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Modeling Human Dynamics and Lifestyles using Digital Traces

by

Sharon Xu

Submitted to the Sloan School of Management
on May 17, 2018 in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract

In this thesis, we present algorithms to model and identify shared patterns in human activity with respect
to three applications.

First, we propose a novel model to characterize the bursty dynamics found in human activity. This
model couples excitation from past events with weekly periodicity and circadian rhythms, giving the
first descriptive understanding of mechanisms underlying human behavior. The proposed model infers
directly from event sequences both the transition rates between tasks as well as nonhomogeneous rates
depending on daily and weekly cycles. We focus on credit card transactions to test the model, and find
it performs well in prediction and is a good statistical fit for individuals.

Second, using credit card transactions, we identify lifestyles in urban regions and add temporal context
to behavioral patterns. We find that these lifestyles not only correspond to demographics, but also have
a clear signal with one's social network.

Third, we analyze household load profiles for segmentation based on energy consumption, focusing
on capturing peak times and overall magnitude of consumption. We propose novel metrics to measure
the representative accuracy of centroids, and propose a method that outperforms standard and state of
the art baselines with respect to these metrics. In addition, we show that this method is able to separate
consumers well based on their solar PV and storage needs, thus helping consumers understand their
needs and assisting utilities in making good recommendations.

Thesis Supervisor: Marta C. Gonzilez
Visiting Associate Professor of Civil and Environmental Engineering
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Introduction

Within the last decade, the digital age has sharply redefined the way we study human behavior. With

the advancement of data storage and sensing technologies, electronic records now encompass a diverse

spectrum of human activity, ranging from location data [65, 30], phone [36, 4] and email communi-

cation [48] to Twitter activity [67] and open-source contributions on Wikipedia and OpenStreetMap

[76, 75].

In particular, the rising ubiquity of passively collected data allows for new opportunities to understand

the behavior of individuals on a granular time scale. In this thesis, we use passively collected data to

model human activity in three applications:

Shopping Activity. The shopping patterns of individuals have the potential to give deeper insight

into lifestyles and communities. The main work studying credit card records (CCRs) has centered

around measuring similarity in purchases through affinity algorithms [56, 64]. Recently they have also

been used to connect transaction types with metrics of social and mobile activity [19]. Through these

records, individuals have been found to have inherent regularity in shopping patterns [39], indicating

a promising avenue for models of shopping behavior.

Mobility. With regards to mobile computing, the pervasive use of cellular phones has generated a

wealth of data. Call detail records (CDRs) document the social activity and mobility of their users with

high temporal resolution, presenting new opportunities to understand human mobility [27], analyze

wealth [12], and model social network dynamics [5 1]. Regarding the analysis of CDR data, there exists

a wide body of work characterizing human mobility patterns. As a notable example, [27] describes the

temporal and spatial regularity of human trajectories, showing that each individual can be described by

a time independent travel distance and a high probability of returning to a small number of locations.

Further, the authors are able to model individual travel patterns using a single spatial probability distri-

bution.

Energy. Through the large-scale deployment of advanced metering infrastructure (AMI), companies

have access to high granularity smart meter data with detailed records of energy consumption in hourly

or sub-hourly intervals. Due to the scale of this smart meter data, it has the potential to offer significant

benefits in terms of power system operation, emissions reduction and monetary rewards for utilities

9



CHAPTER 1. INTRODUCTION

[23]. As such, categorizing households in terms of their consumption behavior is a problem of interest

to both companies and policymakers alike.

In this thesis, we focus on designing descriptive models and algorithms for such passively collected

data. Throughout applications in shopping, mobility, and energy, we propose interpretable algorithms

that can be used not only for prediction and recommendation, but also to understand the mechanisms

underlying how and why individuals generate this passive data.

1.1 Modeling the dynamics of human behavior

Human actions drive a range of complex social, urban, and economic systems, yet understanding the

patterns and dynamics ofhuman behavior is still an open question in modern-day science. As can be seen

from mobility traces, credit card transactions, and communications data, such behavior is inherently

non-Poissonian and tends to exhibit bursts of activity throughout time, or alternating periods of high

and low activity. As shown in Fig. 1.1), this leads to a power-law scaling on the inter-event time

distribution, or the distribution on the time between consecutive events.

Current research in this area tends to hypothesize that this burstiness is well described by a mechanism

ranging from task prioritization to circadian rhythms. It then proceeds to construct a model based on

that hypothesis and test for statistical goodness-of-fit. This class of models includes:

- Queuing process models of waiting times. Shown in Fig. 1.1, these models attribute burstiness

to the execution of tasks based on their priority, with some assuming finite memory [18, 7].

Known as priority list models, they describe the waiting time of a task, or the time period before

a task is executed. This depends on the cumulative time needed to perform all tasks before it, and

accordingly this model leads to heavy tails in the waiting time distribution [3, 70]. This has been

found to agree well with empirical observations [54].

- Memory-driven models that depend on past events. The main contributions of this type are

centered around a one-dimensional self-exciting process known as a Hawkes process. The mem-

oryless property of the Poisson process means that it is unable to capture a dependence on history;

however, we would like the event of an arrival to increase the probability of arrivals in the next

small interval of time. In this stochastic process, the memory kernel parametrizes the increase in

the arrival rate incurred by each event. [49] uses a kernel with exponential decay, while in [37] a

power law kernel is used to mimic a sequential memory loss mechanism. In Fig. 1.2, we can see

temporal clustering that results from this self-excitement.

- Poissonian models. [31] shows that a power law scaling on inter-event time distributions can be

achieved using Poissonian agents with varying rates. At the individual level, [48] argues that such

distinctly non-homogeneous event sequences are due solely to circadian rhythms, proposing a

non-homogeneous Poissonian model for cascades of Poissonian activity depending on hour and

day of week. This model is shown in Fig. 1.3. Extensions of this model uses a Markov process

10



CHAPTER 1. INTRODUCTION

with multiple states to modulate transitions between Poisson models with different rates, thus

reflecting periods of high and low activity seen in human communications [35, 58]. Although

these methods give a close approximation to observed data, it does so using a large set of param-

eters. The resulting method is not descriptive and gives no generative explanation for diversity

in human dynamics [38]. In addition, research [36, 84] shown that even after removing periodic

effects, signals remain bursty.

These are single-dimensional models; accordingly, they give no descriptive generative mechanism cap-

turing the actual transitions between different types of activity. In contrast, in Chapter 1 we propose

/a model, the multidimensional periodic Hawkes process, that couples the excitation structure between

human activity types with weekly cycles and circadian rhythms. This model explicitly characterizes

the priority and order of specific activity types, describing the varied dimensions of human behavior as

well as the interdependence between them.
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Figure 1.1: The difference between the activity patterns predicted by a Poisson process and the heavy-tailed
distributions observed in human dynamics. a, Succession of events predicted by a Poisson process, which assumes
that in any moment an event takes place with probability q. The horizontal axis denotes time, each vertical line
corresponding to an individual event. Note that the inter-event times are comparable to each other, long delays
being virtually absent. b, The absence of long delays is visible on the plot showing the delay times t for 1,000
consecutive events, the size of each vertical line corresponding to the gaps seen in a. c and e respectively show the
inter-event time distribution corresponding to a Poisson process and a priority list model. We see heavy tails in
the latter. e, The waiting time t of 1,000 consecutive events, where the mean event time was chosen to coincide
with the mean event time of the Poisson process shown in a-c. Note the large spikes in the plot, corresponding
to very long delay times. (Source: Adapted from [7] under Copyright (2005) Nature Publishing Group, United
Kingdom.)
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100 200 300 400 500

Figure 1.2: Comparison between a one-dimensional Poisson process and Hawkes process with exponential trig-
gering kernel. Note the clear "burstiness" or temporal clustering apparent in event sequence generated by the
Hawkes process, which are not present when using the Poisson process. Top figure shows the corresponding
intensity function of the Hawkes process. (Source: Adapted from [52] under Copyright (2017) Massachusetts
Institute of Technology, United States.)
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Figure 1.3: An example of a periodic and cascading stochastic process. A, Expected probability for starting an
active interval during a particular day of the week p. (t). B, Expected probability for starting an active interval
during a particular time of the day pd(t). C, The resulting activity rate A(t) for the non-homogeneous Poisson
process. Here the form A(t) = N,p,(t)pd(t) is assumed, where the proportionality constant N0 is the average
number of active intervals per week. D, A time series of events generated by the proprosed non-homogeneous
Poisson process. Each event in this time series initiates a cascade of additional events, called an active interval. E,
Schematic illustration of cascading activity with N additional emails sent according to a homogeneous Poisson
process with rate Aa. F, Observed time series. (Source: Adapted from [48] under Copyright (2008) National
Academy of Sciences, United States.)

12

2.0

1.5

-1.0

0.5

0.0

* 01 . 40 GOOD* Gas 40

me e .. * *
4

tO~

UW. I

0 4 ,

13.00 14.00

Hawkes. .. ese a s e



CH APTER 1. INTRODUCTION

1.2 Temporal lifestyles

Work at the intersection of different passive datasets includes the inference of friendships from call data

records [20], or the analysis of credit card records in relation to metrics on spending behavior such

as diversity, engagement, and loyalty [63]. Recent work [19] uses the Jaccard distance as a similarity

measure on motifs among spending categories, then applies community detection algorithms to find

communities of users that connect to social behavior and mobility.

In Chapter 2, we add temporal context to these communities, recovering definitive lifestyles in urban

regions, and revealing consistent relationships between one's social network, shopping behavior, demo-

graphics, and expenditure. We describe these lifestyles temporally using the multidimensional periodic

Hawkes process described in Chapter 1.

1.3 Dual view of lifestyles: perspectives from shopping and mobility

Coupled collaborative filtering methods, also known as collective matrix factorization methods, have

been successfully applied in a variety of urban computing applications for data fusion and prediction

[SO, 82, 81], from location-based activity recommendations [79, 78] to travel speed estimation on road

segments [61]. Recent work includes methods that use Laplacian regularization [14] to leverage social

network information, as well as others that use geometric deep learning methods for matrix completion

to model nonlinearities [13].

However, the only known paper that connects shopping and mobility behavior [32] frames its analysis

only on an aggregate scale of city regions. Using collective matrix factorization (CMF) [62] methods,

we relate the shopping and mobility patterns of consumers on an individual level for the first time. This

analysis is also presented in [74]. We use credit card records and call data records, adding context to call

records using points of interest (POIs). Our method results in an increase in prediction and recovers

interesting relationships between shopping and mobility.

1.4 Consumer segmentation using smart meter data

The widespread global deployment of smart meters offers a unique opportunity for utilities to under-

stand the energy use lifestyles and needs of their consumers. It also presents a new challenge: mining

these massive datasets and translating fine-grained consumption data into meaningful insights for pur-

poses of efficiency and interpretability.

Much of pre-existing literature on segmentation relies on self-reported information regarding attitudes

and behavior, approaching the problem from the perspective of marketing or psychology fields [60],

[66], [72]. Indeed, utility companies have been increasingly employing such psychographic segmenta-

tion strategies in the last decade [53]. However, actual energy usage data has been utilized much more

rarely [1], [22], despite its ability to eliminate the assumptions and bias from self-reporting.

13



CHAPTER 1. INTRODUCTION

In an academic context, a significant amount of work has been done in the area of load forecasting

and load profiling [21], [72], [57], [33]. Additionally, several recent works have made efforts toward

consumer segmentation; these studies have mainly focused on clustering consumers by the shape of

their load profiles. In [16], self-organizing maps were applied to the normalized load profiles for di-

mensionality reduction, and in [25], on the average load profile for each consumer. Both methods then

applied k-means to cluster the low-dimensional load shape representations. In lieu of incorporating

daily consumption into their clustering methodology, [25] attempts to account for consumption levels

by manually separating winter, summer, workday and weekday loads. Recently, [40] and [41] focus

on the shape of the normalized load profile as well, encoding daily time series by constructing a pre-

processed dictionary on standardized data.

Prior works have indicated many applications for consumer segmentation. [8] uses electricity to infer

socio-economic class, then suggests that utilities could use this information to target customers of a

certain socio-economic status without survey information. [40] and [26] note that segments would be

useful for designing customized tariffs. [29] focuses on producing ten robust clusters, such that there is

a high degree of certainty for the cluster to which each consumer belongs. Recommended applications

include distribution network planning, as well as the design of future trials so as to include represen-

tative customers. Despite the wide range of possible applications implied among these papers, no work

has explicitly demonstrated a segmentation strategy on such an application.

Thus, in Chapter 4 we present work from [73] on the segmentation of consumer lifestyles based on en-

ergy consumption data, proposing a structured methodology that considers both the shape of the daily

consumer load profile as well as its total energy consumption. We show that this distinction is critical

to target recommendations of solar photo-voltaics (PV) and batteries for each consumer segment.

14
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Modeling Bursty Human Dynamics

Bursts in activity characterize the dynamics of many natural and human-driven phenomena, from

earthquakes and neural impulses to social systems, technological advances, and economic markets. In

particular, the analysis of the "burstiness" of human behavior has been of great interest in the interdis-

ciplinary sciences, encompassing a wide range of studies in human mobility, email and phone com-

munications, purchase transactions, and other digital records. This burstiness, defined by alternating

periods of high and low activity, has been shown to be a fundamental property of human dynamics

[48, 70, 49, 37]. Previous literature focuses on characterizing the dynamics of a specific action of one

type. These one-dimensional models do not consider multiple types of activity, nor their mutual influ-

ence. In contrast to past work, the proposed model captures the patterns and interdependencies between

different activity types, lending insight into not only the temporal correlation between these types, but

also the order in which individuals tend to participate in each activity.

Corresponding to past work, we consider two fundamental mechanisms which generate these interde-

pendencies: rational decision-making, and periodicity:

Rational decision-making. Much of past work focuses on showing that task prioritization results

in the burstiness observed in human dynamics. [7, 54, 3, 70]. Similarly to [49], we hypothesize that

certain activities occur tend to excite each other, leading to short inter-event times, or the time be-

tween consecutive events. For example, a person running weekly errands will make many purchases in

a short time period, a taxi ride may frequently result in a restaurant transaction and department store

purchases, or regular payments for network, phone, and cable services may often be made together. In

communication networks, similar patterns have been uncovered [52]. A call from mother to son may

excite a call from son to father; an email from the manager may excite more communication between

team members. Capturing the structure of these excitation patterns gives important insight into the

priorities of individuals, extending current work, which only considers temporal behavior without the

context of different activities.

Periodicity. Past studies have shown that human behavior tends to follow daily and weekly cycles,

leading to heavy tails. Such patterns have been found throughout electronic records of activity ranging

from location data [65, 30], phone [36, 4] and email communication [48] to Twitter activity [67] and

16



CHAPTER 2. MODELING BURSTY HUMAN DYNAMICS

open-source contributions on Wikipedia and OpenStreetMap [76, 75]. A number of factors contribute

to this periodicity, including the day-night cycle, employment status, work schedules and commuting

patterns [46, 47], and the activity of one's social contacts [68].

2.1 Model

Here we propose a model which capture these fundamental mechanisms, describing both the order

and rate of transition between tasks, as well as fluctuations due to weekly cycles and circadian rhythms.

Unlike previous models, we not only show statistical fit for a hypothesized mechanism, but also interpret

human behavior with respect to that mechanism; that is, we actually quantify levels of periodicity and

the transitions between specific types of activity.

The proposed model is based on the Hawkes process, a stochastic process which captures self-exciting

behavior, allowing for temporal clustering or "burstiness" as opposed to the memoryless Poisson process.

These stochastic processes can be defined by their conditional intensity. Let Ht be the past history and

N(t) be the number of events up to and including time t. Then the conditional intensity function is

t imE[N(to + et) - N(to)|H(to)]A(to) = lim (2.1)

a E[N(t)|H(to)] (2.2)
at t=t

The conditional intensity is naturally understood as the infinitesimal arrival rate in the process N(.).

For a Hawkes process, this takes the form

A(t; p, 01Ht) = p + E f(t - ti; 6) (2.3)
i:ti<t

where y is the background intensity, 0 is the set of parameters, and f denotes the triggering kernel

which modulates excitation.

To capture the bursty and cyclical nature of human activity, we propose a periodic multidimensional

Hawkes process model (MPHP). This model learns directly from data both the periodic effects on hu-

man behavior as well as the interdependencies between activity types. Consider a sequence of events

{(t2 , vi)} , where the ith event occurs at time ti and is of event type vi. Consistent with our obser-

vations in Fig. 2.2, we relate the rate A,(t) for event type v at time t to both (1) excitation caused by

previous events (parametrized by matrix A = {aij }) and (2) weekly periodicity and circadian rhythms

(parametrized by 6 d(t) for the dth day of the week, and 6 h(t) for the hth hour):

Av(t) = PAd(t)Sh(t) + E av ,vg(ti - tj) (2.4)
i:ti<t

17



CHAPTER 2. MODELING BURSTY HUMAN DYNAMICS

where p, is the background intensity for event type v. The triggering kernel f(At; 0) is a function of A

which measures the effect of previous activity types on the type of the current activity. The triggering

function g controls the magnitude and decay rate for the influence of past events on future events. In

terms of periodicity, the model is flexible and can be easily modified (see Methods) to capture periodic

effects of arbitrary intervals of time (for example six hour intervals describing morning, afternoon,

evening and night), or solely whether the weekend has an effect. We adopt the commonly used scaled

exponential form for interpretability and tractability:

g(At; wi,W 2 ) = Wie-2(A) (2.5)

As such, our model not only captures bursty and self-exciting behavior, but also allows for direct in-

ference on the structure of influence between types of activity. We can see that the parameters on the

influence between activity types closely follow actual bursts in purchases. In contrast to past work on

human dynamics, we add context to human activity, offering simple, interpretable insights into hu-

man actions. We show that this context lends insights into lifestyles obtained by grouping individuals

according to their transaction similarity.

2.2 Methods

2.2.1 Parameter Estimation

Consider a sequence of events {r}-Y where each Ti = (ti, uj) corresponding to the time tj of the event

and the stream ui upon which it occurred. Under the framework of the proposed model, arbitrary

types of periodicity can be defined; however, for notational transparency we describe here a slight

simplification of the multidimensional periodic Hawkes Process in Eq. 2.4 with only daily periodicity.

Other types can be defined analagously.

For this stochastic process, the likelihood of a given sequence T = {r}, where G(t) = f g(s)ds, is

given by
N

L (A, p) = log (14 6di - E aSivjg(ti - tj))
tj<t

V 7 V N

-- T E E p y Evd avvjG(T - tj) (2.6)
v=1 d=1 v=1 j=1

Following [52], we adapt a novel maximum aposteriori expectation-maximization (MAP EM) algorithm

which avoids convergence problems with maximum likelihood. Furthermore, this algorithm allows for

regularization on the influence matrix and periodicity parameters.

Bayesian Expectation-Maximization

Following [52], we define the latent variables Q = [qij]:

18
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Excitation within 1 day 2.0 Hawkes Influence Matrix
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Figure 2.1: On the left, we see the average number of occurrences where a hypothesized "child" event occurred

within the same day of a "parent" event for two sample users. On the right is the Hawkes influence matrix. We

observe that this influence matrix corresponds closely to the transitions between activities in empirical data.

- qij = 1(event i is the parent of event j)

- qi = 1 (event i is a background event)

Also known as the branching matrix, Q gives rise to a natural interpretation of the branching structure

of a Hawkes process, as shown for credit card transactions in 2.3.

Now, given r = {(ti, vi)}, we maximize the log of the complete data posterior subject to constraints

on 6 d with respect to the set of parameters E= {p, A, J}:

log p(E)r, Q) oc log p(r, QIE) + log p(6) + 6 - 7 (2.7)

We place a Gamma prior on the scaling parameter for day of week, 6 = [5d], and influence matrix

entries A = [aij]. This reduces the effect of days of the week that have not been seen in the sequence,
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and regularizes a potentially large number of influence parameters:

Pd) = J Gamma(Sd; Xd, Yd) (2.8)

p(A) = J Gamma(aij; sij, tij) (2.9)
i~j

Incorporating these priors, Bayesian expectation-maximization (EM) algorithm then alternates between

finding the expected value of P = [pij] of Q in the expectation step (E-step), and maximizing the

posterior to with respect to e in the maximization step (M-step). Assume an integer number of weeks

is observed. Then the updates are as follows:

E-step.

Compute p(k+1) - E[Q I-r, W] as

(k+1) _ i (2.10)

-Li5~~ di xj=1 c47j,(ti - Wj
a()nt- f.--

23 ()6k + Z"i1 k)j (t. - tj) (.1

M-step.

Compute 6(k+1) - (k+1), A(k+1), 6k+1)), with G(t) = f g(s) ds, as

k+1) _(-k) (2.12)

(k)
(k+1) _ i:di=dPii Xd 21.13d - 1 (.31 Eji Pi Xd-1

(k ++ -1V
(k+1) _ :vi=v j:vj=v',J<iP + sv - 1(

i=1 - vj=v ',j<i G (T - tj) + tV( .

2.2.2 Simulation

We adapt the improvements of [52] for faster simulation. Namely, given the rates at the last event tk,

we can calculate A(t) for t > tk by

Av(t) = pvd + e-(--k )(avv'w - (Av(tk) - pv d)) (2.15)
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Algorithm 1: Simulation of event sequences from an MPHP

Input: p = {pv}, A = (aij), wi, W2, 6 {6}, horizon

Output: Sequence of event types {(ti, vi)}f_ 1

Simulate first event:

D* +- i=1(6d)
repeat

to ~ Exp(1/M)
do +- dayofweek(to)

U ~ Unif (0, 1)

until U < do
Ed=1 76d

VO 4-- V W.p. /p,/I*

A(to) +- pd

General procedure: k +- 0

Step 1

* +- max(6d) E,, max(d)Av(tk) + w Zv avvk

Step 2

t' +- tk + S, s ~ Exp(1/I*)

if t' > horizon

I return {(ti, vi)}

end

A(t') <- 6d'PI +e-w(t'-tk) (Avkw+ A(tk) -6dkP)

Step 3

U' - UW.p. IV/I*
d'- dk

if v' isv +1

I Reject
else

Attribute:

tk+1 -- t'
Vk+1 V

dk+1 -d'

A(tkw1 ) +- A(t')
k <- k + 1

Step 1
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2.3 Results

We test our model on six months of credit card data (individual credit card records, or CCRs) in Mexico

City, one of the most populated cities in Latin America. In this dataset, the activity types are Merchant

Category Codes (MCCs) or purchase categories. The granularity of time stamps are one day, and thus

we model periodicity depending on the day of week only. In Fig. 2.2, empirical patterns in credit card

transaction history show clear burstiness for two sample users.

To fit the model, we learn the parameters through a novel expectation-maximization algorithm (see

Grocery-* #
Network services
Misc. Food Stores

Fast Food
Household Appliances

Drug Stores

e e *
K>; 0 8

4 4 0 0
- C

100 120 140 150 180 200 220 240 260

Days

Totl e
Fax

ATM-
Misc. Food Stores
Network services

IN0 U20 140
Days

*

160 IN0 200

Figure 2.2: The transaction history for the shopping behavior of users indicates alternating periods of high and
low activity.

Methods) and choose w, and W2 to maximize the out-of-sample likelihood in cross-validation. We show

that this model outperforms standard baselines in prediction, and fits human behavior well as evidenced

by statistical testing. As shown in Fig. 2.3, the estimation of influence between activity types results in

the explicit explanation of the dependencies on past events.

se a o o w- aToll 0
Fax I

ATM
Misc. Food Stores
Network services

* i,
*s *

100 1d0 140 160 180 200

O Toll
0 Fax
E3 ATM *
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1 Network services - . - -+ -. -..- .-.---.-.-..

Figure 2.3: Branching process of the multidimensional periodic Hawkes model for a single user's credit card
transaction history. Each edge denotes a parent event exciting a child event. We see that toll fees tend to both
self-excite and excite purchases in other categories.
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2.3.1 Prediction

We compare the predictive performance ofthe multidimensional periodic Hawkes model with the mul-

tidimensional periodic Poisson process as a null model. Following [55], we also consider latent Dirichlet

allocation (LDA) [9], a generative statistical model commonly used in the context of natural language

processing. This is a widely used model that identifies shared patterns across users, but does not consider

the temporal dimension.

To evaluate the predictive power of our model, we consider a binary classification task: given all pur-

chases of a user until time t, will the user make a new purchase type i in the next time period, [t, t + e]?

For each user, t is a randomly chosen time within the last 10% user's history. We choose a small time

window ofe = 2 to measure each model's ability to capture self-exciting behavior in addition to general

patterns in activity. For almost all MCCs, an overwhelming majority of users will not make a purchase

of that type (90% - 97%). Due to the imbalanced nature of the data, we use precision and recall as

metrics to evaluate prediction performance.

Using a stochastic process, we can repeatedly generate a sequence of events in the time window [t, t + E]

and record the percent of sequences containing a purchase of the specified type. Let N be the total

number of events in the training data (all events within [0, t]) and T be the total time encompassed.

Similarly, for latent Dirichlet allocation (LDA), we repeatedly generate a sequence by drawing Ne/T

events using the generative process of LDA.

As we can see from Fig. 2.4, the multidimensional periodic Hawkes process (MPHP) outperforms both

the multidimensional periodic Poisson process (MPP) and LDA in predicting a range of event types.

This shows that the temporal component is necessary, and that more than periodicity is needed; indeed,

the self-exciting behavior captured by the MPHP model is more representative of human shopping

patterns.

ATM
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Figure 2.4: Precision-recall curve with a time window of e = 2. AP indicates the average precision among

all thresholds. The multidimensional periodic Hawkes process (MPHP) outperforms both the multidimensional

periodic Poisson process (MPP) and latent Dirichlet allocation (LDA).
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Figure 2.5: We simulate event sequences using the proposed model and the multidimensional Poisson process for
three users. We compare the cumulative distributions of inter-event times of each simulated sequence and the
empirical data. We see from the orange curves that empirical data shows heavy tails in the inter-event distribution,
which, in contrast to the Hawkes process, the Poisson process is not able to generate.

2.3.2 Monte Carlo Hypothesis Testing

For each user, we learn a multidimensional periodic Hawkes model and compare the model's predic-

tions with the empirical cumulative distribution of inter-event times (see Alg. 2). Due to the inherent

burstiness of human activity, we expect heavy tails in these distributions. The empirical distributions

of several shoppers in Fig. 2.5 illustrate how the proposed multidimensional periodic Hawkes process

better captures bursty inter-event time distributions than a multidimensional periodic Poisson process.

As the estimated parameters depend on the empirical data, we use Monte Carlo hypothesis testing to

assess the significance of the agreement for each of the 23,317 users. At the 5% significance level, our

model can only be rejected for 29.8% of users. For this minority, the probability of an a one day

inter-event time was comparable to that of a same day inter-event time, indicating that their excitation

function is not exponential decaying. This suggests that for these cases, a better fit may be achieved

with the substitution of a triggering kernel that does not start decaying until after one day. A nonpara-

metric triggering kernel [83, 6] could result in a closer fit for all users, but would result in losses in both

interpretability and scalability.

In comparison to the multidimensional periodic Hawkes model, a multidimensional periodic Poisson

model is rejected for 100% of users at the 5% significance level,. We see that the proposed model is

complex enough to capture a wide range of human behavior, while remaining simple enough to lend

insight into patterns within individual activity. Following [48], we assess statistical goodness of fit of a
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model using the area statistic, or the area between the cumulative distribution function, between the

empirical data and event sequences simulated from the model.

Algorithm 2: Monte Carlo hypothesis testing

Input: Data D

Output: p-value for rejection of MPHP as a model for D

M +- 0
while m < M

Learn stochastic process S1 from D

Simulate D1 from S1

A' <- Area between inter-event CDFs of (D, D1)

Learn stochastic process S2 from D1

Simulate D2 from S2

A' <- Area between inter-event CDFs of (D1, D2)

M <- m +
end
Compute t-statistic between groups {A'}g_ 1 and {A'}$_ 1.
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Temporal Lifestyles

3.1 Mining Shopping Patterns

Our spending habits reflect patterns in behavior, capturing an essential aspect of our lifestyles. Within

the computational social science community, the question remains whether pervasive trends exist among

different groups at urban scale. A recent paper [19] reveals lifestyles of urban regions through shopping

behaviors discovered by both latent Dirichlet allocation (LDA) and text compression methods. Here, we

extend these findings and characterize those lifestyles temporally, recovering new insights in not only

patterns of MCC sequences, but also the temporal transitions between them. Here, we extend these

findings, characterizing for each discovered lifestyle both periodic cycles and the temporal transition

between purchases. Additionally, we show that these shopping lifestyles have a strong connection with

both demographics and social contacts.

We first use LDA to identify behavioral patterns of co-occuring MCCs among individuals, representing

each individual's spending lifestyle as a finite mixture of an underlying set of behaviors. Each behavioral

pattern, in turn, is modeled as a mixture of a set of Merchant Category Codes (MCCs). In addition,

LDA regularizes the number of behaviors per individual, as well as the number of MCCs per behavioral

pattern. Thus each individual is represented by a small number of behaviors, and each behavior involves

making a small set of purchase categories with high frequency.

From Table 3.1, we see the highest weighted MCCs pertaining to each shopping behavior. We dis-

cover natural patterns in credit card usage, including behaviors related to dining (Behavior 8), vacation

and travel (Behavior 7), and regular technology service purchases (Behavior 3). In addition, we recover

outside errands of a related type (Behaviors 6, 9 and 10), and modes of transportation (Behaviors 1 and

2). As transportation is necessary across the population, we expect purchases in mainly one form of

transportation, and that this will be independent of other shopping habits. Accordingly, we see sep-

arated behaviors related solely to the mode of transport in Behavior 1 (Tolls) and Behavior 2 (Taxis).

To recover the temporal dimension of these shopping behaviors, we represent each behavior as a mix-

ture of the individual-level Hawkes models. This is done directly by taking the weighted average of

each user's parameters, where each individual's weight is determined by the proportion of that individ-
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Behavior Merchant Category Codes Proportion

1 Toll and Bridge Fees 94.4%
2 Taxicabs and Limousines 78.8%
3 Computer Software, General Merchandise, Direct Marketing, Cable 59.9 %
4 ATM, Insurance, Fax and Telecommunication, Business Services, Cable 74.3%
5 Computer Network Services, Fax and Telecommunication 78.5%
6 Grocery Stores, Department Stores, Drug Stores, Wholesale Clubs 59.1%
7 Airlines, Hotels, Specialty Retail, Travel Agencies, Family Clothing 37.0%
8 Eating places and Restaurants, Fast Food, Department Stores 65.9%
9 Misc. Food and Convenience Stores, ATM, Grocery Stores, Fast Food 82.5%
10 Gas Stations, Grocery Stores 60.6%

Table 3.1: The highest weighted MCCs for each shopping behavior in decreasing order of proportion (the prob-
ability of the MCC given the topic). All MCCs with proportion over 4% are shown for their respective topic.
Proportions on the right show the total proportion of the shopping behavior described by these MCCs.

ual's lifestyle described by the behavior. In Fig. 3.1 we depict the background intensities p, for a subset

of the highest weighted MCCs in each shopping behavior. As expected, these background intensities

correspond closely to the behaviors in Table 3.1, indicating that these temporal rates describe well the

purchasing patterns within each behavior.

For each shopping shopping behavior, we also examine the patterns of excitation between MCCs. Fig.

3.2 contains a subset of the Hawkes influence matrices for MCCs with the highest influence parameters

{ aij }. Despite the wide diversity in shopping behaviors, there is strong similarity in the MCCs that

tend to excite other purchases. These MCCs generally indicate that outside errands, such as purchases

in Grocery Stores (behavior 6), Department Stores (behavior 4), and Restaurants (behaviors 4, 7, and 8)
excite other purchases that involve purchases outside the home. Those that indicate leaving the house

(Tolls, Taxis, Gas/Service Stations in behavior 9) tend to excite other purchase types at an even higher

rate as seen in shopping behaviors 1, 3 and 10. From the diagonal elements of these matrices it is clear

that many purchase types strongly tend to self-excite, including transportation (Toll, Taxis), shopping

(Department Stores, Women's Clothing), and business transactions or scheduled transactions (Com-

puter Network Services, Fax).

For each shopping shopping behavior, Fig. 3.2 contains a subset of the Hawkes influence matrices for

MCCs with the highest influence parameters {aij}. From the diagonal elements of the Hakwes in-

fluence matrices, it is clear that many purchase types tend to self-excite. This includes transportation

(Toll, Taxis), shopping (Department Stores, Women's Clothing), and business transactions or sched-

uled transactions (Computer Network Services, Fax and Telecommunication). Despite the diversity in

shopping behaviors seen in Table 3.1 and Fig. 3.1, there is strong similarity in the MCCs that tend to

excite other purchases. As seen in shopping behaviors 1, 3 and 10, these MCCs indicate that outside

errands (Grocery, Department Stores, Restaurants), and transportation related purchases (Tolls, Taxis,

Gas/Service Stations) tend to excite other purchase types at an even higher rate. This corresponds with
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Figure 3.1: The background intensities for each shopping behavior learned from LDA. We show the set of MCCs
containing the fifteen highest rates for each behavior.

research in mobility; leaving the home results in a higher probability of additional outside stays [34].

3.2 Discovering Lifestyles

As each individual is a mixture of shopping behaviors, we use the Jensen-Shannon divergence [43] on

these probability distributions to calculate the similarity matrix between users. Using this matrix, we

construct a weighted graph between users and identify lifestyles using the Louvain community detec-

tion algorithm [11] for computational efficiency.

From Fig. 3.3 and Table 3.2, we see that our method reveals consistent relationships between demo-

graphics, expenditure, and shopping behavior. Altogether, we recover definitive lifestyles in urban

regions, behaviors connected across multiple aspects of activity. In Fig. 3.3, Lifestyle 1 characterizes

primarily older male users whose main spending (shown in Table 3.2) is composed of toll fees, followed
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Figure 3.2: Hawkes influence matrix for each of ten shopping behaviors. We see clear patterns of excitement
within these behaviors. 1, 2, 3, Purchases relating to modes of transportation (Tolls, Taxis, and Service Stations)
tend to result in fast transitions to a range of purchase in other categories. 4,6,9 We see similar results for errands
outside

by dining purchases. Given that 57% of Mexico City residents do not own a car, these users tend to have

a relatively high expenditure, as expected. We label this lifestyle Car Owners. The second lifestyle we

denote as Families and describes older, married individuals with higher spend, primarily on groceries.

In contrast, the younger group Tech Users mainly spend on technologies such as computer services, fax,

and cable, in addition to restaurant and fast food purchases. Within the younger population, we find

two additional groups without technology purchases: a lower expenditure group we label Low Income

Youth, with transactions mainly in grocery stores, convenience stores, and ATMS, and a higher expen-

diture group Higher Income Youth with frequent purchases in taxis and restaurants.
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Car Owners

Behavior Merchant Category Codes Proportion

1 Toll and Bridge Fees 52.9%
8 Eating places and Restaurants, Fast Food, Department Stores 5.2%
5 Computer Network Services, Fax and Telecommunication 3.6%

Families

Behavior Merchant Category Codes Proportion

6 Grocery Stores, Department Stores, Drug Stores, Wholesale Clubs 42.8%
8 Eating places and Restaurants, Fast Food, Department Stores 11.9%
10 Gas Stations, Grocery Stores 8.5%

Tech Users

Behavior Merchant Category Codes Proportion

3 Computer Software, General Merchandise, Direct Marketing, Cable 25.0%
8 Eating places and Restaurants, Fast Food, Department Stores 12.8%
5 Computer Network Services, Fax and Telecommunication 7.8%

Low Income Youth

Behavior Merchant Category Codes Proportion

9 Misc. Food and Convenience Stores, ATM, Grocery Stores, Fast Food 41.1%
10 Gas Stations, Grocery Stores 8.6%
6 Grocery Stores, Department Stores, Drug Stores, Wholesale Clubs 5.6%

Higher Income Youth

Behavior Merchant Category Codes Proportion

8 Eating places and Restaurants, Fast Food, Department Stores 42.5%
6 Grocery Stores, Department Stores, Drug Stores, Wholesale Clubs 8.1%
10 Gas Stations, Grocery Stores 7.5%

Table 3.2: The most highly represented shopping behaviors within lifestyles discovered by Louvain community
detection. From Fig. 3.3, we see that these communities have a decisive relationship with demographics and
expenditure.
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Figure 3.3: Lifestyles found by Louvain. Median values for all users are indicated by the gray lines.
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Figure 3.4: The scaling parameters for day of week by lifestyle.

Fig. 3.4 shows that weekly rhythms are constant across lifestyles in most respects. We see the highest

increase in purchases on Fridays, consistently with our expectation that people tend to dine out, shop

in addition to their normal working commute. As the first working day, Mondays also tend to lead

to an increase in purchases. In addition, we see that Car Owners and Tech Users, lifestyles that may be

more associated with working professionals, tend to make significantly fewer purchases on Sunday, just

before the working week begins.
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Method Vertices Edges Max Degree

unfiltered 1.5 x 106 2.0 x 106 14.6 x 103

5 calls 1.5 x 106 2.0 x 106 14.6 x 103

10 calls 7.9 x 105 9.9 x 105  5.4 x 102
mutual call 2.7 x 105  4.1 x 105  280

Table 3.3: Call network properties for different levels of filtering.

3.3 Shopping Lifestyles and Social Networks

Literature suggests that friends tend to be similar in terms of shopping and other aspects of their lifestyles

[45, 17, 68]. We test this hypothesis through the lens of community detection, quantifying the rela-

tionship between communities obtained from shopping behavior and communities discovered in actual

communications data.

We first construct a social network using call detail records. We consider the set S of 23,317 users

for which we have credit card records. An edge exists between two users, or vertices, if there is a call

between them. We then extract records of calls for all users with a path length of 2 or less between

users in set S, and construct a directed weighted network based on the number of calls. This results in

a network of about 3 million vertices. However, these vertices include companies, telemarketers, and

weak connections, as we can see from the maximum degree in Table 3.3. We use multiple methods to

filter out weak connections, including keeping only edges with at least 5 or 10 calls, or alternatively

employing the common practice [42] of considering only reciprocal, or mutual calls, where each user

has called the other at least once.

Given the large scale of this call network, computational efficiency is a key issue in applying com-

munity detection. The Louvain algorithm [1 1] is known to be scalable and produce communities of

high quality with respect to modularity [69, 11]. In contrast, Infomap [59] is less computationally ef-

ficient, but accounts for the directedness of the network through an information theoretic objective

function describing how well information obtained through communities can compress random walks.

We compare the results of these two algorithms on social networks obtained through various filtering

methods, and evaluate the strength of their relationship with the communities of shopping lifestyles

found previously. In addition, we construct a multiplex network as shown in Fig. 3.5, with the social

network as one layer, and the distributions of shopping behavior forming another. Specifically, since

each user is a mixture of shopping behaviors, we create a weighted edge from each user to the ten

previously discovered shopping behaviors, including edges only if the corresponding weight is greater

than a certain threshold (here 0.1).

We compare both the multiplex network and the single layer social networks with respect to their

normalized mutual information (NMI) evaluated on shopping lifestyles. NMI is a standard method to

evaluate similarity between communities [50], and here is scaled to range from 0 to 1, analagously to
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2

/4

Figure 3.5: Combining shopping lifestyles and call networks. We start with a social network, and add a weighted
edge from each user to the ten previously discovered shopping behaviors, including edges only if the correspond-
ing weight is greater than a certain threshold.

Method Filter Number of Clusters NMI

Infomap, combined mutual 6.7 x 10 4  0.41
Infomap 10 9.0 x 104  0.40
Infomap 5 1.2 x 105  0.40
Louvain 10 4.4 x 104  0.20
Louvain, combined mutual 2.3 x 103  0.12
Louvain 5 2.3 x 103  0.11

Table 3.4: Normalized mutual information (NMI) ofshopping and call network communities, where the left most
column describes methods applied to the call network. From the NMI we observe a clear relationship between
one's social network and shopping behavior.

the correlation measure. In Table 3.4, we see that Infomap achieves the highest NMI of 0.41 with the

multiplex network, though we also observe that different filtering methods make little difference with

respect to Infomap's ability to find meaningful communities. However, filtering methods do impact the

results obtained from the Louvain algorithm, with the filter for at least 10 calls achieving the best results.

We hypothesize that the success of the Infomap algorithm is due mainly to its ability to leverage the

directed nature of the network. We see also that many weak connections do not affect the algorithm

as much as Louvain, likely because random walks have low probability of crossing the corresponding

edges.

Thus, we further validate the urban lifestyles obtained using the social network of these individuals.

We observe a clear signal between these communities, and correspondingly, identify a significant re-

lationship between one's social network and one's demographics and shopping preferences.

3.4 Discussion

Our results clearly show that the excitation structure between events, when coupled with weekly cycles,

precisely characterizes bursty activity in human behavior. In addition to accurately describing heavy

tails in inter-event time distributions, the proposed model solidly outperforms baseline models in diffi-
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cult prediction tasks. Furthermore, the descriptiveness of the model easily lends itself to interpretation,

giving insight into the actual priority individuals place on tasks, and the order in which they tend to

execute them. Through this model, we add context to lifestyles found in urban regions, and describe

the temporal behavior of disparate groups. Due to its generality and flexibility, the multidimensional

periodic Hawkes process can describe a wide range of activity. The detailed generative mechanisms

derived from the proposed model have the potential to lend insight into the diverse aspects of not only

human dynamics, but also the dynamics of natural, technological and economic phenomena.

Furthermore, we show that the discovered lifestyles connect to both demographics and expenditure of

different groups. We use the social network of these individuals to further validate these lifestyles, ob-

serving a clear signal between communities found in communications data and those obtained through

the analysis of purchasing patterns. Correspondingly, we identify a significant relationship between

social contacts, demographics, and shopping preferences.

There are many possible avenues for future work. One direct extension of this work would be to include

the mobility information obtained from Call Detail Records in this analysis; that is, connecting how

people move to how they spend, as well as who they communicate with. Furthermore, we can study

the dynamics of opinion formation with respect to purchasing behavior and mobility. For example, we

can model the social network as a dynamical system using SI-type models, or alternatively study voter

models or evolutionary graph theory methods as possible models for opinion dynamics.
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In this chapter, we jointly model the lifestyles of individuals, a more challenging problem with higher

variability when compared to the aggregated behavior of city regions. Using collective matrix fac-

torization, we propose a unified dual view of lifestyles. Understanding these lifestyles will not only

inform commercial opportunities, but also help policymakers and nonprofit organizations understand

the characteristics and needs of the entire region, as well as of the individuals within that region. The ap-

plications of this range from targeted advertisements and promotions to the diffusion of digital financial

services among low-income groups.

4.1 Mining Shopping and Mobility Patterns

Location and transactional data offer valuable perspectives on the lifestyles of each user. For example,

we may expect the shopping purchases of middle-aged parents to include groceries and fuel, while their

mobility patterns may center around localities near home and work locations, in addition to points of

interest such as supermarket, laundry, and so on. We use mobility information to aid in the prediction

of shopping behavior, connecting the two views using collective matrix factorization [62]. In this way,

we discover representative patterns relating shopping and mobility, characterizing behavior for a richer

understanding into urban lifestyles and improved prediction of behavior.

The high granularity of such digital records allows modeling at the level of the individual, providing

a new framework in which to relate movement and spending. However, in using CDR data for data

on individuals, we must deal with issues of sparsity and lack of contextual information on the user's

activities. In proposing this dual view of lifestyles, our contributions can be summarised as follows:

Prediction of Shopping Behavior with Data Sparsity

There are many individuals for which we have no CDR data. To deal with this data sparsity issue, we

construct a framework that uses mobility patterns as supplementary information in the prediction of

shopping behavior. We connect the two perspectives on lifestyles using collective matrix factorization

(collective matrix factorization). In comparison to modeling only shopping behavior, we find that in-

corporating mobility information in the prediction of shopping lifestyles leads to a significant reduction
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in root mean square error (RMSE). This enables more precise recommendations for products based on

consumer preferences.

Adding Contextual Information to Location Data

We transform mobility data using external data sources to better relate CCR to CDR Data. Although

CCRs provide high granularity at the level of the individual user, spatial granularity can range from a

radius of 200 - 1000 meters, and there is no contextual information for the user's activities within that

region. Thus, there has been little previous work leveraging CCR data for prediction with CDR data.

Multi-Perspective Lifestyles

We describe the mappings between shopping and mobility patterns, connecting the two views to pro-

vide a novel understanding of consumer behavior in urban regions.

Figure 4.1: Our framework
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Data

The primary datasets used in this chapter consist of two sets of anonymised data for residents in Mexico

throughout five months in 2015:

- Call detail records (CDRs). CDRs are produced with each telephone exchange, These kocation

records give the nearest cellular tower at the time of a placed call. There are 1192 cell towers

throughout Mexico City - as users tend to visit a small subset of these towers, this mobility data

is extremely sparse. In a count matrix denoting user visits to towers, 98% of entries indicate zero

visits.

- Credit card records (CCRS). CCRs are recorded with each purchase and denote the purchase

category, or Merchant Category Code (MCC), of the transaction as well as the amount spent.

Each month, we have on the order of 10 million financial transactions and 200 million location

records.

4.2 Discovering Shopping Patterns

Our spending habits reflect our lifestyles, capturing an essential aspect of our behavior. Within the

computational social science community, the question remains whether pervasive trends exist among

disparate groups at urban scale [1.9]. In this chapter, we use latent Dirichlet allocation (LDA) [1.] to

identify topics (behavioral patterns) among individuals, representing each individual's spending lifestyle

as a finite mixture of an underlying set of behaviors. Each behavioral pattern, in turn, is modeled as

a mixture of a set of words (Merchant Category Codes, or MCCs). These topics are determined by

co-occurrences of words within a document. For example, in an article database, we may uncover a

topic containing the words "data", "processing", "computer", and so on because these words frequently

appear in an article together.

By putting a Dirichlet prior on the per-user behavior distribution and per-behavior MCC distribution,

LDA controls the sparsity of the number of topics per document (the number of behaviors per individ-

ual), as well as the number of words per topic (the number of MCCs per behavioral pattern). In this

way, each individual is represented by a small number of behaviors, and each behavior involves making

a small set of purchase categories with high frequency.

As a generative model, LDA allows us to calculate the probabilities (assignments to shopping behaviors)

of previously unseen users. We train the model on 40% of the users, and generate the matrix S for the

remaining 60%. In so doing, we set up the prediction of lifestyles for unseen users, assessing the LDA

model itself in addition to the relation of shopping with mobility patterns. We experiment with the

choice of number of behaviors to learn, as well as adding a categorical variable describing amount spent

to each MCC. To maximise interpretability, we choose five topics while using MCCs as input only.

In Fig. 2 we plot the twenty most highly weighted MCCs of the five shopping behaviors. The first
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shopping behavior describes credit card usage that is centered on food-related purchases such as Gro-

cery Stores, Misc. Food Stores and Restaurants. The second shopping behavior seems to be associated

primarily with business purchases, with spending within MCCs such as Fax Services and Financial Insti-

tutions. The third shopping behavior is dominated by relative "luxuries" such as purchases in the Cable

and Department Store categories, and is characterised by a relatively high proportion of Air Travel and

Hotel Lodging MCCs. The fourth shopping behavior contains primarily purchases in Computer Net-

work Services and Service Stations (gas stations). The third and fourth shopping behavior describe a

slightly wealthier portion of the population, as only 35% of Mexicans owned a computer in 2010 [71],

and only 44.2% own a car [28]. Lastly, the fifth shopping behavior captures purchase primarily for toll

fees and subscription services.
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it is the closest tower to any point within this cell. We define a "visit" to a cellular tower as a call placed

within its corresponding cell. In order to relate cellular towers to spending behavior, for each tower

we crawl Google's API for points of interest within a certain radius. To determine this radius, we use
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Delaunay triangulation, a widely used method in computational geometry. Delaunay triangulation

gives the dual graph to the Voronoi diagram, maximizing the minimum angle among all the triangles

within the triangulation, and connecting the sites in a nearest-neighbor fashion [5]. For each tower,

we set the crawling radius to be half the average distance from the site to its neighbors.

Treating each ofthe Voronoi cells as a document and the POI categories as words, we use latent Dirichlet

allocation to discover underlying tower "classes" that will be more informative of shopping behavior. We

remove from the vocabulary any POI categories that occur with over 25% frequency. These removed

categories are uninformative classifications such as "point of interest" and "establishment". For purposes

of interpretability, we learn the LDA model with twenty classes on the 1192 towers.

In Fig. 4.3, we show a subset of tower classes highly weighted within our final lifestyles (see Section 6),

Figure 4.3: The top weighted POI categories of a subset of tower classes learned from LDA.
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in terms of nearby POI categories, obtaining contextual information more directly related to shopping.
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0. 617 "hospital" + 0.264"doctor"
+ 0.041"travel agency"
+ 0.038"dentist" + 0.023"gymn"

0 . 569"clothing_store"
+ 0.090"department_store"
+ 0.048"shoppingmall"

0.765"lodging" + 0.059"bar"
+ 0.052"museum" + 0.018"travel agency"

0.247"atin" + 0.176"bank" + 0.118"police"
+ 0.088"postoffice" + 0.079"city_hall"r

+ 0. 071 "local-governmentof fice"

Figure 4.4: Sample topics from learned from LDA, treating each tower as a document and each POI as a word.

Baseline Methods

Before introducing our model, we present the results of several baseline methods, illustrating the chal-

lenges of incorporating CDR data into the prediction of shopping patterns.

Regression on Average Amount Spent

Using the columns of the per tower count matrix W directly as features, we use regression with Li reg-

ularization to predict the average amount spent by the user per week. As we increase regularization we

increase the test R-squared, but due to a combination of sparsity and lack of signal achieve a maximum

test R-squared of 0 as the coefficients shrink to 0.

Classification of Primary Shopping Behavior

For each user, we take as our outcome the highest weighted shopping behavior from the topic pro-

portions learned from LDA. This is the user's primary behavior. Again using the columns of W as our

features, we employ a range of classifiers including SVM and AdaBoost to predict primary behavior.

We find that the best classifier achieves only 21.6% accuracy, when already 21.9% of users fall into a

single class.

Characterizing Mobility Patterns

From the Voronoi diagram of the p cell tower locations, we construct a matrix W e RnxI where each

entry Wij is the number of days individual i visited tower j throughout five months. We weight these

counts using TF-IDF, a common method for text representation [77]. Using TF-IDF, we offset the

tower counts by the frequency of the tower in the data, so that a user's visit to an uncommonly visited

tower is assigned a higher weight. We now have a matrix W E Rc that characterizes users in terms
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of tower visits, and a matrix Cm C RPxd, where d is the chosen number of tower classes. We define our

mobility pattern matrix as M = WT, achieving a significant dimensionality reduction with M E Rnxd

In this manner, we obtain a representation of mobility more closely related to shopping behavior, as

users are now characterized by their visits to tower classes defined by P01 categories.

4.4 Collective Matrix Factorization

For many users, we have access to data on mobility patterns (M) but not shopping patterns (S). In this

section, we describe our methodology for incorporating mobility information in addition to shopping

information for the matrix completion problem of predicting the shopping behavior of unseen users.

We use collective matrixfactorization [62] to recover latent representations underlying patterns in shop-

ping behavior and mobility. Denote S as the matrix of behavior proportions obtained from latent

Dirichlet allocation, and M as the matrix of weighted visit frequencies to the different tower classes.

Modeling each user's shopping and mobility behavior as two views of the same lifestyle, we assume that

S and M are generated from a matrix U containing the latent lifestyle information of each user.

S _ UIVT'

M - U1 VTM M1 V

Traditionally, the objective function under this model is represented as

L(Ui,Vs,Vm) = ||S - U1V T 11 2 + |M - U1Vj| + 2 i|Ui||2 + A|v81 + A||VmI

4.5 Prediction

In our problem, credit card data is unknown for many users, but we would like to use mobility informa-

tion to predict their shopping behavior; i.e., S contains many empty rows. Thus, to test the performance

within this setting, we remove rows from the shopping behavior S to predict the shopping behavior of

users for which we have no credit card information. We use 10-fold cross validation and compare our

collective matrix factorization predictions with the actual values. We use the popular metric root mean

square error (RMSE) to evaluate our model.

RMSE= - S,)2

Using cross-validation to determine the rank (number oflifestyles), we find that the inclusion of mobility

data leads to a 1.3% decrease in RMSE and obtain a test error of 21.6%.
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4.6 Dual Lifestyles

Using collective matrix factorization, we also obtain both the dual shopping and mobility views of these

latent lifestyles, in V, and Vm respectively.

Lifestyle 1 is connected with wealthier shopping behavior typical common to urban white collars. The

top weighted shopping patterns indicate spending on cable, air travel, hotels and at department stores

as well as gas stations and computer network services (Fig. 2: behaviors 3 and 4, respectively). This

suggests that people who can afford to spend on relative luxuries tend to have vehicles and thus higher

mobility, visiting a wider range of tower classes. The mobility patterns of this lifestyle focus on areas

with points of interest such as universities, accounting, electronics, bakeries and car repair (Fig. 4.3:

tower classes 6, 7, 12, 17 and 20).

Lifestyle 2 is extremely food-oriented, with high weight on shopping behavior 1. Mobility patterns

suggest visits to cafes, gyms and convenience stores.

Lifestyle 3 primarily captures the transportation aspect of lifestyles. Top weighted mobility patterns

indicate visits to areas with car rental and car repair (tower classes 10 and 12), while shopping patterns

include gas stations in behavior 4 and food in behavior 1.

4.7 Discussion

In this study, we relate the shopping and mobility patterns of consumers on an individual level for the

first time. Viewing these perspectives as aspects of the same underlying lifestyle, we set up a framework

to incorporate call detail records in the prediction of shopping patterns for unseen users. We achieve a

significant increase in prediction, allowing for greater accuracy in consumer recommendations. Addi-

tionally, we lend insight into lifestyles in urban regions by establishing interesting relationships between

shopping and mobility.

There are many directions for future work. In terms of modeling formulation, it would be interesting

to introduce a temporal dimension into the task of shopping prediction, as human behavior and needs

vary over time. There is also the opportunity to include social regularization in the collective matrix

factorization formulation, constraining each user to be similar to his or her neighborhood. In addition,

stronger prediction methods may be achieved by modeling nonlinear relationships using geometric

deep learning methods described by [13].
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Household Segmentation by Load Shape 5
and Daily Consumption

5.1 Introduction

In this chapter, we propose an algorithm to segment consumers using their daily load profiles, which,

in contrast to previous work, clusters both by peak times in energy consumption as well as the overall

magnitude of consumption. Such household segmentation not only yields a deeper understanding of

consumer behavior, but can also be used to develop meaningful insights for a wide range of applications.

Some of these include: targeting consumers who are most suitable for the adoption of certain distributed

energy technologies (such as PV and storage), finding out which consumers can effectively provide de-

mand response at particular time periods, and helping Distribution Network Operators (DNOs) to plan

for robust low voltage networks.

The focus of this chapter is to develop an interpretable number of consumer segments from high vari-

ability smart meter data. In the proposed segmentation methodology, we take a structured approach

that leverages the detailed information within smart meter records to cluster load profiles by both shape

and total energy consumption. We show that this distinction is critical to explicitly determine PV and

battery suitability for our consumers, and show that smart meter-based segmentation enables person-

alized recommendations for both PV and battery adoption.

Our main contributions are summarized as follows:

" Segmentation by both peak time and overall consumption: As we will demonstrate, novel techniques

such as [40] are unable to segment consumers by both peak time and overall consumption. We

present two-stage k-means, a simple but effective methodology that achieves both.

* Development of metrics to measure representativeness of clustering: Previous works in household seg-

mentation [40, 41, 8, 26] do not attempt to measure the representativeness of each cluster centroid

for its respective members. We propose metrics to capture two quantities that are of significant

interest for a wide range of applications: similarity in peak time and magnitude, and similarity in

overall consumption. We conduct a survey of popular and recently published methods for electric
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load shape segmentation, and evaluate each method with respect to these metrics.

Demonstration of value to PV battery systems: While extensive research works have implied appli-

cations for their segmentation methods [8, 26, 29, 40, 41], they have not explicitly shown how

their methods could be used in these applications. In this chapter we demonstrate the use of our

proposed methodology for battery and PV systems, making a direct comparison with surveyed

methods. The results are of interest to both companies and informed consumers seeking a precise

mapping from consumption patterns to best selection of solar and storage capacity.

5.1.1 Problem Statement

In contrast with previous work, the current paper proposes an alternate approach for segmentation that

considers both the shape of a load profile - the time and magnitude of its peaks - as well as its overall

consumption - i.e., the daily total energy consumption in kWh. We survey four unsupervised learning

methods with respect to their ability to segment consumer load profiles, analyzing the segmentation

results using residential energy consumption data. Building on these results, we propose two-stage k-
means, a scalable methodology for segmentation that improves upon surveyed methods in terms of both

peak time and overall consumption. We then show this method's ability to group consumers based on

their suitability for PV and storage.

By clustering thousands of daily load profiles into an interpretable number of consumption patterns,

we obtain a dictionary of centroids representative of a daily consumption pattern of a household. Each

household is ideally characterized by a small fraction of centroids within this dictionary. As opposed to

segmenting on the average load shape per household, this allows us to preserve the granularity of the

data describing a household's day to day transitions across centroids.

As has been done in previous work [40, 41], to bring measurements to a similar scale for pattern com-

parison we introduce normalized load profiles which are obtained through a simple decomposition of

the load profile 1(t). These are expressed as:

N

s T) , T= 1(t),
i= 1

where s(t) is the normalized load profile, or load shape, and N is the number of measurements within

a 24 hour period.

5.2 Metrics

In order to evaluate the representative accuracy of the different segmentation methods considered, we

propose several metrics.
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5.2.1 Peak Overlap

Accurate forecasts of both peak times and peak magnitudes are essential for ensuring the smooth oper-

ation and planning of electric utility companies [24]. To measure the performance of an algorithm in

these respects, we propose a metric that quantifies the percentage of overlap for peaks in each daily load

shape with those of its assigned cluster centroid. As described in Alg. 3, for each load profile this metric

measures the area shared by its peaks and the peaks of the assigned centroid. It then divides the sum of

these overlapping areas by the sum of the union of the areas covered by the peaks of both time series.

With additional considerations for noise, the peak start index is determined by the point at which the

gradient becomes positive, and the end index by the point at which the gradient becomes nonnegative'.

5.2.2 Overall Consumption

An important measure of representative accuracy is the similarity of the centroid with respect to the

overall consumption of the load profile. To measure this, we calculate the total energy consumption

(kWh) for both the daily load profile and the total of the assigned cluster centroid, taking the absolute

value of the difference as the error. We then divide this error by the energy consumption of the load

profile to obtain the percent error in consumption.

5.2.3 Entropy

While some information can be gleaned from average household load shapes, a household's day-to-day

variability is an important behavioral characteristic. Understanding this is crucial in predicting extreme

load conditions and as well as for other applications - for example, households with low variability

maybe be more reliable targets for demand response or may be able to discover higher rewards from PV

adoption. We use the metric of entropy to capture the consumption pattern variability of a household

k

H = - P(C) log 2 p(C),
i= 1

Here p(Ci) is the probability that a load profile of household j will be encoded by cluster C, given

by the proportion of its load profiles assigned to cluster Ci among the k possible clusters. The highest

entropy occurs when p(C) = 1/k for all i, and the lowest when the household's load profiles fall in

only one cluster.

5.3 Baseline Methods

Standard k-means: We implement the standard k-means algorithm on load shapes, clustering daily

usage patterns by the Euclidean distance between normalized load profiles. As Section 3.1 will

'code available online at: https://github.com/humnetlab/householdsegmentation
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Figure 5.1: Illustration of the peak overlap metric described in Alg. 3. Let the red curve represent a smoothed
centroid, and the blue a smoothed daily load shape. The peak overlap is given by the overlapping area divided by
the sum of the overlapping area and non-overlapping area indicated above.
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show, the method distinctively segments load profiles by peak times. Due to the use of normalized

load profiles, standard k-means inherently ignores overall consumption when clustering.

- Adaptive k-means and hierarchical clustering: The adaptive k-means method first establishes k clusters

using standard k-means. It then continues to further split each of the k clusters using standard

k-means with k = 2 if any load shape violates the mean squared error threshold:

N N

C(s'9 -C(t)) 2 < 0 E CS (t) 2,
t=1 t=1

where C,(t) is the cluster centroid of load shape s(t), and 6 is the threshold choice (0 < 0 < 2).

When the threshold is satisfied, the method then uses hierarchical clustering to recombine the

adaptive k-means clusters with the closest centroids until the desired number is achieved [40].

This method aims to achieve simpler segmentation with a small tradeoff in representative accu-

racy. As the adaptive method also focuses on Euclidean distance between load shapes, overall

consumption does not factor into the segmentation results.

- SAX k-means: Symbolic Aggregate Approximation (SAX) [44] is a flexible method for dimen-

sionality reduction that gives a symbolic representation of a time series. SAX first transforms the

time series into its Piecewise Aggregate Approximation (PAA) representation, then converts this

representation into a discrete string. Thus, distance measures defined on the symbolic approach

are a lower bound on the corresponding distance measures given by the original time series. In

SAX k-means, we substitute this method for the Euclidean distance as used by standard k-means.
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Algorithm 3: Peak Metric: Percentage of Overlapping Area

Input : Smoothed load profiles and the corresponding centroids obtained from clustering
Output: Peak overlap classification metric for each load profile (peak overlap percentage)

1 foreach load profile do
2 For each load profile, find the indices of the peak intervals for each peak: (peak start, peak

end)
3 overlapping area = 0
4 total area = 0
5 foreach peak in time series peaks do
6 Search for overlapping centroid peaks - a centroid peak index within (peak start, peak

end)
7 if no overlapping centroid peak exists
8 total area += Area(peak)
9 continue

10 else
11 ao = max(peak start, centroid peak start)
12 bo= min(peak end, centroid peak end)

13 overlapping area += f min(peak, centroid peak) dt
14

15 a, = max(peak start, centroid peak start)
16 b= min(peak end, centroid peak end)

17 total area += bi max(peak, centroid peak) dt

18 end
19 end
20 foreach non-overlapping centroid peak do
21 1 total area += Area(centroid peak)
22 end
23 peak overlap percentage = overlapping area / total area
24 end

- Integral k-means: Due to the use of normalized load shapes, prior work has primarily clustered load

profiles by the times of peak occurrences, largely neglecting the overall energy consumption of

the load profile. As an alternative method to consider this factor, we introduce integral k-means.

In this method we perform k-means on both the integral of the load shape and an additional fea-

ture which is described by the maximum observed power in the daily load profile.

Specifically, we integrate the area under the load shape from s(0) to s(t) for t = 1, - , N, con-

structing a new sequence 1(n) of the same length which gives the area under the signal from time

1 to time n:

I(n) = s(t) d =N (s(E) +Z2s(t) + s(n)),
t=0

where n =1, ... , N. Thus defined, normalized consumption levels and peak magnitudes prop-

agate throughout the new signal to consider the load profile's overall consumption.
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5.4 Results

Description of data

We use 15-minute smart meter data from January 2015 obtained from the Pecan Street project [2],
where we have a full month of data for each household. This data contains 19,070 daily load pro-

files corresponding to approximately 600 households in 18 cities but primarily covering Austin, Texas
(75.67% of data). Although seasonality affects overall consumption, we do not address this and choose

instead to focus on successful segmentation within a single season, taking advantage of the wide range

of cities covered to survey the capability of our methods to handle outliers and high variability within
the segmentation process.

We apply a low-pass filter (moving average) to the data to smooth erroneous readings of 0 kW and then
normalize to obtain the load shape. As seen in Fig. 5.2, the distribution of maximum peak demand is
right-skewed. Only 1.8% of daily time series have a maximum peak energy usage greater than 2.5 kWh
in a 15 minute interval. These outliers can have a strong effect on the learning results, especially if the
objective is to obtain an interpretable number of clusters that are segmented by magnitude of overall

consumption. Thus, we remove them from our primary analysis, instead segmenting them separately

with standard k-means (Fig. 5.2).

Figure 5.2: (a) Histogram of the maximum energy values for 15 minute intervals with respect to each smoothed
load profile. Outliers are load profiles with maximum peak energy usage greater than 2.5 kWh. (b) Cluster
centroids for outliers obtained through standard k-means on load shape (k = 6 determined through the elbow
heuristic with WCSS). Each centroid is the average of all the readings in its cluster. The legend shows the
proportion of load profiles in each cluster. See Section 6.2 for labeling conventions.
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Clusters were determined using the elbow criterion as a heuristic, with the objective of minimizing the

within-cluster sum of squares (WCSS) while maintaining a low number of clusters. From Fig. 5.3(b),

k = 9 for standard k-means, k = 6 for SAX k-means, and k = 9 for the adaptive method are reasonable

choices by this heuristic. For adaptive k-means, we initialize the cluster centroids using standard k-
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means with the previously chosen k = 9 and determine an optimal threshold of 6 = 1.75 (Fig. 5.3a).

The results are then used for hierarchical clustering with k = 9.

Figure 5.3: Within-cluster sum of squares for standard, SAX, adaptive and integral k-means
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From Fig. 5.4, we observe that the centroids resulting from standard and SAX k-means are very clearly

distinguished by peak time. This is not the case with adaptive k-means, which produces several times

more clusters than desirable for interpretability, even as 6 approaches its maximum value of two (Fig.

5.3). The size of these clusters varies widely, and when grouped together with hierarchical clustering,

the largest clusters are combined to create a very uneven distribution with one cluster containing nearly

98% of the load shapes (Fig. 5.4). Thus, in this case where the objective is an interpretable number of

clusters for a set of load profiles with high variability, the adaptive methodology performs worse than

baseline k-means. It is worth noting here that previous work using this method opted to produce many

more clusters than k = 9 and subsequently focused their interpretations on the set of highly populated

clusters rather than the entire dataset [40]. In Table 5.1, we compare the results of each method with

respect to the various metrics introduced in Section 2. Methods that focus on peak time such as standard

and SAX k-means perform well in terms of peak overlap percentage, but have relatively high percent

error in daily consumption.

As we can see from Fig. 5.5, integral k-means clusters load profiles by the magnitude of energy con-

sumption instead of by peak time. When compared to the results of standard k-means, the segmentation

results have a lower percent error in daily consumption, but also have a lower average peak overlap per-

centage (Table 5.1).

5.5 Two-stage k-means

Due to the high variability in energy usage across households, segmenting load profiles by overall en-

ergy consumption is an important aspect of producing a representative set of clusters. Of course, the

ideal segmentation would also include information on the time of peak occurrences, which is important

in many applications. We therefore suggest that by first using integral k-means to obtain n groups, then

further clustering each of these n groups with standard k-means. This can segment the load profiles

according to both overall consumption and time of the peak, which we show is very important for bet-

ter targeting the different needs per consumer type in amount of solar PVs and battery capacity needed.
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Figure 5.4: Cluster centroids for standard k-means, SAX k-means and adaptive k-means methods (methods that
segment by peak time). The legend shows, the proportion of load profiles in each cluster.
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Results

Exploiting these two clustering methods in series it is easy to produce a large number of clusters, which

violates one of our primary goals of maintaining interpretability. Therefore, a lower k is preferred for

the first stage. From the integral k-means elbow plot (Fig. 5.3b), we observe that three clusters is a

reasonable initial number that gives suitable representative accuracy. Thus we first cluster daily time
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series into three groups using the integral k-means method (Fig. 5.6a), and then subsequently separate

each of these groups further into clusters with k = 4, using the standard k-means method to obtain

twelve clusters in total (Fig. 5.7). From the elbow plots showing the further splitting of the three

integral k-means clusters (Fig. 5.6b), we see that k = 4 seems like a reasonable choice. If we wish to

Figure 5.6: (a) Cluster centroids obtained from step one of two-stage k-means. (b) Within-cluster sum of squares
for each group from Fig. 5.6. Using the elbow heuristic, we choose k = 4 for each group in the second step of
two-stage k-means.
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Figure 5.7: Results of the second step of two-stage k-means. Cluster centroids for each group seen in Fig. 5.6.
The legend shows the proportion of load profiles in each cluster.
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maintain interpretability, there is a natural tradeoff between segmenting by peak time and segmenting

by consumption. We find that two-stage k-means is able to segment the load profiles relatively well in

both respects: the segmentation results for two-stage k-means have an average peak overlap percentage
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Method Avg load shape Avg peak overlap % Avg % error
entropy in consumption

Standard 1.99 0.005 26.55% 0.1% 77.00% 0.8%
Adaptive 0.0978 0.002 19.63% 0.1% 76.80% 0.8%
SAX 1.87 0.003 24.35% 0.1% 76.20% 0.8%
Integral 1.27 0.004 23.32% 0.1% 42.59% 0.4%
Two-stage 2.13 0.004 26.95% 0.1% 47.10% 0.5%

Table 5.1: Method performance metrics and standard errors

comparable to standard k-means, and an average percent error in daily consumption only slightly higher

than integral k-means (Table 5.1).

5.5.1 Interpretation of Segments

We label each of the resulting clusters in the proposed method based on the magnitude of the peak and

their time of occurrence. Namely we define the consumption levels:

L: Low < 20 kWh

I: Intermediate > 20 kWh and < 35 kWh

H: High > 35 kWh

ol: outlier, Intermediate

oH: outlier, High

and the time of the peaks:

M, m: Morning peak (4:00-10:00)

D, d: Daytime peak (10:00-16:00)
E, e: Evening peak (16:00-21:00)

N, n: Night peak (21:00-4:00)

Within our labeling convention, lowercase letters denote low magnitude peaks, which we restrict to

have a maximum value of 0.5 kW higher than the baseline power (given by the minimum power of the

load profile). Otherwise, if a peak is higher than the baseline consumption by more than 0.5 kW, it is

denoted by a capital letter. For example, the H-mE cluster represents a group whose centroid has a small

morning peak and a large evening peak, and its total daily consumption is in the high usage bracket.

Table 5.2 shows the different clusters created under this nomenclature convention. The average total

daily consumption, entropy, and the proportion of load shapes assigned to the cluster are also shown.

As outlined in Section 5.1, the outliers were determined by the maximum peak energy demand in the

load profile, not by the total energy consumption. So the oI-N cluster contains load profiles with a

maximum energy greater than 2.5 kWh, but it has low consumption elsewhere such that its total daily

consumption is less than 35 kWh.

To derive further insight into lifestyles from the two-stage segmentation, we relate the results to relevant

features such as average daily consumption and consumption pattern variability (entropy). As seen in
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Cluster Avg daily Avg load shape Proportion
consumption entropy
(kWh)

L-mN 12.89 2.08 9.14%
L-mE 13.32 2.19 9.54%
L-me 14.74 2.04 18.11%
L-dn 15.27 2.07 13.72%
I-mN 23.36 2.43 6.31%
I-mE 23.68 2.45 7.34%
I-D 26.55 2.26 10.93%

oI-N 27.77 2.27 0.02%
I-N 28.02 2.16 0.67%
I-me 30.96 2.17 10.47%

H-mE 37.71 2.47 3.31%
H-D 46.31 2.30 4.25%
oH-E 53.61 2.79 0.13%
H-Me 56.90 2.09 4.45%

oH-mE 58.60 2.46 0.12%
oH-Me 77.69 2.03 0.35%
oH-M 80.82 1.87 0.14%
oH-me 127.39 1.69 1.0%

Table 5.2: Statistics of households in Fig. 5.7

Table 5.2 and Fig. 5.8, households from clusters with low overall consumption tend to have lower

entropy. These clusters also represent a high proportion of the load profiles.

Most clusters exhibit morning and evening peaks, the expected shape for residential loads. However, the

presence of other loads shapes does imply interesting heterogeneity in behavior, with some households

having more common demand during the daytime period. We also find higher consumption load

profiles to be more variable. This may be explained by households with a higher number of occupants,

while the low consumption households typically have fewer occupants with more regular behavior. It

is also worth noting that we include both weekends and weekdays in our analysis, which increases the

variability of households when compared to analyses which just consider weekdays.

5.6 Targeted recommendations for consumers of PV-Battery systems

In this section we illustrate the applicability and performance of the customer segmentation results.

We return to the original data and calculate standard amounts for solar PV and battery capacity each

customer may be offered in the market based on their current consumption patterns. Then we show how

the knowledge of our proposed segmentation is able to separate consumers with different demand. We

show that segmenting daily load shapes with the proposed two-stage k-means allow us to better group

customers according to similar needs for both solar and battery capacity. To this end, we first estimate
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Figure 5.8: Average daily consumption and consumption pattern variability scatter plots of lifestyle clusters
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two properties of significant interest to both consumers and utilities. Namely; (1) the self-sufficiency

of a consumer with PV and (2) the battery size required to increase their self-sufficiency above 75%.

Consumer j's self-sufficiency (ssj) is defined below, where EPVused is the electricity generated by their

PV system that they self-consume and Econsumed is the actual energy demand.

EPVused

Econsumed

To simulate the output of a PV system we exploit the NREL PV Watts calculator 2. We specify the

system location as Austin, Texas, the DC system size as 5kW, choose a standard fixed roof-mount type

and keep the rest of the parameters as default (200 tilt, 1800 azimuth and 14% losses). This yields hourly

results and we interpolate these to 15-minute resolution, using data for January which corresponds to

the same period as our load data, defining PV(t). Finally, in order to make each PV system consumer

specific, we sum their total monthly usage and scale the PV output so that each consumer has a PV system

which produces electricity equivalent to their total use over the period. Consumer j's PV output at the

period t is expressed as:

2available online at: http://pvwatts.nrel.gov/pvwatts.php
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EN 1tPV Z(t)= t )1 PV(t)

To calculate each consumers required battery size for 75% self-sufficiency we devise a similar method to

that used by [15] to estimate the economically optimal battery size for a microgrid. For each consumer

this involves increasing the size of their battery in 1 kWh increments until their self-sufficiency increases

above 75%. At each incremental battery size, the battery is then scheduled to maximize self-sufficiency.

We subsequently calculate the consumers net load and resulting self-sufficiency with that battery size.

Consumer j's net load at period t is then expressed as:

lfet (t) = 1j(t) - PVj(t) - pfba(t)

The self-sufficiency is easily calculable directly from the net load time series - it is the total net load

greater than zero divided by the total consumption without PV or storage. The battery's operation

pbatt for each consumer is scheduled according to Alg. 4.3

Algorithm 4: Schedules the charging and discharging operation of consumer j's battery module

Input : Consumer j's load profile, lj(t), consumer j's PV generation profile, PV(t)
Output: Schedule of consumer j's battery operation, Pbatt(t)

1 foreach time period t do
2 if t=1

3 if PV(t) > lj(t)

4 the battery is charged at the minimum of the set {PV(t) - lj(t), Pcrax sOCj

5 end
6 else

7 if PV7(t) ;> 1j(t)
8 the battery is charged at the minimum of the set

socax -SOC (t-1)
{PV(t) - l,(t) Pchg 7chgAt

9 else
10 the battery is discharged at the maximum of the set

{PVjM) - 1t), P hgIdischg "-SOC(t-1)

11 end
12 end

13 Update the battery's operation Pfat(t) and state of charge, SOC(t) at each period.
14 end

In Alg. 4, pma and PPjacxg are the maximum charging and discharging rates (Pdmacxh is negative),

socimax and SOCni" are the maximum and minimum State Of Charge of consumer i's battery, and

7lchg and rldischg are the battery's charging and discharging efficiency. We see that when PVj(t) = lj(t)
then the battery neither charges or discharges. Similarly, when the storage capacity SOCj(t - 1) =
SoCjax then the battery cannot charge at period t and when SOCj(t - 1) = SOCjmin the battery

cannot discharge. Each kWh of battery storage can cycle at 85% depth-of-discharge, fully charge or
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Figure 5.9: (a) Illustrating solar generation (PV) self-sufficiency - the area of the yellow region divided by the
integral of the blue line. Red illustrates export (b) A specific consumers self-sufficiency against battery size.
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discharge within 2 hours (a C-rate of 0.5C) and has an average round trip efficiency of 90%. These

characteristics are typical of Li-ion batteries for residential energy storage 3. Figure 5.9 shows how PV

contributes to consumer self-sufficiency and the effect of a battery.

After calculating the self-sufficiency and storage values for each consumer, we separate these results

by segment, assigning each consumer to the mode of the segments assigned to their daily load shapes.

The best segmentation method is the one that groups consumers that separate from the mean in their

solar and battery needs. For each segmentation method, we assign one non-outlier cluster for the 585

consumers (each with over 25 days of data).

Figure 5.10 b-d shows the results for all the consumers and the three different segmentation methods:

standard k-means, integral k-means and the proposed two-stage k-means. Figure 5.10 a shows the dis-

tributions of self-sufficiency with PV only, and 5.10 b the required battery capacity for all consumers

(colored by cluster from the two-stage k-means method). Note that the bar plots in 5.10 b-d illus-

trate the separation of each cluster from the mean of the respective property for each method. Both

standard k-means and two-stage k-means find clusters with significant separation in terms of their self-

sufficiency (Figure 5. 10b), while integral k-means provides little insight for PV. Conversely, for battery

size, integral k-means gives good separation (Figure 5.10d), as does the two-stage method, while the

standard k-means provides little insight. Overall the two stage methods is performs better to separate

customers to be targeted for both battery and solar services.

As would be expected, the clusters with daytime peaks (L-dn, H-D and I-D) have the highest self-

3see https://www.tesla.com/powerwall
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Figure 5.10: (a) Distribution of monthly self-sufficiency values for all consumers (PV-only). (b) Segmentation of
self-sufficiency for each segmentation method. (c) Distribution of required battery size for all consumers for 75%
self-sufficiency. (d) Segmentation of the battery sizes for each segmentation method. In (a) and (c) the colors
under the curve indicate the clusters of the two-stage k-means. This method separates well customers respect to
their solar capacity required via their self-sufficiency and their storage needs.
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sufficiency and those with peaks at night (L-mN, I-N and I-mN) have the lowest. The I-N cluster is

the least suitable for only PV. Indeed, as seen in Fig. 5.7, the centroid has very little electricity use in

daylight hours and belongs to the least populous non-outlier cluster. For the standard k-means method,

we note that centroids 1-3 have higher self-sufficiency, corresponding to the daytime peaks while cen-

troids 4-9 have lower self-sufficiency. The fact that integral k-means produces clusters with no real

separation in misalignment demonstrates that self-sufficiency is independent of consumption magni-

tude when net solar production is equivalent to usage.

For estimating the battery size required for a consumer, consumption magnitude rather than peak time

is the most relevant property. All of the high consumption clusters (H) require the largest batteries ir-

respective of peak time, followed by the intermediate clusters (I) and then the low consumption clusters

(L). This is clear when inspecting the integral k-means clusters. Within these use brackets, the clusters

that have peaks during the daytime (L-dn and L-me) generally require less storage. However, this is a

second order effect when compared with the use bracket.
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These results show that it is important to consider both peak time and overall consumption within

the segmentation methodology. The proposed two-stage method accomplishes this, providing a use-

ful mechanism for utilities to identify the best system size for their consumers' needs. We successfully

segment consumers for PV based only on each consumer's most frequent cluster. These findings help

utilities to make a good recommendation on PV suitability or battery size based on daily load shapes.

5.7 Conclusion

In this chapter, we introduced metrics to measure the representative accuracy ofa segmentation method-

ology in terms of peak time and overall consumption. We surveyed several methods in their ability

to cluster well with respect to these metrics, proposing a two-stage household energy segmentation

method that, in contrast to prior work, is able to successfully segment consumers by both peak time

and overall consumption.

In regards to the application of PV battery systems, we found that only the two-stage method gives

clusters with significant separation for both solar self-sufficiency (most strongly affected by peak time)
and required battery size (most strongly affected by overall consumption), thus illustrating the impor-

tance of clustering in terms of both aspects of the consumer load profile.

In addition to PV, these results have implications for utility policies ranging from demand response to

energy efficiency. Using these consumer segments, we can effectively assess consumer needs for various

programs and pricing packages. For instance, a segmentation based on peak times and consumption

levels enables us to efficiently target consumers for demand response, concentrating on those with the

highest potential to generate savings.

While in this chapter we analyzed the PV and storage suitability of different residential consumer seg-

ments, there is a need to do the same for non-residential energy consumers, for whom solar PV and

storage may hold an especially high savings potential. In addition, though we made no assumptions

regarding the structure of electricity tariffs in this chapter, having access to the exact tariff structure

and pricing levels would allow the evaluation of direct financial benefits for the consumer segments

obtained from the clustering methodology.

58



CHAPTER 5. HOUSEHOLD SEGMENTATION BY LOAD SHAPE AND DAILY
CONSUMPTION

59



Conclusion and Future Work 6

We have proposed several descriptive methodologies to understand individual behavior in the context

of shopping behavior, mobility, and energy segmentation. This includes methods that focus on inter-

pretability in order to understand the underlying mechanisms in human dynamics (Chapter 1), mine

lifestyles by connecting separate passive datasets (Chapters 2 and 3), and provide recommendations to

consumers according to their needs(Chapters 3 and 4).

6.1 Summary

6.1.1 Modeling Bursty Human Dynamics and Lifestyles

Human actions determine the dynamics of a wide range of complex systems, ranging from social to

economic phenomena. Understanding what drives these actions is still an open question in the field,

with many possibilities for future work. Current models of human dynamics focus solely on assessing

goodness of fit for a hypothesized mechanism of behavior. In contrast to these one-dimensional models,

we propose the multidimensional periodic Hawkes process, coupling periodicity and the interdepen-

dence between varying types of activity. This model actually describes the transition between tasks,

and even lends insight into their priority by capturing the order in which they occur. It captures the

strength of dependencies between these tasks directly from data, and also learns the nonhomogeneous

rates due to periodicity. We have seen that the proposed model is a good statistical fit for the shopping

behavior of most individuals in empirical data, and performs well in prediction.

In addition, we find that we can connect multiple perspectives of human behavior, revealing actual

lifestyles in urban regions. We see that these lifestyles extend beyond shopping behavior, with a strong

connection to mobility, social behavior, and demographics of individuals.

6.1.2 Energy Segmentation

In this chapter, we introduced much-needed metrics find the representative accuracy of a segmentation

methodology, where previously none existed. These metrics measure representativeness with respect

to both the peak times of energy consumption, as well as the overall magnitude of consumption. These
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aspects are crucial to applications ranging from demand response to PV and storage recommendation.

Surveying several standard and recent methods using these metrics, we see that these methods group

households only by peak time, disregarding overall consumption. We introduce an algorithm, two-

stage k-means, which is able to successfully segment consumers with regards to both metrics. Addi-

tionally, we find that this two-stage method results in segments that have significant differences for both

PV self-sufficiency and required battery size. Thus, using these groups, we can effectively understand

consumer needs.

6.2 Future Work

There is a rich history in the modeling and analysis of passively collected data. As we have seen, we can

construct good predictive models for this data that simultaneously lead to a deeper understanding of

individual behavior. One such interesting extension of Chapter 1 would be to model human mobility

using a comparable stochastic process, comparing temporal patterns in movement to patterns found in

shopping behavior here.

Beyond the level of the individual, the multidimensional periodic Hawkes process has the potential.to

extend directly to the broader field of complex systems. Recent work [52] uses the proposed model

without periodicity to find cascades of activity in communication networks. Other applications range

from predicting traffic in road segments to understanding the interdependency of events in economic

markets.

In terms of model formulation, it would be interesting to experiment with algorithms that combine

generative models with the Hawkes process, as does with [55] a Markov modulated Poisson process

and latent Dirichlet allocation. Such a method is able learn from shared behaviors while operating in

continuous time.

Our work in modeling human lifestyles and dynamics is part of a growing field. This field is of con-

tinuing significance as the underlying patterns of human actions touches on the wide range of work in

transportation, urban growth, complex systems and beyond. We expect this interest to hold, and hope

to explore the many open questions that remain.
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