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Abstract

More than half of today's world population lives in cities and that fraction is steadily
growing. Models that accurately capture all segments of the population are necessary
in order to design effective policies and new technologies to ensure efficient and
stable operations of cities. The current sociology literature has a rich foundation in
characterizing the demographics of static population distributions, however, these
characterizations fail to account for the reality of dynamic movement. Though there
has been recent work in developing models of human mobility, they in turn do not
capture demographic differences in the populations of cities.

In this work we present a computational approach to reformulating segregation
metrics to incorporate dynamic movement patterns and also quantify the effects of
introducing demographics into a mobility model. In coupling two fields that are
inherently connected but not established as so, we must very carefully consider our
experimental set up. The first part of this work deals with understanding our data
and its limitations at fine granularities and explicitly measuring segregation metrics at
various scales to design a study that will elucidate meaningful aspects of segregation.

In the second part of this work we reformulate traditional segregation metrics
using topological properties of origin destination networks as input. These measures
are flexible in considering many locations that individuals visit and therefore more
accurately capture the environments of individuals that traditional segregation litera-
ture seeks to characterize. We utilize two rank-based mobility models that implicitly
incorporate geographic properties of population distributions to understand the effects
of residential segregation on mobility patterns and examine the effect of demographic
considerations on model accuracy.

In summary, this thesis will focus on synthesizing the rich body of work on static
characterizations of socioeconomic structure in cities with dynamic models to better
understand different racial segmentations of Boston's population. This work is both
an extension to static segregation literature as well as a refinement of current mobility
models.
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Chapter 1

Introduction

1.1 Introduction and overview

Physicists and sociologists have longstanding interests in identifying the mechanisms

by which individual dynamics lead to collective outcomes. In the social domain,

tipping point or threshold models provide one useful framework for connecting the

actions of individuals to population processes [41, 20, 211. In the physics domain

mobility models can account for individual preferences that result in population

level commuting fluxes at multiple scales [19, 43]. The underlying premise of these

models stems from the assumption that the actions of individuals are influenced

by given characteristics but these characteristics are also influenced by the choices

of individuals. Threshold, epidemic, diffusion, and gravity models are part of a

general class of behavioral models that capture the feedback effects between micro

and macro-level processes. Behavior models, such as models of social interaction,

have demonstrated great potential for understanding the dynamics of both residential

mobility and segregation by race and ethnicity. In his work [41], Thomas Schelling

laid the conceptual groundwork for understanding the relationship between individual

preferences and the evolution of neighborhood compositions. He demonstrated that

minute racial preferences in individual residential choices could result in aggregate

patterns of residential segregation over time. Schelling's ideas provide an account of

neighborhood change that formalizes the consequences of prejudice, which has been
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documented in social survey data and provides an explanation of manifest patterns of

residential segregation.

Residential choices are often the result of careful planning and consideration, thus

the importance of individual preference in deciphering patterns of segregation is well

established. On the other hand, daily mobility choices, such as choosing a grocery store,

are often ephemeral. Although these daily decisions might seem random, individual

mobility data has revealed to be highly non-random, governed by simple laws, and

greatly predictable [42, 19, 441. Accordingly we can use individual trajectories as a

proxy to understand the environments to which individuals are exposed.

Investigating individual's daily trajectories is a relatively new direction of research

which stems from the availability of massive passively generated geo-located datasets.

In addition to its non random nature mobility has further been shown that mobility

dynamics are subject to geographic constraints [16, 10, 12]. The majority of travel

occurs within cities and it has been shown a city's internal structure affects urban scale

mobility. Thus, previous work has been done using mobility to estimate the structure

of cities by finding hotspots [28] or even finding patterns in the daily encounters of

individuals [45]. These studies have focused on geographic distance and social networks,

but have not linked the socio economic structure of a city and its resulting mobility

patterns. In coupling mobility and social data we can investigate how demographics

effect individual mobility.

In this work, we use call detail records (CDRs) generated over multiple months,

which are treated and validated, to create average daily origin destination (OD)

networks. We use these networks to study the difference in daily mobility choices

arising from residentially segregated areas.This represents the first data driven study

to investigate whether racial preferences can be discerned from individual mobility

choices. If so, results would indicate that not only do we organize residentially by our

socio-economic demographics, but also move according to these as well. With the rapid

migration into urban areas, understanding how social decisions influence mobility has

consequences in many domains such as epidemiology and urban planning. But perhaps

more interestingly, this work also servers as a platform to link individual mobility
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data with social theories that posit racial isolation and concentrated disadvantage

heighten exposure to criminality and reduce access to resources and opportunities

[40, 15]. In addition the ability to know where different races interact can help pin

point the definition of "local context" which is used to measure social isolation and

racial exposure in sociological works as well as identifying areas of interaction for

epidemiologists [37, 26, 48, 49].

1.2 Literature Review: Sociological Studies of Segre-

gation

The study of residential segregation traces its origins to 1926, when Robert Park

formally defined residential segregation as the link that exists between both the social

distance and physical distance [34], since then both its causes and consequences have

been studied extensively both empirically and theoretically. There is a substantial

literature concerning the measures of residential segregation and more recently the

literature's emphasis has shifted toward the causes and consequences of residential

segregation. This is in part because of the application of economic theory to social

theory and social dynamics, which have allowed individual behavior to inform models

of segregation. We will briefly discuss metrics, and then we will review the literature

concerning causes and consequences.

1.2.1 Metrics

The formal definition of residential segregation remained somewhat fluid until 1988,

when it was presented as a multidimensional phenomena varying along the distinct axes

of evenness,exposure, concentration, centralization and clustering [29], this definition

has been widely adopted in the succeeding literature. Each dimension is meant to

capture a different aspect of segregation, they are as follows:

e evenness: refers to how uniformly distributed each race is over local contexts.

If the racial distribution of each local context is the same as the global racial
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distribution, evenness is maximized.

" exposure: refers to the extent that members of one racial group are exposed to

members of another group in each local context.

* concentration: refers to the amount of relative physical space occupied by a

minority group in each local context

" centralization: refers to the proximity of the places occupied by minority

groups to the city centre.

" clustering: the degree of agglomeration of those areas inhabited by a minority

group. Concentration refers to one local context, and clustering measures if

segregated local context are spatial contiguous.

Recently a discussion concerning spatial vs spatial metrics has brought the distinct-

ness of these dimensions into question. In residential segregation literature, aspatial

measures of segregation define a local context for each individual and quantify the

extent of how these local contexts differ across individuals. Aspatial measures do not

consider the patterning of individuals' local contexts distributed in space however,

metrics that do consider the spatial distribution of of local contexts are called spatial

metrics. To highlight the difference consider Figure 1-1. On the left each block of the

check board represents an all white or all black neighborhood, on the right we have

the same number of black and white neighborhoods, but all the white neighborhoods

are now on one side of the board and all the black neighborhoods are on the other.

An aspatial measure would consider these two cases the same, since the measurement

is only at the neighborhood level and the placement of these neighborhoods do not

matter.

In [37] it is argued that the distinction between evenness and clustering is simplify

an artifact of aspatial measurements at a single geographic scale. They demonstrate

evenness at one level, say census tracts, is strongly related to clustering at lower levels,

such as block groups. This dependance makes the distinction between the two dimen-

sions arbitrary. They claim the existence of only two dimensions of spatial segregation:

14



(a) (b)

Figure 1-1: Two different spatial configurations of all back and all white neighborhoods

which aspatial measures cannot distinguish between

spatial exposure and spatial evenness and these distinct patterns necessitates the need

for two different types of metrics to measure the extent of each axis in1-2.

Spatial incidences not only allow for the quantification of the exposure and evenness

they also capture the change in segregation at different geographic scales. Residential

segregation metrics are particularly sensitive to what scale is being used, which echoes

the criticism that evenness and clustering have an arbitrary distinction. For instance,

larger cities are often said to be more segregated than smaller ones but this is based on

spurious correlation amongst segregation and city size. Measures based upon census

tracts data will tend to report higher values for bigger cities because larger cities

have high population densities so their smaller census tracts might cover only one

neighborhood, where as smaller cities might have larger census tract that cover several

neighborhoods. This bias would be reduced at smaller levels of spatial aggregation.

Consequently, it is important to be careful when comparing the level of residential

segregation over larger spatial areas. Moreover, it is advisable to carry out a multi-scale

analysis. In [361 a methodology to asses the effect of scale on segregation is developed

15



0000000000
0000000000
0000000000
000.000000
000000000

0000000000
00@0000000

*000000@00
000000000

00000000
0000000000

oo000000

Even

A

Isolation

0000000000

000000000
0@00000000

0000000000
0000000000
000000000
00000.0000
0000000000

0000000000
0000000000

U

I
Clust4

ness

0000000000
0000000000

0000000
*00900000

00900000
00@00000
00000000
00000*000
0000000000

80000000000
0000000000

0800*0*0000
0000000000
0000000000
00000000
90000000
0000000000
0000000@0
0000000

ering 0000000000

Figure 1-2: Taken from [37] In the upper half are two patterns that have low levels
of spatial clustering. In the bottom half of the figure, both patterns show greater
clustering then the corresponding patterns above, but roughly the same exposure.

by computing the H-index at various geographic scales, this is called a segregation

profile. The H-index is defined as:

H = 1 - E TEp
pER

Where, E is the entropy of the racial composition of the entire study area, Ep

is the entropy of the racial composition in location p, R is the set of all locations

considered, T is the total population, and finally Tr is the population density at

location p. The information theory index, H, is a measure of how much less diverse

the local environments of individuals are when compared to the total region R. H is

equal to 1 if there is maximum segregation, meaning each location is mono-racial, and

equal to 0 if each location has the same racial composition as the total area, meaning
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that each race is distributed uniformly or complete integration.

1.2.2 Segregation Causes

Segregation is typically presented as a result of endogenous forces such as individual

preferences or exogenous forces that sort people across urban areas based on policy

and real estate market dynamics. Models of endogenous forces, often cite income

as a driver of segregation [32]. These models assume that higher income individuals

will have a higher preference for land, meaning that low income households will end

up living closer to the central business district (CBD) of a city, this leads to higher

concentrations of low income households within the city. This urban structure is

subject to change if there are entertainment activities that generate trips to the CBD,

such as shopping or young high income individuals prefer to live closer to the CBD

[8]. In fact the urban structure will be fully reversed if the demand for accessibility is

greater than the demand for space. Another cited endogenous cause of segregation is

the willingness to live among peers, or individual preference. The most widely known

model of individual preference which leads to segregation is Schelling's model.This

model is initialized by randomly placing black and white pieces on checker board.

These pieces are then moved to vacant spots based on a tolerance parameter. This

process depends on a rule that is previously determined which specifies individuals'

willingness to live amongst another race. It is shown even if one group has a slight

preference to live near their own race a segregated equilibrium is reached.

Models of exogenous forces cite public policy as a driver for residential segregation.

Policies that intentionally force segregation are known as de jure segregation, an

example of this is Nazi Germany's policies forcing Jewish ghettoes. Polices that have

the unintentional side of effect of segregation are polices that reinforce or encourage the

use of exclusionary powers on the part of predominately white and change the nature

of the information available to different types of people making location decisions [501.

The second class of public polices that can lead to residential segregation concern

zoning and public housing [6, 30], often zoning is used as an exclusion device and

public housing which is affordable for lower income individuals are located in clusters
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apart from the CDB.

Another model of exogenous forces cite real estate market dynamics as a cause

of residential segregation, for example let us consider the process of gentrification.

As gentrification increases housing prices and the cost of living increases and lower

income individuals are forced to move out, meaning more higher income people move

in. These causes of residential segregation only account for a few of the proposed

models in the literature, but it is important to note that there is no consensus on

what causes segregation and it is likely to combination of all of the above and more.

1.2.3 Segregation Outcomes

In general, residential segregation outcomes have been studied with respect to how it

affects segregated populations. Segregation has been citied as reducing exposure to

good schools and academic peers, heightening exposure to criminality and creating an

environment where segregated individuals do not have access to economic opportunities

which perpetuates income disparity[11, 13, 22, 39, 40]. This study concerns itself with

another outcome of segregation, which is how it effects the types of locations people

visit in their average day.

1.3 Literature Review: Urban Mobility

Studies on human mobility have arisen from various fields of study such as trans-

portation engineering, urban planning and epidemic molding. Here we will focus on

statistical physics approaches to modeling individual mobility patterns. In mobile

phone studies trajectories are analyzed and statistical measures such as radiation of

gyration and jump length distributions are used to characterize how individuals move

during their daily life. Studies incorporating call record details are subject to the

challenges of data cleaning and storage but provide an unprecedented granularity to

study individual trajectories.

The value of mobility reaches far beyond being able to predict geographic movement

but provides a whole new framework to consider human interactions from a spatial,
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temporal, and contextual perspective [4]. Knowing how people people from one

point to another in city provides a new platform to study the differences in daily

lives of individuals of different race or ethnicities. Before characterizing behaviors

and characteristics that differ it is important to note that human mobility is deeply

entangled with a city's geography and spatial economics such as the spatial distribution

of points of interests. Thus mobility patterns from cites are not all the same, but

we can use models that incorporate these factors such as distance and population to

account for these differences. The importance of scale also applies to studies of human

mobility, which occurs from short-distance daily travels to long distance air travels.

Scale is often incorporated into models of mobility by including distance or a proxy

for distance.

1.3.1 Statistical Properties of Human Mobility

In [7] the circulation of bank notes is studied as a proxy for human mobility, where it

is show that distribution of traveling distance follows a power law:

P(Ar) = A)(-3

where Ar represents the spatial distance between temporally consecutive locations.

They observe that most individuals only travel over short distances. They secondly

show that the probability of small spatially confined region diminishes super diffusive

spread. In [19] Gonzalez et al. analyzed the trajectories of 100,000 anonymized mobile

phone users whose position was tracked for a six-month period to show individual

mobility patterns differ from the movement of banks notes which can be modeled as

Levy flights predicted by random walk models. They demonstrate individual mobility

patterns have an exponential cutoff and is better approximated with a truncated

power-law:
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P(Ar) = (Ar + ro)Arexp( )
k

With 3 = 1.75 .15 and ro = 1.5 km and k between 80km and 400km. They

further show human trajectories display high degrees of both temporal and spatial

regularity and each individual can be characterized by a signature travel distance

and signification probability of visiting the same few locations. Radius of gyration,rg,

characterizes individual's average trip length by calculating how far their average

trajectory is from the center of the mass defined by all their trajectories, rg is also

approximated by a truncated power law:

P(Arg) = (Ar - g + r 0)(exp( )

Where or = 1.65 .15 and ro = 5.8 km and k = 350 km. This result demonstrates

that most people travel in a close vicinity to their center of mass.

Song et al. [44] show that exploration and preferential return can be used to

recover individual mobility patterns. They show that individuals explore, or visit

new locations, with probability Pe. = pS-y and they return to a previous location

with the complimentary probability Preturn = 1 - pS-^. For specific locations the

probability that an individual returns is proportional to the times they have visited

in the past. Their findings reveal the following highly non-random properties of

individual movement. The number of distinct locations a user visits at time t denoted

N(t) is expected to follow N(t) oc t" where p = 0.6 .02 and the visitation frequency

f of the kth most visited location follows a power law fk c k where r = 1.2 .1

A priori we would assume if residential segregation is highly clustered. individuals

would end up visiting locations with similar demographic features simply given their

proximity and nature of individual mobility patterns characterized above.

20



1.3.2 Mobility Studies

There are many studies that link individual mobility patterns to different aspects of

social and city structure. In [43] it is shown by incorporating the heterogeneity in

population distributions within cities and larger scales mobility can be modeled in a

closed analytical form. There are studies linking mobility patterns to the structure

of cities [38, 28] and quantifying interaction probabilities within cities [45]. In the

social realm [17] mobility patterns of different groups are analyzed to reveal in China

women and children travel shorter distances than men. Furthermore in [5] individual

visitation. patterns are shown to be closely related to the visitation patterns of friends.

Recently network science has been used to investigate properties of locations

using origin destination networks constructed from human trajectories. These studies

are powerful in revealing dynamic properties of locations while only studying static

topological network measures. Node degree and connectedness are two such mea-

sures that can provided context on locations. Community detection techniques have

leveraged network properties to reveal interesting characteristics about locations and

segmentations of the geography that are not visible in the political boundaries[46, 35].

Lastly we outline the only study we found using CDR data to investigate segregation

in the different activity spaces of residence, work, and other 148]. Using cellphone data

to identify user locations of home and work and preferred language, the authors are

able to assign ethnicity to user's as Estonian or Russian. They then go on to measure

co-presence of these two ethnic groups at different times and locations. Their analysis

indicate that at home and at work, the cellphone users experience varying degrees of

segregation but outside of home and work regions the segregation virtually vanishes.

1.4 Thesis Outline

The rest of the thesis will create an experimental framework to conceptualize and

quantify the effects of segregation on human mobility patterns.

In Chapter 2 and Chapter 3 we develop a methodology to incorporate individual

travel patterns into segregation metrics to better capture and characterize daily
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environments experienced by individuals. These reformulated metrics allow us to

glean interesting information about the importance of different locations to different

races and quantify the effect of trip distance on the exposure rates for different races.

In Chapter 4, we utilize two rank based models that to explicitly test the effects

of residential segregation on mobility patterns. In one model we use as input total

population, in the other we use only specific race populations to predict geographical

movement. We find the race blind model, which uses total population, reproduces the

empirical data quite well and the race aware model that uses only one race's population

distributions to predict that respective race's movement improves performance slightly.

These simple models provide a very powerful platform to understand the impact that

geographic patterning of segregation on the daily lives of user's who live in these

segregated areas.

The final chapter concludes this thesis.
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Chapter 2

Data Description and Experimental

Setup

2.1 Introduction

The pervasive use of cell phones has made CDR data an effective sensor of individual

mobility at an unprecedentedly granularity temporally and spatially. This data is

generated continuously and unobtrusively, as natural output of our daily life but

unlike data generated in labor intensive ways, like travel surveys, this data is not

neatly packaged, rather it is messy, incomplete, and enormous. Thus, it requires

careful preprocessing and treatment to extract meaningful information and leverage

its potential. In 114] population densities are estimated spatially at multiple time

scales using mobile phone traces, demonstrating the efficacy of CDR data in mapping

population level dynamics. Furthermore in the transportation realm, methodologies

have been developed to treat CDR data to create OD trips that match Travel Surveys

[1, 47]. These methodologies and validations demonstrate the use of CDR data to

efficiently mine the travel patterns of entire populations. In this chapter we outline

the CDR treatment and upscaling process by which this is possible. Since both OD

accuracy and segregation are sensitive to scale, we also evaluate a proper scale to

conduct our study and finally we choose two metrics, entropy and exposure, to measure

segregation.
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2.2 Data Description

2.2.1 Census Data

We use population tables from the 2010 American Community Survey (ACS) which

can be accessed through the US Census. The ACS randomly samples addresses in

every state in the US, around 1 in 38 households receive an invitation to participate in

the survey itself. After the data is collected, demographics are scaled up to represent

the entire population. Demographics are provided at many spatial scales, but census

tracts represent the smallest territorial unit for which population data is available. The

U.S. Census Bureau designs the tracts to be homogenous with respect to population

characteristics such as economics status, living conditions, and population [9]. This is

done as a means of creating statistically comparable geographic units. The census

tracts in our study region have an average of 4,809 inhabitants.

Below we examine racial and population characteristics of the 974 census tracts in

our study region. In Table 1 we calculate how many census tracts are predominately

of the races we consider: white, black, hispanic, and asian. We plot the racial

distributions within the census tracts and give the total populations in the legend of

2-1. Whites are by far the majority in population and there are very few census tracts

with a majority of minorities.

In figures 2-2 and 2-3 every dot represents 100 people of a particular race. For each

census tract, dots are generated and labeled with races according to their respective

racial population distribution described above. For the visualization, dots are uniformly

distributed within the borders of corresponding census tracts and colored by the race

they represent. We are left with a visual approximate of the racial composition of our

study area and a zoom in of the Boston Metropolitan area. These maps show 'our

study region is predominately white and fairly segregation. For quantification of this

segregation see Section 2.4.
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2.2.2 Cell Phone Data

Our CDR data set contains more than 8 billion anonymized mobile phone records,

obtained from several phone providers, covering approximately 2 million users in our

study area. The data spans two months in the spring of 2010. Despite the two month

coverage of the data set, only a few users are observed during the whole 60 day period

due to reindexing by the provider on the 17th day, other users are observed for at

most 17 or 43 days.

For each record we are given the following information: an anonymized user identi-

fication number, the latitude and longitude of the record, and finally the timestamp

at the moment of phone activity, this activity encompasses calls, text messing, and

web browsing. Typical cell record datasets are given with respect to cell towers, in our

case, the provider estimates the location of reach record using a triangulation scheme,

resulting in location accuracy of 200-300 meters.

2.2.3 Massachusetts Household Travel Survey

The Massachusetts Household Travel Survey (MHTS) contains information on 153,099

trips made by 32,739 people from 15,000 households 1331 during June 2010 and

Census Tract Population Distribution in Eastern MA

w e (towa : 3.6 . 10')

- tispaIc(tota: 4.0. 1i)

5W0 - asian (1: 3. 6)

MA Census # tracts
Total 974
Dominantly White 884
Dominantly Black 52
Dominantly Hispanic 24
Dominantly Asian 6
No population 8

Table 2.1: Census Tract Race Charac-
teristics
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Figure 2-1: Population Distributions

25



Figure 2-2: Study Area Distribution of Figure 2-3: Boston Area Distribution of

Racial Groups.Yellow represents white, Racial Groups. Same color scheme applies
Green represents black, Blue represents
hispanic, and finally Red represents asian.

November 2011. Each member of the household prepared a diary for one specified

day, they were asked to report all trips, models of travel, prices paid, and types of

activity at each visited location from the beginning to end of the day. The survey

also provides a scaling factor for each trip which we use to expand the survey data to

represent population level travel.

2.3 CDR Data Processing

2.3.1 Stay Extraction

The first step in the data mining process is to identify 'stay locations' which are the

locations where users engage in some activity. These stay locations can be distinguished

from pass by locations which are records made while traveling. We use a variant of the
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Hariharan and Toyama method [23] detailed in [25]. Once a stay point is identified its

location is set as the centroid of all the records belonging to that stay. The next step

is to identify stay regions from stay points. This is done because many different stay

points, identified from the same user's different trajectories, may in fact refer to the

same location. This step is done using a grid based clustering algorithm. In this study,

the maximum stay region is set to 300m to approximate the location accuracy. Finally,

once stay locations are determined we impose a duration criterion and consider only

those stay locations where we know the user has been for at least 10 minutes.

2.3.2 Activity Inference

Since trips are induced by purpose, it is necessary to fully understand the those

purposes before any analysis can be done evaluating personal preference. Some trips

are done out of necessity, like dropping your children off at school or going to work,

where as other trips like those for leisure activity are done from personal motivations.

Using the same methodology developed in [1] we assign labels to the stay regions

described above in order to generate trips by purpose. The stay process yields a

timestamp and duration for each stay location. Using this for each user, we are then

able to assign an activity type of home, work, or other to each stay location. Home

locations are defined as the most visited location on both weekends and weekdays

between the hours of 7pm and 8am. Since work hours are typically between 9am -

5pm we expect users to home between 7pm and 8am given a buffer time of travel and

after work activities. In essence we make the simple assumption that people spend

the night at their own homes.

For each user, work is defined to be the location, 1 E L that satisfies (2.1).

1 = arg max d, * ni (2.1)
1EL
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where:

L : the set of all stay locations visited by the user in consideration

d, great circle distance of location 1 from the user's home

nj number of times a user has been seen at location 1 on weekdays between 8 am and 7 pm

This definition of work is matches the pattern that work trips are likely to span

longer distances than non-work trips found in the MHTS.Once work has been estab-

lished for each user the following filters are applied. If a user visits work less than

8 times, or the distance from the user's home to work is less than 0.5 km, the stay

region is switched from 'work' to 'other'. As a result, not all users.in our dataset are

given work locations. These filters prevent the false identification of work based on

infrequency of visitation (which does not allow for certainty in classification) and or

proximity to home location (which could simply be noise in the signal).

2.3.3 Filtering and Expansion

To capture only those users who's home location is adequately represented in the CDR

data, we filter out any user who we have captured less than 8 times in their home

stay location. Accurate home location assignment is absolutely necessary in following

upscaling methodology. This filtering results in 335,795 users: an order of magnitude

larger than in most household travel surveys.

Next we upscale user trips to represent population level travel patterns we locate

the census tract containing each user's home location. Once this has been done for

every user, we have calculate an expansion factor as the ratio of residents as identified

in the CDR data and the census population from the ACS. If any tract has fewer than

10 CDR residents, the scaling factor is set to 0, so prevent the use of tracts where the

CDR data is under-representative.
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2.3.4 Inferring Departure Times

The stay process yields a timestamp and duration for each trip but this is only an

observation based on phone usage, that does not accurately correspond to when the

trip was initiated. Rather than using these times as departure times, we infer trip

departure by creating probability distributions from the 2009 National Household

Travel Survey (NHTS) and sample this distribution to account for this uncertainty.

We generate six hourly distributions for weekdays and weekends for the following

trip segmentations found in transportation literature: home-based-work (HBW),

home-based-other (HBO), and non-home-based (NHB). For each user, we sample the

corresponding distribution within an interval corresponding to two of their consecutive

stays occurring within a 24-hour period. Furthermore, if we do not observe a user's

last trip of the day to be at home, we create a new trip so they return home. Through

this process, we construct trip departure times on all days we observe each user.

2.3.5 Validation

We validate our departure process by comparing the CDR departure times with the

MHTS departure times to see that they match 2-4. We favorably find that the trip

departures seem to follow similar patterns with the noted exception of consistently

more CDR trips in the late night hours and smoother distributions as a result of the

sampling. While the abundance of trips in the evening compared to the survey may be

due to a slight mismatch between the frequency of calling and trip-making throughout

the day, it may also highlight an advantage of CDR data to capture late night trips

not typically reported in survey responses of an average day.

In 2.2 we compare the relative share of trips in each trip type category. Regardless

of the more trips being reported in the MHTS we find when we aggregated to the

town level we find almost perfect correlation between the two data sets. This suggests

that our inferences of home, work, and other activities and upscaling methodology

seem reasonable. We will further examine the effect of aggregation on correlation in a

subsequent section.
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Figure 2-4: distributions of hourly departure times for HBW, HBO, NHB, and total
average weekday trips in the CDR and MHTS datasets

HBW HBO NHB ALL
CDR (x 106) 2.8 7.8 4.7 15.3
MHTS (x 106) 2.0 8.5 6.7 17.2
Tract correlation .26 .64 .59 .59
Town correlation .96 .97 .98 .98

Table 2.2: Pearson correlations between MHTS and upscaled CDR for trips by different
purposes and aggregation levels

2.3.6 User Race Assignment

From the above we can be fairly sure that our assignment of user's home tract is

fairly accurate so we assign races to our users based on the racial distribution of their

home tract. We consider two options, first probabilistic assignment: given the racial

distribution of a given tract as I %white, %black, %hispanic, %asian], or for illustrative

purposes lets assume the distribution of tract A is [ 0.7, 0.2., 0.1, 0.0] we can assume
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each user living in that tract is 70% white, 20% black etc. When we consider their

trips, the same trip will have some probability of being each certain race. Although

this is a valid option to asses the expected value of all trips that minorities could

make, we opt to simply assign the majority race of each tract as our user's race. So in

the case of tract A, all users would be white.

In our study we want to asses the effects of segregation, more important to us

than assigning a user's race accurately, is observing the trip behavior emerging from

residentially segregated areas. If we choose to assign race probabilistically it would

dampen the effect of segregation we seek to measure. Each method of assigning race

has its downfalls in the obvious misclassification of user race. Thus the race assignment

in this study should not be thought of as the user's actual race, but as a user who

lives in a neighborhood dominated by their given race.

2.4 Segregation and Scale

Here we address the effect of scale on segregation in our study area as well as

the accuracy of our ODs. As noted before, aspatial segregation metrics rest on a

problematic assumption that the two cases in 1-1 are the same, they do not take

into consideration proximity and are subject to change given different scales. Much

segregation literature relies on the aspatial metrics that use census tracts as their

local contexts. The popularity of census tract arises from is availability and their

construction with respect to the statistical features mentioned above. Furthermore

census tracts are thought by many to represent real neighborhoods. Although the

tracts are drawn with statistical considerations in mind, the borders often follow

political boundaries such as town, county, and state lines. These boundaries were

drawn and stabilized decades ago, and have remained relatively static since, making

some census tracts seem arbitrary. Conventional census tracts studies face three major

criticisms [26]:

e census tract based metrics assume that each tract constitutes an appropriate

unit for capturing segregation, but does not account for the potential variation
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among regions. census tracts cannot distinguish when segregation changes over

short distances or larger distances.

" variation exists in the geographic area of tracts, which means the 'scale' of the

tract-based segregation is ambiguous

* treating tracts as spatially discrete has the consequence of treating all persons

within the same tracts are proximal but completely disjoint to residents outside

the tract, even at tract boarders

In [26] present the a methodology to overcome these issues. They superimpose

a gridded mesh onto the region and compute the racial distribution of the cells as

a weighted average of the population distributions from the tracts which intersect

the cell in consideration. Then they use a two-dimension biweight kernel function

that incorporates distance decay, thereby assigning more weight to closer cells, to

create a local context which can be used in any spatial segregation metric. This is an

elegant solution but cannot be applied in our case. Since we are working with origin

destination trips we need our level of aggregation to partition the space into discrete

units. Secondly we address the concern of varying geographic areas in census tracts.

The authors argue that the scale at which segregation is measured is ambiguous when

using census tracts since regions less densely populated are spanned by larger census

tracts. In our study region, we do see 2-5 there are a few census tracts that have

significantly larger area then the rest.

If we consider, however, what segregation indices are trying to gauge, which is an

individual's context it seems relevant to see the average travel distance for each census

tract. Below in 2-6 we see people who live in less densely populated areas make much

longer trips than people who live in densely populated areas. This would mean their

local context does in fact span a larger geographic area. Thus it might be better to

use varying geographic areas based on population density to capture local contexts,

and census tracts do just this, perhaps even better would be incorporating varying

levels of distance decay into the kernel functions. Nevertheless, we choose to use tracts
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Figure 2-6: Trip distance decays exponentially as population density increases in
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Although census tracts as our basic unit we examine the effect of scale by moving

to different levels of aggregation using k-means clustering. K-means clustering begins

with the choice of the number of clusters n. For various choices of n, we randomly pick

n (lat,lon) coordinate pairs in the study region to represent the centers of the clusters.

They are denoted as k,k = 1, ... , n. Each tracts's center location is denoted as a vector

Xi, for i = 1, ... , 974. The goal is to find an assignment of Xi to clusters, as well as a

set of vectors Pk, such that the sum of the squares of the distances of each data point

Xi to its closest vector pk, reaches a minimum. We use a 1-of-K coding scheme to

represent the cluster where data point Xi currently belongs. For each data point Xi,

we introduce a corresponding set of binary indicator variables rik E 0, 1, k = 1, ... , n

indicating the cluster location of data point Xi. Namely, if data point Xi is assigned

to cluster k then rik = 1, and rij = 0 for j -, k. We minimize the objective function,

J, which is the squares of the distances of each data point to its assigned vector ptk,

where J is written as:

974 n

J = E n|Xi - k 2  (2.2)
i=1 k=1

The distance IIXi - k 112 is the haversine distance between the two coordinate pairs.

To update rik and Uk iteratively we perform the following two steps until convergence.

1. While keeping Pk fixed find the values of rik which minimize J. That is, finding

the closest cluster to each data point.

2. While keeping rik fixed find the values of pk that minimize J. Since J is a

quadratic function of Ak we take the derivative of J with respect to ilk and set

it to zero and solve for Pk.

We must note that when using k-mean clustering, the resulting clusters will also

have varying areas 2-5 since the tracts they are comprised of have varying areas.

Thus the clusters near the center of Boston are much smaller than the clusters in the

western part of our study region. We believe this area distribution is more reflective of
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individual's local context than uniform areas as argued above. Once we have k-means

clusters at serval values, we examine how the segregation profile and OD correlation

is effected by scale. As we aggregated to form larger but less clusters, the accuracy of

our CDR OD trips increase, but the segregation profile decreases. This makes sense

because we are losing very small range trips which could be noise or which people may

not necessarily report in a survey. But as we aggregate we are in essence taking the

already small minority population in Boston and uniformly distributing them within

their respective clusters, making Boston seem more mixed than it is, so the H-index

decreases 2-7. This of course is the nature of aggregation and segregation will be

measured as concentrated on lower scales.

Scale Trade-Off
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Figure 2-7: The problem of
of segregation decrease

scale in our study, as correlation increases our measures

We choose to carry out our study on the level of the 350 k-means clusters to gain

some accuracy in our ODs but not allow the H-index to decrease substantially. We
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demonstrate how entropy and exposure change from the tract level to 350 cluster level

in the next section to provide a comprehensive evaluation of scale choice.

2.4.1 Metrics

Since we are not interested in one aggregate value of segregation but instead character-

izing the locations in individual trajectories we consider the individual contribution of

each tract and cluster. We use the values of entropy and exposure to characterize each

cluster. We compute the racial distribution of each cluster as the weighted average of

the racial distribution of each tract that cluster contains. Entropy is defined has the

individual contribution of each location to the H-index described in the segregation

literature review. Given the racial distribution of each location, which gives the

proportion, rir, of each race r within location i, then the entropy of location i is

written as follows:

Ei = rr log 4 7rir (2.3)
rER

We adopt the methodology in [24] to jointly understand segregation and diversity

through the examination of location entropy. The authors present a methodology to

characterize a racial continuum enabling a reinterpretation of the racial landscapes

of metropolitan places. They argue that segregation and diversity must be jointly

understood and not treated as binary opposites. We adopt their framework and

provide maps below to illustrate their characterizations of our study area in figures

2-8 and 2-9. Locations are characterized by "low diversity", "moderate diversity", and

"high diversity" based on their entropy scores.

The entropy limits of these labels are calculated based on bounding the racial

composition of each location. In our study, where we consider four racial groups, "low

diversity" locations have entropy value < .42. This value is determined based on

two criteria. First, this is the maximum entropy that can be reached if one of the

four racial groups constitutes 85% of the population- i.e. each of the other 3 groups
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constitutes exactly 5%. Secondly, if no group exceeds 80% a value less than .42 can be

reached. For example if a location is 75% white and 25% the entropy is 0.4, although

no group meets the traditional measure of group dominance of 80%, the tract is not

diverse as a whole. Those locations that are labeled "high diversity" have entropy

> .76. This limit ensures that no group constitutes more 45% and the tract's top

two groups have a combined percentage of < 80%. Locations labeled as "moderately

diverse" are those locations not captures by the other two categories.

In figures 2-8 and 2-9 we present the entropy of tracts and clusters, so we can

examine our study area in terms of segregation and diversity, as well as contrast the

difference between the two scales.

Figure 2-8: Entropy of tracts in our study region. The same color scheme we have
used thus far applies, dark yellow refers to "white majority and low diversity", light
yellow refers to "white majority" and "moderate diversity" and this convention holds
for all races. Grey indicates "high diversity".

Entropy is a measure along the evenness dimension of 1-2, to measure the other

axis we use the measure of exposure. Exposure is a measure used to capture the

average percentage of race m present in the local environments of race n, denoted

,Pm. In aggregate the measure of exposure is:

nPm = * In (2.4)
1EL M
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Where L is the set of all locations, Tm is the total population of race m in the

whole study area, rm is the population of race m in in location 1, 7, is the proportion

of race n in location 1. As before, we present the exposure at the tract and cluster

level to highlight the effect of aggregation on our metrics of segregation 2.3 .

2.5 Discussion

Here we presented a method of treating CDR data to represent population scale travel

patterns. We detail this process because establishing accurate home locations is also

used in assigning a race to our users. This race should not be thought of as the user's

actual race but more a racial representation of their home tract.

We also carefully consider the effect of scale on OD accuracy on two different

segregation metrics, entropy and exposure. We find the 350 clusters we use through

the rest of the study do not differ substantially from the tracts in exposure. The

aggregation to clusters does however change levels of diversity which is reflected in a

lower H-index score.

When considering aggregation strategies the choice of k-means over a gridded mesh

scheme was deliberate. Even at the fine scale of 1km the mesh distorts geography as

Makden

Csmbridga
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Figure 2-9: Entropy of 350 k-means clusters in our study region. There are no longer

any minority majority with "low diversity" clusters because of redistribution of tract

populations within the clusters.
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race x race y tract cluster
w w 0.83 0.82
w b 0.05 0.05
w h 0.06 0.06
w a 0.06 0.06
b w 0.47 0.50
b b 0.32 0.29
b h 0.15 0.14
b a 0.06 0.06
h w 0.54 0.57
h b 0.14 0.14
h h 0.25 0.22
h a 0.06 0.06
a w 0.69 0.71
a b 0.08 0.08
a h 0.08 0.08
a a 0.15 0.13

Table 2.3: Exposure of all 16
At the cluster level minorities
racial group

race combinations at the tract
are more exposed to white and

level and cluster level.
less exposed their own

well as the racial compositions 2-10 and for substantial OD correlation gain we would

have to aggregate these cells to coarser levels compounding these problems.

Figure 2-10: gridded mesh, each cell is 1km2, imposed over the Boston area and the

entropy of the resulting racial distribution

In this chapter we have spent time characterizing local contexts at the tract and

cluster level and getting validated OD by purpose. Now we can couple these two

and begin to characterize characterize how the visitation patterns emerging from

residentially segregated area's differ by examining the local contexts they choose to

visit.
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Chapter 3

Mobility by Race and Extensions of

Segregation Metrics

3.1 Introduction

The goal of segregation metrics is to characterize the local environments of individuals

and assess how these environments differ across races. In the perfect study, we

would be able to construct ego-centric environments for every individual and would

characterize these. This data is not available and most studies have only considered the

aggregate data available in the census. Here we introduce data on upscaled individual

trajectories into these metrics taking us one step closer to constructing these ego-centric

environments of an ideal study. These trajectories allow us to understand the locations

that individuals visit in their average day giving us a much more comprehensive idea of

what they are really exposed to rather than only characterizing the local environment

of their home locations.

We begin by showing that most people's travel patterns display remarkable regular-

ity, with many visits to only a few locations which demonstrates that an individual's

trips in an average day will be representative of their experiences in aggregate. Once

we have this established, we reformulate the measure of entropy and exposure to incor-

porate the racial compositions of the locations visited. We argue these reformulated

metrics more closely approximate the environments of individuals as well as reveal
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interesting characteristics of the locations themselves.

3.2 Mobility Metrics

We begin by measuring a few standard mobility metrics to demonstrate the highly non-

random behavior of individual's aggregate mobility patterns 3-1. Firstly we measure

each user's regularity, R(t), which is defined as the probability of finding the user at

his/her most visited location during hour t. R is a lower bound on the predictability

of each user where as tighter bounds would consider temporal correlations. We see

that R is time dependent but is relatively stable across users and races. R peaks at

night when people are most likely home and reaches its minima in the afternoon. To

complement this measure, we calculate the total number of distinct locations N(t) a

user has visited each hour and we can see the moments of low regularity correspond to

significant increase in N, and similarly N attains it minimum when R reaches its max.

These measures show us some temporal characteristics of mobility: that individuals

tend to be home at night and travel during the day and are consistent with those in

[44]. The bottom two plots f(k) and P(Nj) show us that users spend most of their

time in few locations.Ni is the number of locations visited by user i in the complete

data set, and P(N) is the probability of finding a user who has visited N locations, we

see that most user's have only visited 10 locations during the two month span of our

data set. The plot of f(k) measures how often a user visits their kth most frequented

locations, it shows us user's frequent only a few locations and rarely go to many others.

Since individuals tend to be highly regular we can characterize these few locations

they visit to obtain a representative picture of where they spend their time.

3.3 OD Network Generation

Here we construct OD networks to measure aggregate patterns arising from residentially

segregated areas. We also use features of these networks as input for our reformulated

segregation metrics. We construct the network as follows: each node represents a
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particular cluster, and edges are present between nodes if a trip has occurred between

the two locations. The weights on the edges tij are the sum of daily flows from i -+ j,

hence the network is directed. The cluster network has 350 nodes, the weights tij, are

found from the trajectories from the same users discussed in Chapter 2. We focus on

the average daily HBO trips based on the belief that these trips are most likely to

stem from individual choice, but the methodology we develop can be applied to any

trip network.

In fig 3-2 we see that the networks arising from the predominately minority areas

actually stay pretty close to those areas, and many of the longer range connections are

between other area's that have higher densities of the same respective minority. For

example we see connections from predominately asian sections of Lowell to Malden
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Figure 3-2: HBO OD Networks by Race, the edge opacity and width is determined by
the weight on that edge.

where there is another large population of asians.

3.4 Segregation Metrics Reexamined

We reformulate traditional measures of segregation, namely entropy and exposure to

include dynamic properties of individual mobility. These measures are often cited as

proxies for understanding the local environments of minorities, but a more accurate

understanding would incorporate data, on where these individuals go throughout the

day. Nevertheless, to retain the simplicity of the exposure and entropy metrics, instead
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of creating unique metrics for each user and averaging over all individuals, we use

topological properties that characterize the dynamics of our OD networks as input,

which previously used static measures of population distributions as input.

3.4.1 Entropy

We reformulate the entropy metric to include a more accurate picture of people's

whereabouts in order to characterize locations. In the pervious chapter, we jointly

considered the diversity of each location as well as geographic segregation by coloring

the locations by their majority race.Instead of measuring the static distributions of

locations, we measure the diversity of visits to each location formulated as follows:

Let L be the set of all locations. Firstly, for each location i E L: we compute s ,

the incoming strength in the OD-network defined by race r. Next, we normalize by

total incoming strength in r's network , s , this gives us the overall importance

of location i in each race network. Because we have many more white user's than

minorities normalization ensures we weight each network equally and are measuring the

locations importance in each network, rather than absolute visitation values. Finally

we compute the entropy, Ei , of these normalized values.

sr = t

jEL

r lg4 r
rER total total

Downtown Boston and South Cambridge are shown to be important locations in

all race networks but there is not much diversity in visitation elsewhere 3-3. This

would indicate that downtown is a place where all the races might encounter one

another, in other words, locations with high exposure.
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Figure 3-3: Entropy of each location's visitation patterns. Dark yellow refers to a

location that is most important in the white network and "low diversity", light yellow
refers to a location that is mostly important in the white network but "moderate

diversity" in network importance. This convention holds for all races. Grey indicates

"high diversity" meaning locations that are important in all networks.

3.4.2 Exposure

Exposure is traditionally a measure used to capture the average percentage of race m

present in the local environments of race n. Here we measure a weighted exposure

of all destinations in each race network and further examine exposure as a function

of distance. Recall that 7rim is the proportion of race m in location i, we reformulate

exposure using the same notation as for entropy:

n

nPm = *n7im

iEL total

In 3.1 we provide the exposure of race x to race y measured using the incoming

strength of all destinations in the OD network defined by race x.

It is interesting to notice all races are more exposed to white while traveling than

in the static measures 2.3, while same race exposure remains significant. Next, we

examine how exposure changes given trip distance. Given that most most trips in

our OD networks occur between 0 - 5 km with very few above 25km 3-4, we measure
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race x race y cluster
w w 0.79
w b 0.06
w h 0.06
w a 0.07
b w 0.30
b b 0.47
b h 0.16
b a 0.05
h w 0.41
h b 0.05
h h 0.48
h a 0.03
a w 0.52
a b 0.08
a h 0.10
a a 0.28

Table 3.1: Exposure of all
each races' OD network.

16 race combinations averaged over all the destinations in

exposure in the following intervals d

the exposure is formulated below:

Sr

jELs= Z i
nPm = I: Sn* Tim

iEL total

= [0, 1, 5,10,25, oc]. For each interval [dk, dk+l)

if dk < h(i, j) < dk+1

In figure 3-5 as distance increases exposure to white people increases and exposure to

one's own race decreases but remains somewhat high also exposure to other minorities

does not increase at any distance. This seems like it might be inflated due to the

inclusion of home locations but we see similar exposure, patterns in the NHB network

3-6. We do not include all the same analyses for the NHB network for the sake of

brevity, but it is worth noting these patterns appear with or without the inclusion of

home locations.

Threshold models used in segregation literature often cite that there is tolerance
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Home-Other Distance Distrubtion

14 1 iii'

d. dilm km

Figure 3-4: Probability distribution of HBO trip lengths

parameter governing residential movement. Inspired by this, we create probability

of visitation functions with respect to the racial composition of local environments.

What we see in 3-7 seems intuitive, each race has a higher probability of visiting a

cluster that has a larger proportion of their own race.

From 3-5 and 3-7 we see a stark pattern emerge: even during daily travel races

are likely to visit locations that are dominated by their own race. Although we have

looked at exposure by distance we need to fully untangle how much of these effects

are due to the geographical clustering of residential segregation. We address this

in following chapter using two different mobility models that implicitly incorporate

geography and population.

47



Exposure by Distance (clusters)
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Figure 3-5: Each subplot represents the exposure for one race, in the top left we

measure white exposure, the yellow line represents the exposure of white to white and

the black line represents the exposure of white to black. etc. For all minorities as

distance increases exposure to white increases and exposure to their own race decreases

but remains higher than exposure to any other minority group
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NHB Exposure by Distance (clusters)
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Figure 3-6: The same exposure metric as 3-5 calculated using the non home based

OD network. Although the effects are slightly dampened when compared to 3-5 the

same patterns are still apparent.
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Visitation Patterns in Home-Other Trips
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Figure 3-7: Visitation utility functions for each race
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Chapter 4

Incorporating Race into a Mobility

Model

4.1 Introduction

In describing collective movements the gravity model [31, radiation model [431 and

variants of these aggregate models [2, 18] have been widely adopted to predict OD flows.

The gravity model assumes that trips between origin and destination pairs decay with

distance. The doubly constrained gravity model has been shown to preform well at

many scales but grows in computational complexity as the number parameters increase

whenever the number of zones in consideration grows. Furthermore, to properly to

calibrate the parameters the model requires accurate input of the total trip production

and the attraction volumes. The intervening opportunity model alternatively argues

that trip volume decays with respect to the number of opportunities between an origin

and destination. The radiation model, inspired by the intervening opportunity model,

uses population density as an approximation of opportunities. It offers remarkable

flexibility and simplicity due to its closed analytical form of the tj distribution written

below:
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ti -= ti (4.1)
(Pi + Pig)(Pi + Pi + P)

Where tij is the flow from location i to j and P is the population at i and Pi is

the population in all locations closer to i than j, excluding both i and j. Thus, the

radiation model implicitly incorporates the heterogeneity in population distributions

when predicting flows. Nevertheless the performance of both models have been shown

to vary in different scenarios [31]. Here we use a parameter free rank based model

presented in [27] that has been validated at the intra-urban and inter-urban scale. This

model uses spatial population distributions, similar to the radiation model, to compute

ranks for locations and predicts trips inversely proportional to the rank of a location

pair. The radiation model uses the same data but has been shown to lose accuracy at

the intra-urban scale [51]. For our purposes this represents the perfect model to test

whether the visitation patterns 3-7 and exposure stability of minorities to their own

race regardless of distance 3-5 is simply due to the spatial patterning of the minority

populations. In order words we want to test if these results are simply the effects

of residential segregation, or whether they stem from a minority preference to visit

locations that are similar to their home locations with respect to racial composition.

4.2 Model description

We utilize the rank model presented in [27] which provides a simple and stable formu-

lation to predict mobility fluxes at several scales and implicitly geocodes geographic

population density information, providing a powerful framework to test different

variations of population. the implicit geography considerations of the model also form

to make our analysis inherently spatial and not subject to the problem of scale. Thus

we are afforded a null model. If total population is able to match the mobility patterns

arising from all different segregated areas, that shows that the exposure and visitation

patterns are simply due to the geographic nature of the residential segregation in the
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area, whereas if using only a minority's population to predict their own trips we could

assume individuals are moving with some preference. The latter also encodes spatial

information on the distribution of minorities.

The model is formulated from the perspective of locations, where the likelihood of

a trip from origin o to destination 1 is a rank function depend by the population that

lies within a circle centered on o with radius of the distance between o and 1 denoted

h(o, 1) the haversine distance function.

ranko(l) = ( P (4.2)
iES

Where S is the set of all locations closer to o than 1 that is neither o nor 1. So the

rank is simply the P1 from the radiation model. Letting t(q) be the total number of

trips that occur with the same rank q, the ratio P(q) can be defined as:

P(q) = (4.3)
E P P

ranki (j)=q

The denominator is the total number of pairs of people with location rank q, or all

the people that could possibly make a trip with rank q, they find the probability of a

trip with rank P(q) oc 1. Since the the probability of a trip with rank q is inversely
q

proportional to the rank itself, rank might be more suitable than geographical distance

to characterize human movement. In terms of the above equation the rank based

mobility model is formulated as such:

ti - tiP(ji) 1
PiPj P2Pj ranki(j) (4.4)

Then P(jli) is normalized to:
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P.

P( j~i) = rank () (4.5)

k~i ranki (k)

When the locations are fine grained and there are a relatively high number of them

the denominator can be approximated by:

ranki(k) - ~ InM (4.6)
k~i n1

Where M is the total population. This allows us to model the flow tij as:

PP
- ranki (j) PitZ -= ti- at k M (4.7)

Pak () ranki (j) In MZranki(k)

In relation to the radiation model:

P-
tij N P (4.8)

ranki(j)2

and in the case of this rank model:

tij OC ) (4.9)
ranki (j)

Since the radiation model prefers trips with smaller ranks, meaning shorter dis-

tances, this could explain why the radiation model is not suited for intra-urban trip

prediction but rather longer range commuting fluxes.

We apply the rank model in two cases, one where we use the total population P

of each location i to calculate ranks and predict t for each race r. In the second
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version we use only the population of race r, Pi of each location i to calculate ranks

and predict t ' for each race.

4.3 Results

To evaluate the performance of both models we use a metric based on the Sorensen

index which is used to quantify what extent the model predictions can reproduce the

empirical tij distribution. The measure is defined as:

2 Z min(tij, t'3 )
SS =j (4.10)

where tij represents the real OD pair and t' represents the models prediction. The

measure of 1 means complete equality and 0 means total disagreement. In 4.1 we

evaluate the performance of both models against the empirical race networks when

predicting trips within segregated areas. We see that the race aware model does

significantly better than the race blind model in all minority cases.

Race Aware Model (SSI) Race Blind Model (SSI)
white .68 .66
black .63 .47

hispanic .58 .47
asian .36 .08

Table 4.1: race aware and race blind model performance. The race aware model does
much better in predicting minority fluxes

4.4 Discussion

Prediction based on the rank based models only depends on the population of locations

and their relative rank, indicating that collective human mobility is largely driven by

geographical distribution of population. Nevertheless, the larger increase in perfor-
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mance of the race aware model would indicate that it is not the simply total population

which matters for prediction the mobility fluxes of minorities. By incorporating racial

demographic information in mobility prediction we show a significant improvement in

model performance, meaning not only do we organize residentially according to racial

preferences, we move according to these as well.
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Chapter 5

Conclusions

Racial segregation in residential areas is an enduring social phenomenon that has

been extensively studied with respect to both its causes and effects. Since then,

sociologists have characterized the dramatic impact of segregation in neighborhoods

on the economic outcomes of residents: specifically, it can lead to cultural isolation,

concentrated disadvantage, heightened exposure to criminality, and reduced access to

resources and opportunities More recently, economists have marshaled evidence to

demonstrate how neighborhoods, their economic opportunities and social structure

are absolutely critical in the economic success of children who grow up in them.

These studies clearly demonstrate the dramatic influence of neighborhoods, yet

contemporary characterizations of neighborhoods rely on static descriptions of popu-

lations constructed from survey and census data. Although census figures can show

remarkable changes in the racial compositions over long periods of time, they provide

only a glimpse of neighborhood exposure since they fail to capture any dynamic aspects

of an individual's experience. Essentially, census data characterizes only where people

sleep, not where they work or visit. As access to and efficiency of transportation in

urban areas increases it has allowed for individuals move freely and municipal borders

alone have become less meaningful indicators of where people spend their time. So

incorporating mobility choices into metrics assessing exposure and neighborhood effects

is increasingly important. Here we leverage daily trajectories of Boston residents to

better understand the environments where individuals spend their time.
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In this work we develop a unique platform to asses the socio demographic charac-

teristics of the locations minorities visit. We do so by firstly cleaning, treating, and

transforming noisy CDR data into meaningful and validated OD trips by purpose.

The assignment of purpose allows to consider different trip types when characterizing

individual's destination choices. We choose to study home based other trips because we

believe they are mostly likely to be motivated by individual choice, while also retaining

individual's home locations where people spend most of their time. Nevertheless, the

framework we develop can be applied to any trip type, and in future studies we should

consider all trips to get an accurate portrait of users' complete days.

Once we have created ODs that represent population scale travel patterns we

create OD networks and use the topological property of node strength as input for

reformulated metrics of entropy and exposure. By reformulate these measures to

incorporate the racial compositions of the destinations users' visit, we are able to to

better capture and characterize individual environments. The reformulated entropy

metric reveals places of high mixing in the networks, or locations that are important in

all race networks and the reformulated exposure metric shows that distance increases

exposure to white but exposure to one's own race remains relatively constant after

5km.

Finally, we utilize two rank based models that implicitly incorporate geography

and population distributions to explicitly see the effects of residential segregation

on mobility patterns. We find the race blind model, where the total population is

used to calculate the ranks and predict flows, does not accurately reproduce minority

trips within segregated areas. We demonstrate how incorporating racial preferences in

mobility choices can recover empirical mobility patterns, implying that many home

other trips are induced by racial preference.

These simple models provide a very powerful platform to demonstrate that geo-

graphic patterning of residential segregation has a stark effect on what minorities are

exposed to during the day but also reveals that geography is not the only factor at play.

The significant increase in prediction accuracy of our race aware model demonstrates

racial preference in mobility patterns. This work further add value to the mobility
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modeling community, as we demonstrate a method to improve existing model and

increase prediction accuracy. Taken together, this study demonstrates the potential

and value of CDR data reaches far beyond simply predicting geographic movement, it

can be used to consider human behavior from social and contextual perspective.
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