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ABSTRACT1
Urban air pollution imposes major environmental and health risks worldwide, and is expected to2
become worse in the coming decades as cities expand. Detailed monitoring of urban air quality at3
high spatial and temporal resolution can help to assess the negative impacts as a first step towards4
mitigation. Improvement of air quality needs a variety of measures working together, including5
controlling industrial pollution and mitigating automobile emissions. In contrast to the measurable6
industrial pollution, in many of the developing countries, the impact and control of automobile7
emissions on air quality is neither well understood nor well established. Moreover, the automobile8
emission data sets are difficult to collect. In this paper, we present a data analysis framework9
to uncover the impact of urban traffic on estimating air quality in different locations within a10
metropolitan area. To that end, we estimate the traffic surrounding 24 air quality (AQ) monitoring11
stations in Beijing, combining mobile phone data and road networks with a traffic assignment12
model. We investigate how the amount of traffic surrounding each station can impact the modeling13
of air quality index (AQI) observed by the stations. We separately estimate the contribution of14
traffic information to the modeling of AQI with regression models in the summer and winter.15
Further, we group the AQ monitoring stations into four classes, and show that in the summer, air16
pollution in the inner city is generally more severe than that in the suburbs due to urban traffic;17
while in the winter, air pollution in the south of Beijing surpasses that in the inner city, most likely18
due to heating using coal.19
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INTRODUCTION1
With the rapid urbanization and the acceleration of industrialization, today’s air pollution has be-2
come a global threat of human health, especially for the large scale and densely populated cities3
in developing countries (1, 2). As pointed by the World Healthy Organization (WHO), in 20124
around 3.6 million people died – 16% of total global deaths – as a result of ambient air pollution5
exposure, which makes it the largest environmental risk to the health of human beings. Moreover,6
exposure to air pollutants is largely beyond the control of individuals and requires action by public7
authorities at the national, regional and even international levels.8

It is important to detect pollutants in the air, to explore their sources, and to model their9
temporal and spatial patterns, in order to make policy recommendations to mitigate their negative10
impacts. To better predict air quality (AQ), the relationship between the sources and AQ needs to11
be examined and clarified. The sources of air pollution are usually divided in 4 categories: sta-12
tionary, such as industries; mobile, such as transportation sources; area, such as agricultural areas,13
cities, and wood burning fireplaces; and natural, such as dust and wildfires. The first two of them14
are human related factors and represent research priorities in the literature. Mobile sources include15
motor vehicles, marine vessels, and air-crafts. Among them, the exhaust emission of motor ve-16
hicles is one of the primary factors that influence AQ in urban areas (3, 4). Consequently, clear17
impacts between traffic and AQ may inform environmental policies. To examine the impact of18
traffic on air pollution, McHugh et al. updated an atmospheric dispersion modeling system with19
a traffic emissions database (5). Several studies measured the impacts of traffic and meteorology20
on air pollution measuring data near roads (6, 7). While these studies are detailed on the chemical21
processes, they do not cover the entire city. Using a data analysis perspective, Zheng et al. studied22
the variations of air quality in space and time in the entire Beijing region via machine learning23
techniques, combining multiple data sources including taxi data, number of facilities, and the road24
network data (8). In a related work (9), they predicted air quality in each station, informed by his-25
torical AQ and meteorological data, and weather forecasts without considering traffic conditions.26

We focus our study in Beijing, which is one of the most congested and polluted cities in27
China. Improving AQ in Beijing, is a top-priority locally, that has attracted the world’s attention28
in the past few years. These efforts are compromised by the rapid growth of motorization and29
urbanization (4). Fig. 1 shows the noise-removed values of air quality index (AQI), wind speed,30
and humidity from April 1, 2014 to May 1, 2015 in Beijing. The figure represents the variation31
of AQI at 24 AQ monitoring stations within the Sixth Ring Road of Beijing. Higher AQI values32
indicate worse air quality. Specifically, AQI values in the range of 0-50 are established as good33
air, 51-100 moderate, 101-150 unhealthy for sensitive groups, 151-200 unhealthy, 201-300 very34
unhealthy, and 301-500 hazardous. We see that in general the AQIs in Beijing in the observation35
period are from moderate to unhealthy. However, they are more stable and lower in the summer36
(May to October) than in the winter (November to March). Also the wind speed and humidity show37
different patterns in the two seasons. In the present work, we seek to uncover the contributions of38
traffic to the air pollution modeling in the summer and winter separately.39

Our work contributes to the types of studies presented in Refs. (8, 9) in three major aspects.40
First, we establish separate models—one for the winter and one for the summer—to gain better41
understanding of seasonal effects of AQI. Second, to investigate the different spatial impacts of42
urban traffic on AQI, we separately model their relationship by station, taking into account a set of43
online publicly available daily traffic congestion index (TCI) reported by the local transportation44
committee to reflect realistic daily traffic conditions. Finally, we enrich the on-line TCI with a45
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FIGURE 1 Variations of AQI, wind speed, and humidity from April 1, 2014 to May 1, 2015
in each of the 24 air quality monitoring stations within the Sixth Ring Road of Beijing.

travel demand model. We calculate the collective travel time (CTT) of all vehicles surrounding1
the AQ monitoring station, which is estimated from a mobile phone data based travel demand2
model and traffic assignment model integrated with the TCI. Relating traffic with the actual number3
of drivers and their origins and destinations is crucial to mitigate congestion in the urban road4
network, which can take into account AQ impact.5

In the next sections, first, we discuss the mobile phone meta data and results from the6
call detail records (CDR) to inform a travel demand model. Second, we analyze the importance of7
traffic information to the prediction of AQI and the diversity of AQ in space per season. Concluding8
remarks and directions for future work are given in the last section.9

DATA AND METHODOLOGY10
Travel demand estimation from mobile phone data11
We estimate the travel demand for the 19.4 million residents living in the urban area of Beijing.12
This is commonly referred to the region within the Sixth Ring Road, shown in Fig. 2a, which13
has 5.6 million privately-owned vehicles registered in 2013 (10). To our knowledge, our work14
constitutes the first traffic estimates of the region based on mobile phone data for Beijing.15

Alexander et al. and Colak et al. outlined a general framework to obtain Origin-Destination16
(OD) matrices from massive mobile phone data (11, 12). We apply the same methods to extract17
trips of users, and estimate the person and vehicle travel demand by combining them with census18
data within the Sixth Ring Road of Beijing. Fig. 2a shows the map of Beijing with the AQ stations19
marked by blue circles. We focus our study in the inner area marked in darker green.20

First, we extract stay locations of massive anonymous users from raw mobile phone data,21
and labeling activities with home, work and other. Second, we infer number of trips among the22
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stay locations of users by different time of the day and by purpose. Combining with census data,1
we expand mobile phone users to total population, and estimate an OD matrix for an average day.2
Next (an innovative step proposed by this study), we generate a series of day-specific OD matrices3
by using local reported daily traffic congestion index for the city, which allows us to fluctuate the4
average daily OD to reflect the realistic daily traffic conditions. We then assign the daily vehicle5
demand to the road network.6

Mobile phone data7
The mobile phone dataset contains 100,000 users with their call detailed records (CDR) and data8
detailed records (DDR) for December 2013. Each record of the CDR and DDR data has a hashed9
ID, time-stamp, longitude, and latitude of the cell tower when the phone communicated with it.10
According to Voronoi tessellation, the average distance between towers is 332 meters (with a me-11
dian of 254 meters), representing the spatial resolution in the study. Fig. 2b shows the flow between12
tracts for the morning peak (6am-10am), obtained using the mobile phone data as proxy for sur-13
veys, with the methods detailed below. Fig. 3a shows the average number of phone usage records14
per day that a user has during the whole month. As we see the majority of users are active with an15
average of 15 records per day.16

ba

#Trips

AQ station

FIGURE 2 Study Area. (a) The boundary of the whole Beijing, it is about 16,410km2. The
city area is the greener area, within the Sixth Ring Road, marked by the outer purple line.
The blue circles are 35 air quality (AQ) station. (b) Trips between origin destination (OD)
pairs in the Morning peak (7am-10am) in urban Beijing.

Mobile phone carriers use methods to execute tower-to-tower call balancing to improve17
their service. This generates signal jumps that introduce noises, appeared as fast and long move-18
ments beyond a travel speed limit. To eliminate this artifact, various methods have been reviewed19
in (13). One of the simplest yet effective methods is to remove the next record if the the inferred20
speed between two records is beyond reasonable speed limit. However, it heavily relies on the cor-21
rectness of the first record. To improve its accuracy, we check if the first record is a noise —if the22
speed between the first and the second record is beyond a predefined speed limit, we then remove23
the first record. We repeat this process until there is no artificial jumps between two records. Next,24
we distinguish stay-point and pass-by from the remaining records.25
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FIGURE 3 Traffic model of Beijing. (a) The distribution average daily records among the
100,000 mobile phone users (b) Validation of the estimated number of work trips vs. employ-
ment information from Census data (c) Estimated fraction of trip departures per hour of the
day. (d) Estimated volumes of cars in the streets per time of the day.

We improve upon the stay-point algorithm presented in (13, 14) as follows. (i) we apply1
a temporal agglomeration algorithm. The temporally consecutive records within a certain radius2
(e.g., 500 meter) are bundled together with a updated stay duration from the start time of first record3
to the end time of last one. (ii) We then label the records as pass-by points and stays, according4
to the stay duration threshold (e.g.,10 minutes) based on the local context in Beijing. In analysis5
hereafter, we only focus on the stays. We then combine all the spatially adjacent stay points for a6
user (within a threshold) as his or her stay regions, which will be later labeled as home, work, and7
other. For this spatial agglomeration, we use R-tree to accelerate the computation (15). R-tree is8
a type of spatial B-tree, a spatial search balancing tree that checks the boundaries of elements to9
make the search faster (see details in Fig. 4). We then get a mapping relation between stay points10
and stay regions.11

Stay detection and activity labeling12
We then estimate the type of each stay location for every user, classified as home, work or other.13
The most visited location during weekday nights and weekends are labeled as home, and the most14
visited one during weekday working hours (at least 500 meters away from home) is labeled as15
work, and the rest are labeled as other. We assume that within 500 meters, it is not necessary to16
travel by car.17

Vehicle demand estimation18
After labeling the activity type, we estimate residential and working population within each zone19
(i.e, a Voroni polygon generated from towers), and calculate an expansion factor by dividing the20
number of phone users by total population for each zone. We aggregate the population data at21
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FIGURE 4 Algorithm used for detection of stay regions from mobile phone traces

the 100 by 100 meter grid level obtained from WorldPop 1 to the Jiedao level (census zones1
comparable to towns in U.S.). We compared the total population obtained from WorldPop with2
the Beijing Census data (2010) at the Jiedao resolution, and they are in good agreement. We3
compare the home-work trips generated by our model with the census employment statistics at the4
Jiedao level, only taking into account the phone users with labeled work location. We find that5
our employment estimation is in reasonable agreement with the Beijing 2nd Economic Census (see6
Fig. 3b).7

Trips are then assigned a trip purpose: home-based-work (commuting), home-based-other,8
and non-home-based, according to the inferred locations of two consecutive stays. We then get an9
overall average departure time distribution from all the trips normalized by the number of active10
days, and an expansion factor for each user. Although a travel survey from Beijing is not available11
to us at the moment, this method has been approved in other cities with their travel surveys (11,12
12, 16). In Fig. 3c, we show the estimated fraction of trips per hour in an average day.13

We obtained OD matrices by different time periods of an average weekday according to14
the departure time at both the Voronoi polygon and census tract level, where the number of trips15
are expanded by the expansion factors. To consider trips made by motorized vehicles, we weigh16
obtained person trips by vehicle ownership rates at the district level which is larger than Jiedao17

1http://www.worldpop.org.uk/data/methods/
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(e.g, with 18 districts in Beijing). According to the 2013 Beijing Year Book (10), due to local1
traffic regulation policy, around 20% of cars are restricted not to travel on the road according to2
their car license numbers. We multiply 0.8 by all trips, as each day two license ending-numbers3
are restricted by the city. The other factor is the vehicle usage rate— many people who own cars4
tend to use subways rather than driving to avoid traffic congestion in peak hours. Consequently,5
we assume a factor of 80% for all tracts, and this step is yet to be improved with more accurate6
car usage rate data, which is not available at high resolution. Finally, with a traffic assignment7
model (17), we assign the vehicle ODs to the road network resulting estimates of travel time and8
car volumes for each segment of the road network.9

Day-specific travel demand estimation10
We extend the average 24-hour demand calculated from mobile phone data to day-specific ODs11
using data reported on traffic congestion index (TCI). TCI is published by Beijing Transportation12
Research Center (BJTRC) (18) and ranges from 0 to 10. As explained by BJTRC, 0 indicates all13
vehicles in the road network traveling in free flow speed; 10 indicates the travelers on average take14
double free-flow travel time on the road segments. TCI reflects the degree of congestion, other15
than the faction of travel demand. We use them, however, as a source of of information to generate16
variations in demand, with the following equation:17

fd =
TCImax +TCId

TCImax +TCImean
(1)

where fd is the demand factor on the dth weekday in our data set; TCId is the value of TCI on the18
dth weekday; TCImax and TCImean are the maximum and mean TCI of all weekdays, respectively.19
As a result, the zone-to-zone OD matrix is scaled with the demand factor fd for each weekday. In20
our experiments, fd ranges from 0.65 to 1.31. This means that during weekdays from April 201421
to May 2015, we allow for fluctuations in traffic congestion, introducing a degree of uncertainty22
in the proposed travel demand estimates, enriched by the variations reported by in the TCI on the23
same days over which we will model the AQIs.24

Traffic Assignment25
To estimate the traffic state and travel time of drivers, we assign the vehicle demand to the road26
network using a user equilibrium (UE) model. A UE model assumes that all of the travelers in27
the road network try to find their routes with respect to the shortest travel time (19, 20). The28
road network of Beijing within the Sixth Ring Road is extracted from OpenStreetMap (21). We29
extracted or estimated requisite attributes of road segments, including free flow speed, capacity,30
length, and number of lanes, from OpenStreetMap.31

The road network is represented as a directed acyclic graph (DAG), G(N ,E), where N is32
the set of all nodes, E is the set of all edges. In our implementation of the UE model, the anticipated33
travel time on each edge e is calculated by the Bureau of Public Roads (BPR) function:34

te =

(
1+α

(
ve

Ce

)β
)
× t f

e (2)

where ve is the number of vehicles attempting to use edge e per hour; Ce is the capacity of the edge;35
t f
e is the free flow travel time on edge e and is estimated using the limit speed of the edge; α and β36

are two coefficients and we are using α = 0.18 and β = 4 in our experiments.37
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To solve the UE model, we minimize the distance between the optimal solution and the1
current solution in an iterative process (22, 23). In our work, the distance is measured using the2
following equation:3

rg = 1− ∑o∈O,d∈D t ′od fod

∑e∈E teve
(3)

where O and D are the set of origin and destination nodes in the road network; fod is the demand4
of flow from o to d; t ′od is the shortest travel time of trip (o,d) in the current iteration. Further5
details of the implementation of assignment can be found in (17).6

Fig. 3d shows the assignment results during morning peak hour. The color of each road7
segment reflects the volume-to-capacity (VoC). A larger VoC indicates that the road is used by a8
larger number of vehicles compared with its capacity. As seen from the figure, a large proportion9
of the urban roads are in congestion during the morning peak.10

To verify that the assignment results are reliable and robust, we compare the travel time of11
5,000 OD pairs with top number of commuters during the morning peak hour with the travel time12
provided by Gaode (24), which is a leading traffic navigation company in China. Fig. 5a shows13
the comparison of travel times, suggesting that our estimated travel times and Gaode’s are quite14
close for most of the trips. Fig. 5b presents the distribution of commuting time of the top 5000 OD15
pairs. The distribution indicates that our assignment model provides reliable estimates of travel16
time delay in the peak hour.17
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FIGURE 5 Commuting time validation with Gaode travel time. (a) The scatter plot of 5000
trips with top commuters. (b) The distribution of travel time with three modes: free flow, our
estimation, and Gaode map.

Measuring traffic feature by AQ monitoring station18
The coverage radius for an AQ monitoring stations in the city ranges from 500 meters to 4 kilo-19
meters. We define a 2km× 2km square-buffer surrounding each station to examine the relation20
between traffic around the station and its AQ. This enables us to identify stations that are more21
sensitive to local traffic. By assigning the day-specific vehicle ODs (extended by the TCIs) to the22
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road network, we estimate vehicle numbers in the streets by hour for different days. We then es-1
timate the volume of vehicles and travel times for each road segment for each of the days. Since2
the traffic-related air pollution is not only related to the vehicle volumes but also with the time3
they spend (to approximate emission) in the road network, we calculate the collective travel time4
(CTT) within the buffer area of the AQ monitoring station as a traffic feature to model the AQI.5
The collective travel time is calculated as tc = ∑e∈B vete, where B is the set of roads in the buffer6
area. Besides, the total VoC is also calculated as the summation of VoC on all roads in the station7
buffer area.8

Fig. 6 shows the CTT and total VoC per hour per station. The CTT and VoC in each station9
buffer are obtained by assigning the average demand to the road network. As shown in the figure,10
there are three peak hours on weekdays in Beijing. The CTT at four stations: 1, 3, 5, 31 are11
significantly higher than others, and three of them also have high VoC. Besides, most stations with12
heavy traffic are located within the Fourth Ring Road of Beijing. In the next section we discuss the13
use the CTT as a predictive feature for AQI.14

Hour
0 5 10 15 20 0 5 10 15 20

Hour

Station

To
ta

l V
oC

Co
lle

ct
iv

e 
tr

av
el

 ti
m

e 
(h

)

1000

0

2000

3000

4000

5000

6000

0

50

100

150

200
a) b)

FIGURE 6 Travel demand information per hour in buffer areas of each station (a) The
collective travel time. (b) Total car volume over street capacity (VoC).

Impact of traffic to modeling of air quality15
Although traffic is regarded as one of the most critical influences on air pollution in urban areas,16
the impact of traffic is still not well measured and understood. Zheng et al. predicted the AQI in17
Beijing with features related to meteorology, number of taxi trips, road properties, point of interests18
(POIs), and traffic related features (e.g., speeds from taxi data) (8). They built a single prediction19
model for the entire city. That is, the model was trained using data from all AQ stations in Beijing,20
disregarding the spatial variations of AQ. In a later work of the same team, they predicted future21
AQ in each station, but without considering the traffic factor in the station (9). We argue that22
a city-wide model cannot identify the spatial variations reflecting the importance of local traffic23
feature for the AQI by station, which is important in relating AQ with transportation policy. In24
this work, we investigate this aspect, modeling the AQI in each of the 24 monitoring integrating a25
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travel demand model. The location and ID of the stations are shown in Fig. 3d. We can see that1
some stations are located in zones with heavier traffic than others.2

To evaluate the impact of traffic on air pollution, we model the AQI using the meteorology3
and traffic information in the same hour. The meteorological features include wind speed, wind4
direction, humidity, temperature, and pressure. The traffic features include the TCI and proposed5
CTT. We divide the data set into two parts: summer (from May 1, 2014 to September 30, 2014) and6
winter (from December 1, 2014 to March 31, 2015). For each part, we train a estimation model for7
each station under the three aforementioned scenarios, and use the raw AQIs as response. More-8
over, as people are more concerned with air quality during daytime, we select the samples from9
6:00am to 8:00pm everyday. After eliminating the missing data, the summer data set contains10
about 430 sample-hours per station; the winter data set contains about 530 sample-hours per sta-11
tion, corresponding to only 31 and 38 days with complete data, respectively. To avoid the overlap12
between training and testing sets, the first 70% sample-hours are used to train the models, and the13
last 30% hours are used to test. Subsequently, we estimate the AQI with two distinct models, lin-14
ear regression and non-linear random forest model (25, 26). To obtain stable estimation, we repeat15
training the model 20 times at each station. At each time, we randomly select 90% data from the16
training datasets to train the model. The average value of the 20 estimations is regarded as the final17
estimation of AQI at the station.18

RESULTS19
Analysis of AQI estimation20
To assess the impact of traffic features on air quality, we first calculate the relative feature impor-21
tance of three feature sets, meteorology, TCI, and CTT in two regression models. A linear regres-22
sion model, and a random forest. For the linear regression, we use the Lindeman, Merenda and23
Gold (LMG) method to quantify the contribution of individual feature sets to modeling AQI (27).24
For random forest, the importance of a feature set is calculated through the difference of training25
accuracy with and without the feature set. The estimation accuracy of AQI is calculated by:26

p =

(
1−

N

∑
i=1

| ˆAQIi−AQIi|
AQIi

)
×100% (4)

where ˆAQIi is the estimated value of the ith sample; N is the number of samples in the testing set.27
Fig. 7a and Fig. 7c illustrate the relative feature importance of meteorology, TCI, and CTT28

in summer, with linear regression and random forest, respectively. As can be seen, meteorology29
is the leading factor at most stations. However, linear regression suggests TCI is less important30
than CTT, while random forest suggests TCI and CTT have equal level of contribution to AQI. The31
importance of features to AQI estimation in winter are divergent for the two regression models,32
as shown in Fig. 7e and Fig. 7g. Such diversity between two models reflects the AQI in winter is33
more difficult to model than summer.34

Fig. 7b and Fig. 7d present the distribution of the estimated accuracy in all stations in the35
summer, with the linear regression and random forest, respectively. The red distribution is obtained36
with model trained with all features, while the blue one is obtained with model trained without37
traffic features (TCI and CTT). Integrating the traffic features with the meteorological features, the38
accuracy decreases in some stations. This indicates that the traffic information in a given hour has39
not direct impact in the AQI in the same hour. The impact of traffic to air quality may be delayed40
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for more than one hour. Similar results were obtained in winter, as shown in Fig. 7f and Fig. 7h.1
From these results, we notice that although the traffic information has significant importance in the2
training phase of regression models, it can not promote the estimation of AQI in the testing phase.3
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FIGURE 7 Feature importance and AQI modeling accuracy. (a-b) Relative feature impor-
tance per AQ station and the distribution of estimated accuracy of all AQ stations with linear
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accuracy with random forest in the summer. (e-h) Results in the winter, e and f are results of
linear regression, g and h are results of random forest.
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Spatial diversity of AQ monitoring stations1
We further analyze the different relationship between AQI and traffic demand information among2
the 24 stations. In Fig. 8a and 8c, we plot the median value of AQI and CTT at each station in3
summer and winter, respectively. As shown in the figures, the CTT at the 24 stations are distinctly4
separated in two groups: heavy and light traffic stations. Heavy traffic stations are located in the5
inner urban area, while lighter traffic stations are located in the suburbs. To divide the AQIs, we6
use 100 as a threshold—according to the U.S. Environmental Protection Agency, a AQI higher7
than 100 is regarded as unhealthy.8

Finally, we partition the 24 stations into four groups: healthy with light traffic, healthy with9
heavy traffic, unhealthy with light traffic, and unhealthy with heavy traffic, shown in Fig. 8a-d with10
different colors. As seen from results in Fig. 8a and 8b, the median AQIs of all light traffic AQ11
stations (green) are under 100, which indicates that around these stations, the air quality on most12
days in the summer are healthy. For the stations with heavy traffic, only two of them (station 1213
and 34) are unhealthy. Station 12 is located at the West Fifth Ring Road; station 34 is located at14
the South Third Ring Road; and both of them suffer with busy traffic. Fig. 8c and 8d show the15
results in the winter. In general, the air pollution in winter is much severer than that in the summer.16
Consequently, AQ at some stations (e.g., station 10, 15, 31, 32 and 35) change from healthy in17
the summer to unhealthy in the winter, while only stations 12 and 5 improve their AQIs in the18
winter. Interestingly, these stations are all located in the southern area of Beijing. Meanwhile,19
from the map of major coal power plants in and around Beijing in Fig. 8e, we observe there are20
some large-capacity power plants at the south-eastern area of Beijing, e.g. Hebei province and21
Tianjin. This argument has been demonstrated in literature (28): in the winter, the air pollution in22
the north China is more critical than the south because of the burning of coal for heating. On the23
other side, the traffic is heavier in the inner core for both winter and summer. Therefore, we argue24
that the degraded air quality in the southern area of Beijing reaching the unhealthy limits, is likely25
not related to traffic but due to heating by coal sources.26

CONCLUSION27
In this paper, we studied the contribution of traffic related features to the air quality index in the28
same hour in 24 monitoring stations in Beijing. We integrated mobile phone meta data and publicly29
available daily traffic congestion index (TCI) to define the traffic features. First, we estimate zone-30
to-zone vehicle travel using mobile phone data, census data, vehicle usage rate, and road network31
information. Second, we generate day-specific hourly ODs using TCIs. The day-specific ODs32
are then assigned to the road network, and the maximum collective travel time (CTT) surrounding33
each AQ station area is estimated per day in the studied period. Based on the meteorological34
data, the TCI, and our estimates of CTT, we built two regression models for each station in the35
summer and the winter. The results show that the traffic information has significant importance in36
the training phase of the regression model. However, it cannot promote the estimation accuracy in37
the testing phase. The main reasons may be: (i) the air pollution generated by automobile can not38
be reflected by AQI immediately; (ii) the regression models do not capture the relations between39
traffic features and AQI effectively due to the limited period of observation and sample size of to40
generate the travel demand model.41

Moreover, to relate the impact of traffic on air quality in space, we categorize the 24 stations42
within Sixth Ring Road of Beijing into four groups. We find that the stations with heavy traffic43
are in the inner core of the city both in winter and summer. The stations with unhealthy levels of44
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FIGURE 8 The spatial separation of stations according to AQI and CTT. (a, b) Stations
separation results in summer. (c, d) Stations separation results in winter. (e) The location of
major coal power plants in and around Beijing.

air pollution appear in the winter and are concentrated in the southern area of Beijing. Based on1
these observations, it suggests that the coal heating rather than traffic contributes significantly to2
the degraded air quality in south Beijing in the winter.3

The presented framework is portable, as the data sets employed here can be easily obtained4
for other cities. The traffic estimation model is of low cost in computation and data require-5
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ments. This work also provides a data pipeline to categorize AQ monitoring stations more affected1
by traffic congestion, and to estimate AQIs based on meteorology data, traffic congestion index,2
and travel demand estimates from mobile phone meta data. There are important avenues for fu-3
ture work, these include: (i)to further investigate the variation of specific pollutants such as NO2,4
PM2.5 and PM10 in space; (ii) to employ disaggregated vehicle models to detect the bottlenecks5
of congestion in the road network, with sensitivity analyses for the effects of unknown parameters6
(such as presences of buses and trucks, which are important sources of vehicle emissions); (iii)7
to validate the potential sources of pollution, integrating aerial images (from providers of remote8
sensing data such as Planet Labs) with longer and more detailed observations of pollutant sources9
and presence of vehicles.10
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