
Understanding Predictability and Exploration in Human
Mobility

Andrea Cuttone1*, Sune Lehmann1,2, Marta C. González3
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Abstract

Predictive models for human mobility have important applications in many fields such
as traffic control, ubiquitous computing and contextual advertisement. The predictive
performance of models in literature varies quite broadly, from as high as 93% to as low
as under 40%. In this work we investigate which factors influence the accuracy of
next-place prediction, using a high-precision location dataset of more than 400 users for
periods between 3 months and one year. We show that it is easier to achieve high
accuracy when predicting the time-bin location than when predicting the next place.
Moreover we demonstrate how the temporal and spatial resolution of the data can have
strong influence on the accuracy of prediction. Finally we uncover that the exploration
of new locations is an important factor in human mobility, and we measure that on
average 20-25% of transitions are to new places, and approx. 70% of locations are
visited only once. We discuss how these mechanisms are important factors limiting our
ability to predict human mobility.

Introduction 1

Billions of personal devices, ranging from in-car GPS to mobile phones and fitness 2

bracelets, connect us to the cloud. These ubiquitous interconnections of the physical 3

and the digital world are opening up a host of new opportunities for predictive mobility 4

models. Each user of these devices produces rich information that can help us to 5

capture their daily mobility routine. This core knowledge, when obtained from massive 6

number of individuals, impacts a wide range of areas such as health monitoring [1], 7

ubiquitous computing [2, 3], disaster response [4] or smart traffic management [5]. 8

In the age of ubiquitous computing, recent contributions to mobility modeling have 9

flourished in computer science [6–8], transportation engineering [9, 10], geographic 10

information sciences [11, 12], and complexity sciences [13–15]. While these findings have 11

enhanced our level of understanding of mobility modeling we need further work to 12

tackle the problem of individual predictability. 13

Human mobility has been studied using a multitude of proxies (for example Call 14

Detail Records (CDR), GPS, WiFi, travel surveys), and a variety of techniques have 15

been suggested for predictive models, such as Markov chains, Naive Bayes, artificial 16

neural networks, time series analysis. Studies report varying results for the predictive 17
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power of these models, with accuracy as high as 93% and as low as under 40%. In this 18

paper we set out to uncover the reasons behind these differences in performance by a 19

thorough investigation of the factors that may influence an estimation of mobility 20

predictability. The key contributions of this paper are: 21

1. We describe the factors that have influenced the various ranges when estimating 22

predictability. These include: (a) Does the analysis concern the upper limit of 23

predictability, or actual next-place prediction? (b) What is the specific 24

formulation of the prediction problem? E.g. is the goal to predict the next 25

location, or is the goal to identify location in the next time-bin? (c) What is the 26

spatial resolution? E.g. is the analysis based on GPS vs. CDR data? (d) What is 27

the temporal resolution e.g. minutes, hours? 28

2. We quantify the amount of explorations and locations visited only once, and show 29

that these are key limiting factors in the accuracy of predictions for individual 30

mobility. 31

3. We measure the predictive power of a number of contextual features (e.g. social 32

proximity, time, call/SMS). 33

4. We study the problem of predictability of human mobility using a novel, 34

longitudinal, high-precision location dataset for more than 400 users. 35

The rest of the paper is organized as follows. We first provide an overview of related 36

work in the field of human mobility prediction. Next, we introduce the dataset and 37

describe the preprocessing steps. In the subsequent section we describe the baseline 38

models, and compare their performances. Finally we introduce the exploration 39

prediction problem and report the performance of the predictive models. 40

Related work 41

In a seminal paper Song et al. [13] investigate the limits of predictability of human 42

mobility, using Call Detail Records (CDR) as proxy for human movement. In their 43

analysis, the authors discretize location into a sequence of places, and estimate an upper 44

limit for the predictive performance using Fano’s inequality on the temporal entropy of 45

visits. Their results show that for a majority of users, this upper bound is surprisingly 46

high (93%). This framework has been further explored to refine the upper limit. 47

Specifically, Lin et al. [16] study the effects of spatial and temporal resolution on the 48

predictability limit, Smith et al. [17] consider the spatial reachability constraints when 49

selecting the next place to visit, and obtain a tighter upper bound of 81-85%, and Lu et 50

al. [4] analyze the predictability of the population of Haiti after the earthquake in 2010, 51

and show that the upper limit of predictability remains as high as 85%. 52

The work described above focuses on the upper limit of predictability based on 53

estimating the entropy of trajectories. When the topic is actual prediction performance, 54

some of the most studied models are Markov chains, where the probability of the next 55

location is assumed to depend only on the current location. Markov chains have been 56

applied to a variety of data sets. Lu et al. [18] applied Markov chain models to 57

CDR-based locations in Cote D’Ivore, with a prediction goal of estimating the last 58

location of the day at the prefecture (county) level. Under these conditions the models 59

perform extremely well, reaching an accuracy of over 90%. In [19] the authors apply the 60

Markov models to WiFi traces at Darthmouth campus and find that the best 61

performing model is order 2 and has a median accuracy of about 65− 72%. Finally, 62

Bapierre et al. [20] applied a variable-order Markov chain to the Reality Mining [6] and 63

Geolife [21] datasets. 64
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Another frequently used category of models is naive Bayes, where the probability of 65

next location is factorized as independent probabilities for a number of context variables. 66

Gao et al. [22] applied this approach to the Nokia Data Challenge dataset [23] using 67

time and location features, and obtained an accuracy of approximately 50%. Do et 68

al. [24] applied the same technique but used a larger number of features including also 69

SMS, calls and Bluetooth proximity, and obtained an accuracy of approximately 60%. 70

In a subsequent paper [25] the same authors then explore a kernel density estimation 71

approach for improving performance. 72

A number of more complex methods have also been explored in the literature, 73

including non-linear time series [26], Principal Component Analysis [27], Gaussian 74

Mixtures [28] and Dynamic Bayesian Networks [29]. 75

While recent work on predictability has resulted in richer methods and incorporated 76

interesting new features such as social contacts, they have not deeply characterized the 77

intrinsic characteristics of human mobility that form the basis for the limitations in 78

predicting the next visited location. In this paper we focus on that aspect, showing that 79

in 53 weeks, individuals visit on average 200 unique locations, of which 70% of them are 80

visited only once. Despite most of the trips being among 30% of their recurrent 81

locations; the occurrence of an exploration can be predicted with at best 41% of 82

accuracy. Separating the two types of visited locations and improving the ways to 83

predict an exploration would advance the methods in this area. 84

Materials and Methods 85

Data description 86

In this study we analyze a dataset from the Copenhagen Network Study [30]. The 87

project has collected mobile sensing data from smartphones for more than 800 students 88

at the Technical University of Denmark (DTU). The data sources include GPS location, 89

Bluetooth, SMS, phone contacts, WiFi, and Facebook friendships. 90

For this study we focus on the location data, which is collected by the smartphone 91

with frequency of one sample every 15 minutes. Each location sample contains a 92

timestamp, a latitude and longitude, and an accuracy value. The location is determined 93

by the best available provider, either GPS or WiFi, with a median accuracy of ≈ 20 94

meters; more than 90% of the samples are reported to have an accuracy better than 40 95

meters. For individual participants, there may be periods missing data. These periods 96

can occur for various reasons, for example due to a drained battery, the phone being 97

switched off, the location probe being disabled, or due to software issues. Since we are 98

interested in reconstructing mobility histories without large gaps, we select the longest 99

period that has at least one sample in 90% of the 15-minutes time-bins for each 100

participant. Moreover we consider only participants that have at least 3 months long 101

period of such contiguous data. We are left with 454 users, with data collection periods 102

of data ranging from three months to one year. Fig. 1 shows the distribution of period 103

lengths. 104

The data is mainly concentrated in Denmark where the study takes place, but 105

because students use the phones during travel, the dataset spans several other countries 106

as well. Fig. 2 shows a map of the locations in the world (left pane) and in Denmark 107

(right pane). 108

In this work we are interested in the location prediction task. This task can be 109

broadly stated as follows: given your location history, how well can we predict your 110

future location? The specific details of how this question is implemented have a 111

profound impact on the prediction accuracy. Below we investigate how various factors, 112

e.g. spatial and temporal data resolution play a role in determining the reported 113
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Fig 1. Durations for the periods of collected data for all 454 users. For each user we
select the longest period that has at least one sample in 90% of the 15-minutes
time-bins.

Fig 2. Map of recorded locations across the world (left pane) and in Denmark (right
pane). Each red marker corresponds to a location sample.

accuracy for a single underlying dataset. 114

Because the prediction task can be stated in many different ways, we start the 115

discussion by analyzing different problem formulations. In terms of spatial prediction it 116

is possible to discretize space in grid cells, Voronoi cells or define places using a 117

clustering method. In terms of temporal prediction we could decide to predict a location 118

in the next time-bin, or within a time horizon, or as the next visited place. In this 119

paper we select two of the most common problem formulations: next-cell and next-place. 120

In the next-cell formulation we discretize space into grid cells, and we predict the cell in 121

the next time-bin. In the next-place formulation we detect visits to places and we 122

predict the next visited place. The following sections provide details on the two 123

alternative formulations, and show how each formulation affects the prediction task. 124

next-cell prediction 125

In the first problem formulation, we convert geographical coordinates (lon,lat) into 126

discrete symbols by placing a uniform grid on the map and retrieving the grid cell id 127

associated with the coordinates. Specifically, we start by considering a grid of 128

approximate size 50 meters x 50 meters. At each timestep ∆t = 15 minutes, we convert 129

PLOS 4/20



the current (lon,lat) into a cell id, therefore producing a sequence of symbols through 130

which we can represent a user’s location history. Fig. 3 illustrates the process. 131

Fig 3. Process for converting raw geographical coordinates into sequence of grid cells.
An approximately uniform grid is placed on the map. For each timestep, the
geographical coordinates are converted into the corresponding grid cell ID. The mobility
trace becomes the sequence of visited cell IDs.

In this formulation, the problem can be restated as follows: given your past cell 132

sequence up to time t, which cell will you visit at time t+ ∆t? Before trying to perform 133

any prediction at all, following the process suggested in [13], we calculate the theoretical 134

upper limit for the predictability of the cells sequence. Fig. 4 shows how the maximum 135

predictability for the grid cell formulation is peaked at around 0.95. 136

Fig 4. Upper bound of predictability for all users for the next-cell and next-place
formulations.

We now consider different baseline strategies for next grid cell prediction. For each 137
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of the strategies, we perform prediction in an online manner, by training the algorithm 138

on the data up to timestep t, and predicting cell at timestep t+ ∆t. We measure the 139

accuracy as number of correct predictions over the number of total predictions. 140

We first consider the toploc strategy, where at each timestep we predict the most 141

frequent symbol in the history so far. Given the highly stationary nature of most 142

human mobility trajectories, we expect this simple strategy to achieve a relatively high 143

accuracy. Fig. 5 top panel shows the distribution of accuracies for all the users. The 144

accuracy of the toploc is indeed reasonable, peaking at around 0.4. 145

Fig 5. Accuracy of the prediction in the next-cell formulation. The top panel shows
the results of the toploc strategy, that is predicting the most common location at each
step. The middle panel shows the accuracy for the Markov chain model. The bottom
panel shows the accuracy for the stationary strategy, that is predicting remaining in the
previous cell.

We now consider the Markov chain model. In this model, the prediction of next 146

state depends only on the current state. The transition probabilities between locations 147

are estimated based on past transitions in the location history. For making a prediction, 148

we then consider the transition that has the highest probability among all possible 149

transitions from the current cell. If the current state has never been seen before, then we 150

have no information about the transition probability to other states. In this case we fall 151

back and predict the most frequent state. Again we fit the model in an online manner, 152

updating at each step the transition probabilities and then making a prediction for the 153

next timestep. Fig. 5 middle panel shows the distribution of accuracies for all the users. 154

The accuracy of the Markov model is much higher than toploc, peaking at around 0.7. 155

Considering the highly stationary nature of typical trajectories, we hypothesize that 156

a significant part of the Markov prediction power in this formulation comes from 157

self-transitions, that is, the model predicting the user to remain in the same state as in 158

the previous time-bin. To test this hypothesis, we consider the stationary strategy: at 159

each step we predict that the user will remain in the current cell. Fig. 5 bottom panel 160

shows that the distribution of accuracies for stationary closely matches the one for 161

Markov. Furthermore Fig. 6 shows how the two are very strongly correlated (Pearson’s 162
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r = 0.993, p < 0.001). This strongly suggests that, in this formulation, most of the 163

Markov model power comes from self-transitions, as suspected. 164

Fig 6. Correlation between the accuracy for the Markov model and the stationary
model in the next-cell formulation.

We now investigate another issue related to this problem formulation. Intuitively, we 165

expect that the size of our spatial units will influence the accuracy of prediction. 166

Predicting a user’s location with the precision of few meters is intuitively much more 167

difficult that predicting with precision of several kilometers. In order to examine the 168

effect of spatial resolution, we also consider results for cell size 500 meters and 5000 169

meters, and apply the Markov model. Fig. 7 compares the accuracy for different spatial 170

resolutions. As expected the accuracy dramatically improves as the spatial size 171

increases. 172

Finally we investigate the effect of temporal resolution within this problem 173

formulation. Our findings above suggest that using a very fine-grained temporal 174

resolution will increase the number of self-transitions, thus driving up the accuracy of 175

the prediction that is mainly able to capture stationarity. We achieve this by 176

discretizing the location at 50 meters cell size, but varying the temporal time binning to 177

15 minutes, 30 minutes and 60 minutes, and then running the Markov model for each 178

scenario. Fig. 8 compares the accuracy for different temporal resolutions. As expected, 179

the accuracy is decreased as the time-bins grow larger due fewer self-transitions. 180

next-place prediction 181

We now consider an alternative problem formulation. Instead of predicting the cell in 182

the next timestep, we want to predict only when we observe a transition between places, 183

eliminating the possiblity of self-transitions. In order to do so, we convert the raw GPS 184

locations into a sequence of stops at places. A large amount of literature has been 185

dedicated to the problem of place detection, such as methods based on WiFi 186

fingerprint [31], grid clustering [32], and kernel density estimation [33]. 187

In this paper we consider the following process, based on density-based clustering 188
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Fig 7. Effect of spatial granularity of the accuracy for the Markov model in the
next-cell formulation. Each panel shows the accuracy for a different spatial bin size:
50m, 500m and 5000m. Increasing the size of the spatial bins increases the accuracy
prediction.

Fig 8. Effect of temporal sampling of the accuracy for the Markov model in the
next-cell formulation. Each panel shows a different temporal bin resolution: 900s, 1800s
and 3600s. Decreasing the temporal resolution in this problem formulation increases the
accuracy, since there are more self-transitions.
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approaches such as [34–36]. Each user is treated individually. We define a “stop” as 189

sequence of location-observations where the user has been approximately stationary, 190

that is, the distance between position at time t and t+ ∆t is less than a threshold 191

δ = 50 meters, roughly corresponding to the GPS accuracy. This produces a sequence of 192

stops, each one with a centroid calculated as the median of the locations coordinates, 193

and a duration equal to the time between the last location and the first location sample. 194

In order to filter out the short stops during commute, we consider only stops with 195

duration greater than 15 minutes. The average number of stops per user per day is 2.89 196

with standard deviation 0.89. 197

We are now interested in grouping stops into places, where a “place” is a group of 198

spatially related stops representing a self-contained area such as a building. In order to 199

do so, we apply the DBSCAN [37] clustering to the stops in the geographical coordinate 200

space, using the haversine distance. We set as parameter the grouping distance ε = 50 201

meters, and min pts = 2. This distance threshold is set to produce places of the 202

approximate size of a large building. The result of the clustering is an assignment of a 203

cluster label to each stop, where the label represents the place that the stop belongs to. 204

Finally, in order avoid artifacts due to missing samples or noise, we merge multiple 205

consecutive stops at the same place into one. This process converts the raw location 206

history into a sequence of stops at places. Fig. 9 and 10 illustrate the complete process 207

of stop detection. 208

Fig 9. Extraction of stops. The sequence of location samples t1, ..., t6 are examined
sequentially, and are grouped into a stop as long as they are within a distance threshold.
In the example, t1, t2 and t3 are assigned to the first stop but t4 does not, since it too
far away. Subsequently t4, t5 and t6 are assigned to stop 2.

As example result of this process, let us consider the stops and places extracted for a 209

user. The sequence of stops at places can be represented as a weekly schedule capturing 210

the user’s movement patterns. In Fig. 11 each row represents a week from Monday to 211

Sunday; each place is encoded as a different color. Inspecting this visualization it 212

immediately possible to spot the periodic patters characterizing human mobility, such as 213

evening returns to the home location, and morning trips to class. We can also spot 214

many irregularities however, that deviate from the normal schedule: small stops, new 215

explorations, and day-by-day variability. Finally we can also see a large change in 216

routine starting week 20, where the home location changes. Each user can be 217

characterized by a similar plot. 218

The prediction task can now be re-formulated as follows: given a sequence of stops 219

up to step n, can we predict your next stop at step n+ 1? Notice that a key difference 220
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Fig 10. Stops are spatially clustered into places using the DBSCAN clustering
algorithm, which groups stops according to their haversine distance. The left panel
shows all stops before the algorithm is run, and the right panel shows the assignment of
places labels, with each place represented by a different color.

from the cell grid formulation is that in this case there are (by definition) no 221

self-transitions; we are interested in the place changes only. 222

As before, we start by investigating the upper predictability limit bound. Fig. 4 223

shows how the maximum predictability for the stops formulation is peaked at 0.68, 224

significantly lower than what we observe in the grid cells formulation. 225

We now apply the two prediction strategy toploc and Markov to this new 226

formulation. The two models remain conceptually the same, but instead of trying to 227

predict the grid cell at each step, they try to predict the next stop (note that in this 228

formulation we cannot use the stationary strategy, as by construction we are interested 229

in transitions to new places). In this case we also fit each user separately, and we 230

perform the prediction in an online manner. Fig. 12 shows the accuracy for both models. 231

It is evident that the accuracy for these models (around 0.3 for toploc and 0.4 for 232

Markov) is significantly lower in the next-place formulation, indicating that this 233

problem formulation presents a more difficult task. 234

Importance of contextual features 235

We have investigated how the details of the problem formulation strongly impact the 236

reported accuracy for location prediction tasks. We now focus on next-place prediction 237

and study the influence of different contextual features on the prediction task. We 238

formalize the problem as follows. At each step, we want to compute the most probable 239

next location given the current location. We may also want to include other context 240

variables, such as time of the day, day of the week, call activity, or distance from home 241

for example. In other words we want to compute P (L̂|c1, c2, c3, ..., cn), where L̂ is the 242

next location, and c1, c2, cn are the variables representing different contexts. For this 243

purpose we use a logistic regression model, and we study the usefulness of various 244

predictor features. The goal of the model is not to suggest a new state-of-the-art 245

method, but rather to evaluate the importance of individual contextual features. 246

Specifically, we consider the current location, the time metadata (hour of the day, day 247

of the week, hour of the week, weekend), a ‘home’ binary indication, distance from 248

home, call and SMS activity, and Bluetooth proximity. Table 1 provides a summary of 249

the features. 250

We model each user separately since we want to perform next-place prediction at the 251

individual level. As before, we perform an online prediction where we fit the data up to 252
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Fig 11. Example of the sequence of stops from one user. Each row represents a week,
from Monday to Sunday. Each rectangle represents a stop, and its color encodes the
corresponding place. This visualization highlights the complexity of human mobility,
with a weekly schedule, periodic returns and irregularities.

step n, and we predict the next location at step n+ 1. For each user, we fit a logistic 253

regression model using all the individual features separately, and then a model with all 254

features. Fig. 13 shows the accuracy for each of the models, averaged by user. 255

The Markov chain model baseline is highlighted in red. Using the current location 256

and time features, the logistic regression model outperforms the Markov chain based 257

model. Even using the current location only (which is conceptually very similar to a 258

Markov chain model), the logistic regression shows stronger performance, likely due to 259

the explicit optimization of the model. It is also interesting that other context variable 260

such as call and SMS data have little predictive power in this model formulation. The 261

most complex model that considers all features is practically identical in performance to 262

the model using only current location and hour of the week. 263

Although the logistic regression model does improve the accuracy over the Markov 264

model, the absolute value of accuracy is remains low (below 45%). We therefore 265

investigate the possible reasons of this difficulty in prediction. 266
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Fig 12. Accuracy for the toploc and Markov models in the next-place formulation.
The accuracy in this formulation is considerably lower than in the next-cell formulation.

Fig 13. Summary of next-place prediction accuracy for all logistic regression models.
The location and time-related features are the most predictive ones, and outperform the
Markov model baseline.

Understanding the set of location states 267

It is well known that the majority of individuals tend to spend most of the times at very 268

few places such as home and work, and only sporadically visit other places. This 269
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feature name description
location location ID
hour hour of the day (0-23)
weekhour hour of the week (0-167)
weekday day of the week (0-6)
weekend sat/sun (1) or Mon-Fri (0)
explore before 1 if the previous stop is an exploration, 0 otherwise
explore now 1 if the current stop is an exploration, 0 otherwise
home 1 if the current stop is at the home location (most visited

place), 0 otherwise
d from home distance from the current stop to the home location
sms received 30min number of SMS received in the 30 min before the current

stop timestamp
sms sent 30min number of SMS sent in the 30 min before the current stop

timestamp
calls received 30min number of phone calls received in the 30 min before the

current stop timestamp
calls sent 30min number of phone calls sent in the 30 min before the current

stop timestamp
bt entropy 30min entropy of Bluetooth devices scanned in the 30 min before

the current stop timestamp
bt unique 30min number of unique Bluetooth devices scanned in the 30 min

before the current stop timestamp

Table 1. Description of the features used for the logistic regression models.

phenomenon has been described using concepts such as preferential return [38], 270

heavy-tailed stay times and return rate based on the number of visits [39]. For the 271

location prediction tasks, the consequence is that the target classes are very unbalanced, 272

which implies that most records belong to very few classes and most classes are 273

represented by only few records. To illustrate this issue, we consider the extreme case of 274

places visited only once. Fig. 14 shows that surprisingly this fraction is quite large (0.7). 275

This fact is, in large part, the central reason behind the difficulty of the prediction task. 276

As we shall see below, another central challenge is not just that our population visits 277

a large number of different places, but also that many new places are discovered over 278

time. We consider a stop at a location as “exploration” if this place has not been seen 279

in the location history so far for a given user. In other words, this place is being visited 280

for the first time by the user. To express this formally, we consider the sequence of 281

stops s1, s2, s3, ..., sn for each user . We consider a stop si as return (Y = 0) if si has 282

been seen before in the location history, that is there exists a stop sj = si for 1 ≤ j < i. 283

Otherwise we consider stop si an exploration (Y = 1), that is the place si is visited for 284

the first time at step i. For example given a location sequence A B A C B C, the target 285

variable exploration would have values 1 1 0 1 0 0. 286

We can then estimate the probability of exploration as fraction of explorations over 287

the number of stops. To our surprise, this probability is particularly large: between 0.2 288

and 0.25 (Fig. 15). This implies that most users discover a new place every 4 or 5 stops. 289

The fact that a large fraction of stop-locations have never been seen before poses a 290

challenge for the prediction task, since by construction any model that tries to predict a 291

place from an alphabet of previously visited places will be unable to predict new, 292

unseen symbols. Moreover, another consequence of this frequent exploration is that the 293

pool of possible places constantly grows over time and, given the longitudinal nature of 294

our dataset, ends up being very large. Fig. 16 shows how the average number of new 295

PLOS 13/20



Fig 14. For each user we measure the fraction of places visited only once. This fraction
is surprisingly large, as for each user on average 70% of the places were visited only once.

Fig 15. The probability of exploration estimated as fraction of explorations over the
number of stops per user. Surprisingly this probability is quite large, meaning that on
average users discover a new place every 4 or 5 stops.

place explored per week remains approximately constant around 4, and consequently 296

the total number of places keeps growing to hundreds of places (Fig. 17). This is a 297

problem for the prediction task, as the number of possible places that the classifier 298

needs to choose from increases constantly. 299
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Fig 16. Number of new visited (explored) places for each week, average by user.
Surprisingly, the number of explored places does not decrease over time, but remains
around 4. This highlights the highly exploring behavior of our population.

Fig 17. Cumulated number of new visited (explored) places for each week, average by
user. As consequence of the large amount of exploration, the number of possible places
to visit increases steadily over time, reaching on average almost 200 in one year.

In fact if we measure the relation between the number of unique places per user and 300

the performance of the best performing logistic regression model using Pearson’s 301

correlation coefficient, we find a quite strong negative correlation (r = −0.478, 302
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p < 0.001). On the other hand we find no significant correlation for accuracy with 303

period length or number of stops. 304

These facts suggest that the exploration phenomenon is a key reason for the 305

relatively low accuracy of mobility prediction tasks at high spatial resolution. Given the 306

importance of exploration, we now consider a novel task in mobility prediction: 307

exploration prediction. 308

Exploration prediction 309

The exploration prediction task can be stated as follows: given a user’s location history 310

up to step n, will the stop at step n+ 1 be an exploration or a return? 311

The first question is: what should be the baseline model for the exploration 312

prediction task? Surprisingly, most literature on human mobility prediction has focused 313

on next location prediction but has overlooked the exploration prediction problem, and 314

to the best of our knowledge no suitable solution has been proposed for this task. We 315

therefore suggest, as a reasonable baseline, random guessing with probability equal to 316

our prior knowledge of the fraction of explorations: P (exploration) ≈ 0.2. 317

For our main model we use as before the logistic regression model with the same 318

features constructed for the next place prediction model. We also add two additional 319

features: explore now and explore before, which capture if the current stop or the 320

previous stops were explorations, respectively. The intuition for these is that multiple 321

explorations may occur in a row, and therefore the current exploration may increase the 322

likelihood for an exploration at the next stop. As before, we fit each individual 323

separately, and we perform an online prediction, that fits based on the data up to step 324

n, and predicts exploration at step n+ 1. We fit one logistic regression model for each 325

of the single features, and a more complex model with all the features at once. 326

Measuring the performance of these models requires a few considerations. In this 327

case, the classification problem is imbalanced, that is the number of positive cases 328

(exploration) is much smaller than negative cases (return), as shown in Fig. 15. This 329

implies that accuracy is therefore not a good metric, since a classifier predicting always 330

return (the most probable class) would have good performance, but would not be useful. 331

Instead we employ the f1 score, which is the harmonic mean of precision (the fraction of 332

correctly predicted explorations over all predicted explorations) and recall (the fraction 333

of correctly predicted explorations over all true explorations). Fig. 18 shows the results 334

of the exploration prediction. 335

As we would expect, the model with the most complete set of features outperforms 336

the others. Among the single feature models, perhaps not surprisingly, the current 337

location feature has the best performance. This finding can be explained by the role of 338

some places as “gateways” for exploration such as public transport hubs (e.g. central 339

train station). The individual features that perform also well are the time-related ones, 340

in agreement with the intuition that exploration tends to happen to at specific times of 341

the day or week. The explore now and explore before also perform well, suggesting an 342

element of burstiness in the exploratory behavior. If we consider our best performing 343

model, we find that it has average precision of 0.3 and recall of 0.65. Overall the 344

performance of this model is far from perfect, showing that the exploration prediction 345

problem is a challenging one. 346

Discussion 347

In this paper we first show that when interpreting results of predictive performance 348

there are a number of factors that must be taken into consideration. The problem 349

formulation is the central factor what should be taken into account when interpreting 350
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Fig 18. Exploration prediction: f1 score for all models.

predictability results, since e.g. predicting the next time-bin is a very different (and 351

much easier) task than predicting the next transition. We show that the most 352

challenging problem is the next-place prediction, which is arguably the most useful task 353

for practical applications such as travel recommendations. Another issue to be taken 354

into account is the spatial resolution of the prediction, here we show how more coarse 355

spatial precision results in an easier task. Similarly the time resolution also has an effect 356

on the predictive power. We suggest that the factors described in this paper should be 357

taken in consideration as context when comparing results from prediction models. 358

Other than the factors discussed above, we believe that one further reason for 359

performance differences could be the demographics of the dataset. The population 360

under study is here composed by students that have no single workplace but tend to 361

change multiple classes per week, even multiple times per day. Moreover a younger 362

population may have a more irregular schedule and more exploratory behavior. 363

Certainly more work is needed to conclusively link demographics and predictability. For 364

future directions, we suggest considering demographic factors when trying to 365

characterize human mobility, as it has been done, for example, by linking changes in 366

mobility patterns with unemployment status [40]. 367

We also discussed the issue of exploration, and we show how frequently new places 368

are discovered. Based on that, we show that the mechanism of exploration is an 369

important part of human mobility and plays a role in next-place prediction. Because 370

any model that tries to predict a next place from a set of visited place will fail when an 371

exploration occurs. This problem has rarely been addressed in mobility prediction 372

literature, which almost always assumes that the next place can be determined from the 373

past history. Providing a full solution for next explored place prediction is beyond the 374

scope of this work, and here we simply aim to stress the fact that the prediction of 375

explorations is very different from the predictions to returns to known places. Some 376

previous work on next-place prediction using social information [28,29] or nearby Points 377

Of Interest [41] may be the starting point for investigating this problem. 378

In this sense, we raise the question on whether the simple location history is enough 379
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for accurate next-place prediction. As we have discussed, there are indeed a lot of 380

regularities both in the sequence of visits, and in the daily and weekly temporal 381

patterns of visitation. However there are a lot of “exceptions to the rules”, where 382

schedules change, plans are canceled, and people run late. We speculate that other 383

channels such as email, social media, calendar, class schedule may be needed for 384

achieving a satisfying accuracy in the prediction task. 385
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IVT Institut für Verkehrsplanung und Transportsysteme; 2008.

11. Goodchild MF. Citizens as Sensors: The World of Volunteered Geography.
GeoJournal. 2007;69(4):211–221.

PLOS 18/20



12. Batty M. The New Science of Cities. MIT Press; 2013.

13. Song C, Qu Z, Blumm N, Barabási AL. Limits of Predictability in Human
Mobility. Science. 2010;327(5968):1018–1021.
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