the aggregation level that we re-
ferred to as town consisted of 164 areas—the study area towns, including Boston.
We divided Boston into 11 neighborhoods for this analysis to match rideshare
trips at a finer resolution within the city of Boston. We used a GIS shapefile
of town boundaries developed by MassGIS to map Census tracts to these com-
munities, but further split Boston into neighborhoods using local knowledge of

neighborhood boundaries[55].

e Census commuting trips: The 2006-2010 Census Transportation Planning Prod-
ucts (CTPP) Part 3 provides commuting characteristics between Census tract
pairs [85]. This nationally-available dataset provides tabulations across 16 dif-

ferent travel modes, which we use to infer mode shares.
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5.4 Methods

5.4.1 Trip Estimation

As described in detail in Chapter 2, we estimate average daily trips using the CDR
dataset in Boston. CDRs are first converted into clustered locations or stay points
at which users engage in activities for an observed duration. These locations are
inferred to be home, work, or other depending on observation frequency, day of week,
and time of day, and represent a user’s origins and destinations. Next, we construct
trips between two consecutive stay points in a day. Since the arrival time and duration
at these locations reflect the observed (based on phone usage) rather than true arrival
time and duration, we probabilistically infer departure hour h using the NHTS survey
data on trips in major US cities.

For each user u, we generate trip matrices ¢;; by summing the number of trips from
origin Census tract ¢ to destination tract j. By dividing these trips by the number of
days n on which we observed the user, we compute average daily transition matrices
with the probabilities that a user makes a trip between any origin and destination
pair ¢ on an average weekday. Lastly, user trips are multiplied by expansion fac-
tors w based on the population of a user’s home Census tract. Summing across all
individuals, we compute average daily trip matrices T;;, as summarized in Equation

a.1.

U

Tiy(h) = Y tig(u, h) /n(u) % w(u) (5.1)

u=1

5.4.2 Mode Share Estimation

Capturing spatial variation in mode shares is essential to estimating reasonable dis-
tributions of vehicle trip patterns from the person trips inferred from CDR data.
Further, whether or not ridesharing reduces vehicle traffic depends on the extent to
which ridesharing diverts customers from different modes.

With that in mind, we want to determine the number of trips made by three travel
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modes: drive-alone or taxi, carpool, and non-driving modes. The fraction of travelers
for each mode is calculated using CTPP commuting data. Averaging this data across
Boston, 70

We use the methods presented and validated in Chapter 3 to infer these travel
mode shares. First, we use the CTPP commuting data aggregated from Census tract
pairs ¢j to community pairs /J in order to minimize the effects of matrix sparsity and
small sampling size. We compute (i) drive-alone and taxi mode share d;;, (ii) carpool
mode share c¢y;, and (iii) non-auto mode share oy, such that > (d;; + ¢y + 015) =
1. Community pairs with sampling issues, including few total trips or zero auto
trips, are assigned average mode shares depending on their geography: Urban-Urban,
Suburban-Urban, or Suburban-Suburban. Communities lying within Boston’s 1-95
highway ring are designated as Urban, and all other communities are designated

Suburban.

5.4.3 Rideshare Vehicle Estimation

Given OD trips inferred from the CDR data and mode shares inferred from census
data, we next estimate drive-alone, carpool, and non-auto trips and match candi-
date ridesharing trips together. Since rideshare adoption among drive-alone and taxi
travelers would reduce vehicles, and adoption among other non-auto travelers would
increase vehicles, we want to capture rideshare adoption from these modes seperately.
We assume existing carpoolers would not adopt ridesharing since they already coor-
dinate their trip with at least one other traveler; however, we take into account the
contribution of carpool vehicles to total vehicle traffic.

We explore different adoption rates for the ride sharing service by travelers that
use taxi or drive-alone a; and travelers that use non-driving modes a,. While total
rideshare trips will increase with increasing values of a4 and a,, vehicle traffic will
reduce for vehicle traffic will reduce for ay >> a,, and increase under a4 << a,.

Additionally, we introduce a parameter s, representing the maximum number
of rideshare customers that can be matched within a vehicle. In this study, we

assume s = 2 since existing rideshare services are matching two trip requests currently.
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However, if and when rideshare services allow larger rideshare passenger occupancy,
we can increase s to match more potential ridesharers in fewer rideshare vehicles.
This parameter also gives the flexibility to assess the potential of dynamic shuttle
services, such as Bridj®, which currently serves Boston-area commuters using sprinter

passenger vans with 12 seats.

We require finer temporal resolution to match potential ridesharing trips than
departure hour as estimated in previous steps. We assume that trips occur uniformly
throughout each hour, and compute the number of trips made within time window
A. For A = 6 minutes, for example, hourly demand is split into 10 intervals, and
potential ridesharing trips are matched within an interval A. From the ridesharer’s
perspective, A represents the maximum allowable change in departure time the cus-
tomer would be willing to incur to take ridesharing. A larger A will enable more trips
to be matched by a ridesharing service, but will impose higher level of inconvenience

to customers, which may hinder adoption.

Lastly, we define the spatial resolution for which ridesharing trips can be matched.
Because Census tracts are the size of a few city blocks in downtown Boston, it is
too restrictive of an assumption to only match trips beginning and ending in the
same Census tracts. Accordingly, we match potential ridesharing trips based on the
study area communities. Figure 5-1a illustrates the probability distribution function
of community area, with a median of 15.0 miles? and a mean of 16.2 miles? (by
comparison, for a circle, this implies a radius of 2.27 miles). Figure 5-1b illustrates
the spatial distribution of community areas, with the majority of those in the urban
core having areas less than 10 miles?, while communities with the greatest area lie on
the southern border of the study area.

It should be noted that when we refer to ridesharing we explicitly mean end-
to-end ridesharing®. However, by using spatial resolution of communities we also

implicitly capture en-route ridesharing” trips with the origins and destinations of

Swww.bridj.com

6ride-sharing between users with similar origins and destinations
"ride-sharing between users sharing portions of their paths between dissimilar origins and/or
destinations, such that additional passengers can be picked up en-route
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Figure 5-1: (a) Probability distribution of community areas in miles? and (b) Spatial distri-
bution of community areas, with area increasing from light to dark shades of green.

matched ridesharers falling within the same communities. As reported in [5] and
Section 2.4.3, another benefit of using a larger spatial resolution is that the correlation
between CDR and survey trips increases by reducing the noise and/or spatial error

present in the tract pair trips.

Finally, we estimate the number of vehicles V7;(h) needed to satisfy trips 77, (h)
by first mapping tract pair trips to community pairs, T;;(h) — T7;(h). Next, driver
adopters fps(h) per A are calculated using the driver adoption rate ay and share
of drivers d;; as shown in Equation 5.2. Similarly, non-driver adopters fo ;;(h) per
A are calculated using the non-driver adoption rate a, and share of non-drivers oy,
as shown in Equation 5.3. Potential ridesharers f;;(h) per A are simply the sum of

driver and non-driver adopters (Equation 5.4).

Ip,05(h) = Ti5(h) * ag x dry * A/60 (5.2)
fors(h) =Tis(h) * ao* 01 x A/60 (5.3)
fra(h) = fp1s(h) + fors(h) (5.4)
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In practice, however, a ridesharing system may not be able to capture all of
these willing adopters f;;(h). Given the number of adopters traveling between two
communties within a time step §, we will reject adopters if: (i) there are less than
s travelers, or (ii) there is a residual in the division of the number of trips by s.
Accordingly, we can measure the efficiency e;;(h), or percentage of potential demand

that can be realized, of the rideshare system:.

We refer to ridesharers that are unable to be matched in a rideshare vehicle as
rejected ridesharers r7;(h). Further, we assume that these rejected ridesharers will
instead take their "original" mode, meaning that driver adopters who are rejected
will drive just as they would if ridesharing were not available. Accordingly, single-
occupancy vehicles carrying driver adopters who are rejected vx r;(h) are accounted

for in the calculation of total vehicles in subsequent steps.

Under this framework, rejected ridesharers r;;(h) are calculated as the remainder
of the potential ridesharers f;,(h) per A divided by group size s (Equation 5.5). By
extension, matched ridesharers m;;(h) are calculated as the difference between the
potential é,nd rejected ridesharers (Equation 5.6), and the efficiency of ridesharing
ers(h) can be computed as the ratio of matched to potential ridesharers (Equation

5.7).

T[J(h) = f[J(h) mod s * 60/A (55)
m”(h) = f[J(h) * GO/A - T‘[J(h) (56)
e[J(h) =m1J(h)/f]J(h) *A/GO (57)

The total number of vehicles traveling between two communities in a given hour
Vis(h) is the sum of all types of vehicles, namely: rideshare vehicles (vw,rs(h)),
un-matched drivers (vx ;;(h)), drivers not adopting (vy,;s(h)), and carpool vehicles
(vzr1s(h)), as shown in Equation 5.8. Since vehicles carrying matched ridesharers
have a vehicle occupancy of s, the number of rideshare vehicles vy r;(h) is simply

the number of matched ridesharers m;;(h) divided by group size s (Equation 5.9).

91



Single-occupancy vehicles carry rejected driver adopters vx ;;(h), equal to the ratio
of driver adopters to total potential ridesharers fp ;;/f1;(h) multiplied by rejected
ridesharers (Equation 5.10), as well as by drivers who did not adopt vy r;(h) (Equa-
tion 5.11). Lastly, carpool vehicles vy ;;(h) are computed using the average vehicle
occupancy of carpool vehicles in the study area (in Boston, p = 2.18), as shown in

Equation 5.12.

Vis(h) = vw1s(h) +vx,15(h) + vy,15(h) +vz15(h) (5.8)
vw,1s(h) = mys(h)/s (5.9)
vx,15(h) =r15(h) * fp,15/ f15(h) (5.10)
vy1s(h) = Try(R) * dpy % (1 — ag) (5.11)
vz,15(h) = Tri(h) * crs/p (5.12)

5.4.4 Traffic Assignment

By simulating traffic under various rideshare adoption scenarios, we assess the im-
pact of ridesharing on urban travel conditions. To allocate vehicle trips to the road
network we perform traffic assignment, the final step of traditional four-step travel
demand models used for transportation planning. Using Incremental Traffic Assign-
ment (ITA), as described in Chapter 3 and implemented in Chapter 5, we distribute
trips to the roadway network |[3].

In ITA, a fraction of total OD trips are routed via shortest path (minimizing
travel time), then road segment travel times are updated to reflect congestion, and the
process is repeated until all OD trips are assigned. This procedure therefore enables
us to capture the relationship between vehicle low and travel time under congested
conditions. For example, when a road segment’s volume-over-capacity ratio V/C (i.e.
the ratio between the number of cars using a road and its maximum flow capacity)
is small, drivers can easily travel at free-flow speeds. As roads become congested

and V/C increases, however, the speed at which drivers can travel decreases. This
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relationship is often captured by the Bureau of Public Road’s (BPR) volume delay
function described by Equation 5.13. As in Chapter 3, we select a value of 0.85 for
the o parameter (the default is 0.15) and keep the default value of 4 for 3.

tcurrent = tfreeflow : (1 + a(V/C)ﬁ) (513)

Accordingly, we use the ITA procedure to route four batches of vehicle trips in
40%, 30%, 20%, and 10% increments, and update road segment travel times between

each batch using Equation 5.13.

5.5 Results

5.5.1 Change in Vehicles

The efficiency of rideshare matching in different areas and hours of the day varies
widely depending on the magnitude of trips, mode share breakdowns, and adoption
rates. However, identifying aggregate trends across all hours of the day and OD
pairs enables us to draw conclusions that may help us understand the impacts of
ridesharing in other cities with different travel patterns and behavior. With this in
mind, we estimate a model to capture aggregate daily impacts of ridesharing on the
number of network-wide vehicle trips.

To help define the functional form of this model, we first analytically derive the
percent change in vehicles AVr;(h) for a given OD pair and hour relative to the
baseline scenario with no rideshare adoption. Specifically, the percentage change in
vehicles is derived using Equations 5.8 through 5.12, with the numerator equal to the
total vehicles under ridesharing (V;;(h)) minus the sum of the baseline drive-alone
vehicles (Vy1;(h) for a; = 0) and carpool vehicles (Vz;(h)), and the denominator
equal to the sum of the baseline drive-alone vehicles (Vy.;;(h) for az = 0) and carpool

vehicles (Vz;;(h)). This simplifies to the formulation shown in Equation 5.14.

AV[J(h) =B[J(h)*[(8_1)*ad*d[J—ao*0[J] (514)
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e[J(h)
—s* (dry+cr1/p)

where, 3;;(h) =

In other words, Equation 5.14 shows that the change in vehicles for a given hour
and OD pair is proportional to the difference between the number of driver and non-
driver adopters of the ridesharing service, and a parameter S;;(h). Sr;(h) describes
the relationship between the efficiency of the rideshare system e;;(h) (as defined in
Equation 5.7) and the share of vehicle trips given no rideshare adoption. Accordingly,
Brs(h) will be larger for OD pairs and time periods with higher rideshare matching
efficiency and higher shares of non-driving trips, and result in a greater change in
vehicles due to ridesharing.

While we can use Equation 5.14 to calculate the change in vehicles for a given
OD pair and time period, we next generalize this relationship (for s = 2) to model
aggregate results in any city using the model described by Equation 5.15. With the
change in vehicles calculated in Boston for all hours and OD pairs, we empirically
estimate 5 = —0.5922, minimizing the mean squared error between the data and
model predictions. Equation 5.16 describes this model, such that the total change in
vehicles AV can be calculated for adoptation rates a, and ag4, given 8 = —0.5922,

and aggregate Boston mode shares of d = 0.7003 and o = 0.0846.

AV =B x(agxd — a, *0) (5.15)
AV & —0.5922  (ag * 0.7003 — a, * 0.0846) + 0.0175 (5.16)

Note that the model in Equation 5.16 also includes an intercept parameter, which
increases the estimated percentage change in vehicles by 1.75%, providing a better fit
of the Boston data. At the extremes, the model suggests a 43% decrease in vehicles
for 100% driver adoption and 0% non-driver adoption, and a 14% increase in vehicles
for 0% driver adoption and 100% non-driver adoption in Boston (as compared with
-40% and +13% change in vehicles from the data, respectively).

Moreover, 8 = —0.5922 captures the inefficiency of the ridesharing system in
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Boston. Generalized from S;;(h) in Equation 5.14, the 3 parameter in Equation
5.15 is described by Equation 5.17. Assuming perfectly efficient (e = 1) rideshare
matching in Boston, it follows that 5. ~ —0.6765, as shown in Equation 5.18. As
expected, f = —0.5922 is smaller in magnitude than 5. = —0.6765, equating to an

average efficiency e of approximately 88%.

€
—2 % (d+¢/p)
1
= —2%(0.7003 + 0.0846/2.18)

8= (5.17)

8, ~ —0.6765 (5.18)

Figure 5-2 shows the total percent change in vehicles §V (relative to a4, a, = 0)
across all OD pairs and hours of the day under these adoption rate scenarios on the
y-axis versus the ratio of driver to non-driver adoption rates (ag/a,) on the x-axis.
As illustrated by the dashed lines, the model approximates the data points very well.
As shown in the right side of the figure, when the number of ridesharing adopters
from drivers is greater than from non-drivers (aq * d/a, * 0 > 1), there is a reduction
in vehicles (V' < 0). Given the average mode shares of drivers (d = 70.0%) and
non-drivers (0 = 21.5%) in Boston, this relationship results in an overall reduction in
vehicles for a, < 3.26 * ag4, as illustrated by the point on the x-axis at which the data

crosses the 0V = 0 in the left side of the figure.

The relationship between ag4, a,, and 6V is further illustrated by Figure 5-3, with
0V as estimated by the model and calculated from the data shown in Figure 5-3a
and Figure 5-3b, respectively. White cells have no change in vehicles (§V = 0), and
the black line with a slope equal to 3.26 is a contour line approximately representing
scenarios with no change in vehicles from the model. Figure 5-3c illustrates the
percentage of ridesharers that diverted from non-driving modes for each combination
of driver and non-driver adoption rates. Here, white cells illustrate scenarios where

ridesharers diverted from driving and non-driving modes equally.
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Figure 5-2: Percent change in total vehicles 8V relative to the ratio of driver and non-driver
adoption rates ag/a,. 8V is proportional to the difference between driver and non-driver
rideshare trip shares (ag * d — a, * 0), as described by the model: §V = —0.5922 x (aq *
d — a, * 0) + 0.0175. In other words, there is a reduction in vehicles (6V < 0) when the
number of ridesharers diverted from drivers is greater than those diverted from non-drivers
(aqg * d > a, * 0). Given the average mode shares of drivers (d = 70.0%) and non-drivers
(fo = 21.5%) in Boston, this relationship results in an overall reduction in vehicles for
a, < 3.26 * ag, as illustrated by the data and model.
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Figure 5-3: (a) Percent change in total vehicles 6V relative to the ratio of driver az and non-
driver adoption rates a, as estimated by the model 6V = —0.5922 % (d* aqg — 0 * a,) +0.0175.
(b) Percent change in total vehicles 6V relative to the ratio of driver ag and non-driver a,
adoption rates from the data. (c) Percentage of ridesharers that diverted from non-driving
modes (0 x a,)/(d * ag + 0* a,) relative to the ratio of driver ag and non-driver a, adoption
rates from the data. The black line on each plot is described by a, = 3.26 a4, approximately
representing 6V = 0.
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aq (%) a, (%) Vehicles (%) VMT (%) VHT (%) Congested TT (%)

0 50 5.99 1.83 3.02 7.16
10 10 -1.83 -0.85 -1.43 -2.98
50 0 -19.17 -11.57 -17.55 -37.30

Table 5.1: Percent change in vehicles, vehicle miles traveled (VMT), vehicle hours traveled
(VHT), and congested travel time (TT) relative to drive-alone/taxi and other non-auto
adoption rates ag,a, = 0. Results are for peak hourly evening (3-7pm) trips, s = 2, and
A=6.

5.5.2 Change in Traffic

Next, we simulate traffic patterns to assess the network-wide impacts of ridesharing
in the peak weekday evening hour for a few adoption scenarios. Table 5.1 summarizes
the resulting percent change in vehicles, vehicle miles traveled (VMT), vehicle hours
traveled (VHT), and congested travel time (minutes spent in non-free flow driving
conditions). Again, the actual percent change in vehicles for the three adoption
scenarios shown in Table 5.1 (5.99%, -1.83%, and -19.17%) are similar to those we
can estimate using the model in Equation 5.16 (4.26%, -1.90%, and -18.99%).

We see a smaller change in total VMT than total vehicles, suggesting that rideshar-
ing is more efficient in shorter distance, urban markets. Meanwhile, the percent
changes in VHT are more significant than for VMT, suggesting that the increase in
rideshare efficiency in these markets is somewhat counteracted by the fact that they
experience more congestion than longer distance markets.

Lastly, the percent changes in congested travel times reflect the relationship be-
tween road segment volume and travel time as captured by the BPR function; changes
in vehicle demand have an exponential impact on travel times under congested con-
ditions. This trend is demonstrated in the third adoption scenario, with a decrease in
congested travel time (37%) nearly double the decrease in vehicles (19%). The change
in congested travel time for this third adoption scenario is equivalent to reducing the
percentage of travel time spent in congestion from 17% to 13% for an average vehicle.

In general, these trends suggest that under moderate to high levels of rideshare
adoption, ridesharing services would have a noticeable impact on urban traffic condi-

tions.
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5.6 Conclusions

This research explores the extent to which ridesharing services impact network-wide
congestion using mobile phone records. To-date, other research efforts have used
partial travel demand (i.e. of taxi or commuting trips) to estimate the proportion
of trips that can be pooled for ridesharing under explicitly-defined spatio-temporal
constraints. In contrast, we estimate aggregate, total daily travel patterns using Call
Detail Records (CDRs) and explore different scenarios of adoption rates to estimate

ridesharing demand.

Further, we assess the impact of relative levels of rideshare adoption from auto
and non-auto travelers on vehicle usage and traffic congestion. When the number
of ridesharing adopters from drivers is greater than from non-drivers, there will be
a reduction in total vehicles, and vice versa. In Boston, given the aggregate mode
shares of drivers and non-drivers, this translates into a reduction in vehicles when the

non-driver adoption rate is less than about three times the driver adoption rate.

However, the magnitude of the change in vehicles varies spatially and temporally,
depending on the distribution of trips and mode shares. This stems from the fact that
a ridesharing service will not be able to match all potential trips with one another,
resulting in a system that cannot operate at perfect efficiency. In this work, we
assume that any customer who cannot be matched will be turned away, representing
uncaptured rideshare demand. Using data for Boston, we estimate a parameter to
capture the average efficiency of the rideshare service across all OD pairs and hours,
enabling us to define a model to estimate the total change in vehicles given auto
and non-auto rideshare adoption rates and aggregate mode shares. Future research
should explore this relationship in other cities with different demand and travel mode

distributions.

Lastly, by simulating traffic for several rideshare adoption scenarios, we evaluate
the impact of ridesharing on cumulative vehicle travel time and distance. We find
that under moderate to high adoption rate scenarios, ridesharing would likely have

noticeable impacts on congested travel times, indicating the importance of incorpo-
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rating traffic simulation into ridesharing studies. Future work could explore variable
adoption rates dependent on trip attributes, such as distance or time of day, as well

as socioeconomic characteristics of travelers or trip origins.
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Chapter 6

Conclusion

Today, vast amounts of data are generated and collected unobtrusively from mobile
phones around the world. Moreover, advances in computing speed and storage ca-
pabilities have dramatically decreased the cost of storing and analyzing data. This
environment has opened the door for transformative shifts in the way we model travel
behavior.

For transportation applications, travel demand modeling has historically relied on
travel surveys for development, calibration, and validation. Although sophisticated,
these models have been limited by the scope, scale, and quality of infrequent, expen-
sive household travel surveys. Mobile phone data, on the other hand, doesn’t have
detailed information about respondents and their travel decisions, but captures or-
ders of magnitude larger sample sizes and can be collected in quickly and cheaply. In
conjunction, these two data sources could fundamentally improve our understanding
of human mobility.

But to leverage mobile phone data for travel demand estimation, an interdisci-
plinary approach that brings data mining, computing, and statistical methods to-
gether with the transportation community’s expertise in transportation system dy-
namics is necessary. Incorporating big data resources into transportation modeling
frameworks, and developing new methods and tools altogether, was precisely the goal
of this research.

Although researchers from the urban computing community have developed meth-
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ods to extract mobility patterns from mobile phone data, we did so here with trans-
portation planning applications and existing limitations specifically in mind. Further,
we presented a comprehensive set of algorithms to transform raw mobile phone data
into origin-destination trips and finally road usage, with these methods validated
against survey data. We then presented a portable, efficient, and flexible software
platform that implements these methods such that they can be quickly and easily
applied to any city. Lastly, we demonstrated an application of mobile phone data
utilizing and adapting these methods to evaluate ridesharing.

We showed that using mobile phone data, we could extract origin-destination
trips by purpose and time of day—key market segments analyzed by transportation
modelers—comparable to information reported in local surveys. Furthermore, our
methods of estimating vehicle trips and assigning these vehicles to road segments
produced origin-destination travel times, as well as road segment volumes and con-
gestion levels similar to surveys. While these results show great progress in making
big data useful for transportation engineering, there are still limitations inherent in
this data and our models. Specifically, we highlight three areas that are ripe for

further study.

1. We have shown the level of aggregation applied to OD matrices can affect the
correlation observed between model outputs. This is a standard manifestation of
the modifiable area unit problem and a more detailed exploration may indicate
which levels of analyses were better suited for different data sources. Moreover,
a more detailed analysis of uncertainty in model estimates may make it easier

to assess their correlation and validity.

2. Our traffic assignment algorithm is efficient, but simple. In the future, a stochas-
tic dynamic user equilibrium assignment methods should be explored and com-
pared. Moreover, route choice modeling may be significantly improved by the
availability of high resolution GPS trajectories of drivers. We believe our sys-

tem’s modular design makes it easy to incorporate these new models.

3. Our mode choice model remains simple and will likely require more sophisti-
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cation for modeling trips not taken in private vehicles. This, combined with
improvements in route choice, may make it possible to estimate multi-modal
trip demand, as public transportation, bike lanes, and even water transporta-

tion networks are included in OpenStreetMap data.

We hope future work will address these limitations and improve on the methods
presented here. Furthermore, as more data becomes available in the form of calls,
GPS traces, or real-time traffic monitoring systems, there is room for our methods to
be improved by incorporating these new data sources. In particular, combining these
other data sources with mobile phone data will capture a more complete picture of
human mobility. Lastly, this data enables real-time or near real-time transportation
demand management applications, but much research is needed to adapt available

methods to handle real time data feeds and processing requirements.
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Appendix A

Algorithms
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ALGORITHM A.1: Parsing OpenStreetMap Networks

1: {OSM files are XML based and contain way and node objects}
2: ways = set of ways in an OSM file

3: nodes = set of nodes in an OSM file

4: graph = an empty graph

5:

6: {Add each pair of consecutive nodes to the edge list}

7. for way in ways do

8: for i = 0 to ¢ = way.nodes.size() — 2 do

9: graph.addNode(way.nodes|i])
10: graph.addNode(way.nodes[i + 1])
11: graph.addEdge(way.nodes[i], way.nodes[i + 1])
12:
13: {Simplify the network by merging road segments }
14: for way in ways do

15: startNode = way.nodes|0]

16: for node in way.nodes do

17: if all edges into and out of node are segments of the same way then
18: graph.removeN ode(node)

19: remove all edges to or from node
20: else
21: endNode = node
22: graph.addEdge(startNode, end N ode)
23: FillEdge Attributes()
24: startNode = end Node
25:
26: {Notes}
27: *Fill Edge Attributes() fills in missing data such as speed limits or number of lanes

based on way attributes

28: *graph.addNode(node) and graph.addEdge(nodel,node2) only add objects if
they do not already exist '

29: *graph.removeNode(node) also removes all edges containing that node

30: *when simplifying the network, proper geographic lengths are kept even when
nodes are deleted
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ALGORITHM A.2: Stay Point Algorithm - Step 1 - Initialize

et
- O

oy
[\

o
o

{Each user object has a number of attributes}

call = a call object with an associated latitude, longitude, stay index
calls = vector of a user’s calls ordered by timestamp

candidateSet = empty set of consecutive calls that meet criteria for a stay
candidateStays = a vector of centroids from candidate sets

d = distance threshold between consecutive calls (in meters)

7 = time threshold between entry into and exit from the stay (in seconds)
ds = a grid size for the agglomerative clustering algorithm (in meters)
stayCalls = an empty vector of calls from stay points

{Notes}

*Centroid(callSet) returns an object whose latitude and longitude are the cen-
troid of all points in the input

. *Distance BetweenCalls(calll, call2) returns the geographic distance between

calls in meters

: *TimeBetweenCalls(calll, call2) returns the time between call in seconds

ALGORITHM A.3: Stay Point Algorithm - Step 2 - Candidate Stays

1:
2:
3:
4:

10:
11:
12:

13:
14:

{For each user, loop through all calls and find candidate stays}
candidateIndex = 0
candidateSet = {}
for i =0 to i = calls.size() —2 do
if DistanceBetweenCalls(calls[i], calls[i + 1]) < 6 then
candidateSet.append(calls[i + 1])
else
if TimeBetweenCalls(candidateSet|0], candidateSet[end]) > 7 then
for call in candidateSet do
call.stayIndex = candidateIndex

candidateStay = Centroid(candidateSet)
candidateStays.append(candidateStay)

candidateSet = {calls[i]}
candidateIndex = candidateIndex + 1
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ALGORITHM A.4: Stay Point Algorithm - Step 3 - Agglomerative Clustering

1: grid = construct a uniform grid that covers all of a user’s calls with cell dimensions
ds x ds
stayIndexr = 0
for grid cells containing a candidateStay do
candidateStays = {listofcandidateStayincell}
stay = Centroid(candidateStays)
for call made from a candidateStay in this cell do
call.longitude = stay.longitude
call.latitude = stay.latitude
call.stayIndex = stayIndex
stayCalls.append(call)

— =
= O

staylIndex = stayIndex + 1

ALGORITHM A.5: Stay Point Algorithm - Step 4 - Final Pass

1: {Final pass to add any remaining calls to the stay}
2: for i =0 to i = calls.size() do
3: if call not part of a stay and DistanceBetweenCalls(call, stay) < ¢ for any
stay then
call.longitude = stay.longitude
call.latitude = stay.latitude
call.stayIndex = stayIndex
stayCalls.append(call)

: Sort stayClalls by timestamp

W P NPT
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ALGORITHM A.6: OD Creation Algorithm - Step 1 - Home / Work Expansion

10:
11:
12:
13:
14:
15:
16:

17

18:

{Data objects}
tracts = census tract data objects containing demographic variables
OD(o,d, p,t) = 0 for origin o, destination d, purpose p, and period ¢

{Detect home and work for all users and compute expansion factors}
for user in users do
user.stays = vector of calls at stay points sorted by time
user.home = index of stay point visited the most between 8pm and 7am on
weekdays
user.work = index of non-home stay point visited the most between 7am and
8pm on weekdays
if user visits work less than once per week then
user.work = null
for stay in user.stays do
stay.label assigned as home, work, or other

user.weekdays = number of weekdays a user records a stay
user.workdays = number of weekdays a user records a stay at work
tract[user.home].numU sers = tract[user.home].numUsers + 1

: for tract in tracts do
tract.expansionFactor = tract.population/tract.numU sers

ALGORITHM A.7: OD Creation Algorithm - Step 2 - Trip Counting

1
2

3
4
5:
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

: {Count and expand trips}
: for user in users do
trips — empty vector to store trips taken by a user
for i =1 to i = user.stays.size() do
s0 = user.staysli — 1]
sl = user.staysi]
if s0 == S1 then
continue
if s0 and sl are on the same effective day then
trip = new trip from s0 to sl
trip.purpose = PurposeFromLabels(s0, s1)
trip.workday = true if workday for user, false otherwise
trip.departure = GetConditional DepartureT'ime(s0, s1)
trips.append(trip)
elses0 and sl are not on the same effective day
morning = create trip from home to first recorded stay
night = create trip from last recorded stay to home
trips.append(morning)
trips.append(night)
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20:
21:
22:
23:
24:
25:
26:
27:
28:

29:
30:

31:
32:
33:

34:

for trip in trips do
o0 = trip.origin
d = trip.destination
p = trip.purpose
t = trip.departure
if trip.workday == true then
flow = tract[user.home].expansionFactor /user.workdays
else
flow = tract[user.home].expansionFactor [user.weekdays
OD(o,d,p,t) = OD(o,d,p,t) + flow
{Notes}

*PurposeFromLabels(s0, s1) returns a trip purpose (HBW, NHB, HBO) based
on the label of origin and destination stays

*GetConditional DepartureTime(s0, s1) returns a departure time based on the
observation times at origin and destination

*an effective day is defined as a period between 3am today until 3am on the next
consecutive morning

ALGORITHM A .8: Incremental Traffic Assignment

graph = road network
OD(p,t) = origin-destination matrix for purpose p and time window ¢
B = a bipartite network containing roads and census tracts
incrSize = vector of increment sizes, e.g. [0.4, 0.3, 0.2, 0.1]
nBatches = number of threads to use
for i = 0 to i < incrSize.size() do
for b =0 to b < nBatches do
create new thread
batch = GetBatch(OD,b)
for all o, d pairs in batch do
flow = ODlJo, d].flow - incrSizeli]
route = A*(o,d, graph)
for all segment s in route do
s.flow = s.flow + flow
Be so = Bs o + flow
wait for all threads to finish
for segment s in graph do

s.cost < s.freeFlowTime - (1 + o 22ume )5)

s.capacity

* GetBatch(OD, B) returns only the subset of OD pairs pertaining to a batch
* A*(o,d, graph) returns the shortest path between o and d if a path exists
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