
Calibration of Multi-region MFD Models using Mobile Phone
Data

Mahendra Paipuria,∗, Yanyan Xub, Marta C. Gonzálezb, Ludovic Leclercqa

aUniv. Gustave Eiffel, Univ. Lyon, ENTPE, LICIT, F-69518, Lyon, France.
bDepartment of City and Regional Planning, University of California, Berkeley, CA, 94720, USA.

Abstract

The present work proposes a framework to calibrate the MFD models using mobile phone

data. A trip enrichment scheme based on map matching process is proposed for the trips that

have sparser records. Time dependent penetration rates are estimated by fusing the OD matrix

and the Loop Detector Data (LDD). Two different types of penetration rates are proposed based

on the OD flow and the trips starting within an origin, respectively. The estimated MFDs based on

two types of penetration rates are stable with very low scatter. Following, macro-paths and their

corresponding trip lengths are estimated. Dynamic evolution of trip lengths is demonstrated using

the present data, which is otherwise very difficult to capture with other types of data sources. An-

other important component that is calibrated is the time dependent path flow distribution between

the different macro-paths for a given OD pair. The manuscript is concluded by presenting the

time evolution of User Equilibrium (UE) gap for different macroscopic OD pairs.
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1. Introduction

Macroscopic Fundamental Diagram (MFD) relates average density to average flow in the ur-

ban network (Mahmassani et al., 1984; Daganzo, 2007). It evolved as a promising tool for urban

traffic management. The empirical existence of MFD was first reported by Geroliminis and Da-

ganzo (2008) for the city of Yokohama, Japan under certain homogeneity assumptions. Since5

then, several applications like traffic state estimation (Knoop and Hoogendoorn, 2014; Yildiri-

moglu and Geroliminis, 2014; Kavianipour et al., 2019), perimeter control (Keyvan-Ekbatani

et al., 2012; Haddad and Mirkin, 2017; Ampountolas et al., 2017; Mohajerpoor et al., 2019),

congestion pricing (Gu et al., 2018) and cruising for parking (Cao and Menendez, 2015; Leclercq

et al., 2017), etc. were proposed based on MFD approach. The three main elements for any MFD-10

based simulation are the underlying MFD, the trip lengths for each macro-path and the path flow

distribution.
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Most of the applications founded on MFD assume a well-defined MFD relation for the ur-

ban network under consideration. However, in reality, the estimation of MFD for urban net-

works is far from trivial. There are two main types of data sources namely, Loop Detector Data15

(LDD) and Floating Car Data (FCD) for the estimation of empirical MFD. Most of the empirical

MFDs proposed in the literature are based on either one of LDD, FCD or combination of both

data sources (Ambühl et al., 2017). Wang et al. (2015); Ampountolas and Kouvelas (2015) used

the LDD to estimate the empirical MFDs for the urban networks of Sendai, China and Chania,

Greece, respectively. The main limitation of the data derived from LDDs is the placement and20

distribution of loop-detectors. Buisson and Ladier (2009) demonstrated that the slope of MFD de-

pends on the distance of loop-detectors to the downstream traffic signals. Even though a method-

ological framework was proposed by Leclercq et al. (2014) to compute the average density on

the link based on the placement of loop-detectors, network coverage still remains a strong limita-

tion to estimate an accurate MFD (Courbon and Leclercq, 2011; Ambühl and Menendez, 2016).25

More recently, Shim et al. (2019) studied the bifurcations in empirical MFDs by estimating them

using roadside detectors and Alonso et al. (2019) analyzed the shape of empirical MFDs for the

urban corridors using LDD. On the other hand, FCD is more attractive than its counterpart, as it

provides the vehicular trajectory data. Typically, FCD is provided by either Global Positioning

System (GPS) or mobile phones. FCD was used to estimate empirical MFD (Geroliminis and30

Daganzo, 2008; Bazzani et al., 2011; Tsubota et al., 2014), traffic monitoring (Herrera et al.,

2010) or travel time estimation (Jie et al., 2011). Beibei et al. (2016); Ambühl and Menendez

(2016) estimated an empirical MFD by data fusion of both LCD and FCD. Shoufeng et al. (2013)

used the combination of GPS data and visually counted traffic to estimate MFD for the Central

Business District (CBD) of Changsha city in China. Most of the works that employ FCD use only35

the GPS data from taxis to estimate MFD, as the GPS data of private cars is not readily avail-

able. Hence, the penetration rate of taxis is an important factor in accurate estimation of MFD

from FCD (Du et al., 2016). Knoop et al. (2018) used large scale FCD to estimate the empirical

MFD of Amsterdam city by assuming a constant penetration rate. Recently, Huang et al. (2019)

used the GPS data from taxis, private cars and public buses to estimate a 3D-MFD for the city of40

Shenzhen, China.

Another key ingredient of the MFD-based modeling framework is the set of macro-paths and

their corresponding trip lengths. It is not trivial to estimate neither the macro-paths nor their

trip lengths using LDD without any further equipment. On the other hand, FCD from taxis can

be processed to obtain a distribution of trip lengths. However, FCD is generally sparse and it45

fails to capture the repetitive trips made by the frequent users/residents. Most of the works in

the literature proposed in the context of MFD-based framework assumed a simple constant trip

length inside the each reservoir. It was also concluded that using a single mean trip length inside

each reservoir might result in significant error in the traffic dynamics (Yildirimoglu and Geroli-

minis, 2014; Kouvelas et al., 2017). The importance of estimation of accurate and reliable trip50
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lengths in the context of MFD-based simulation was discussed in-detail in Batista et al. (2019)

and it is as critical as estimation of the MFD per se for the accurate resolution of traffic dynamics.

However, due to the lack of empirical data, the authors in the stated work built a virtual set of

shortest path trips by randomly sampling the origins and destinations in the network. Similarly,

it is difficult to observe the path flow distributions along each macro-path with the existing LDD55

or FCD data sources. Yildirimoglu et al. (2015) used Dynamic Traffic Assignment (DTA) can be

used to estimate the path flow distribution in the context of route guidance. Most often path flow

coefficients are estimated using DTA with User Equilibrium (UE), Stochastic User Equilibrium

(SUE) or Bounded Rational User Equilibrium (BRUE) equilibration Batista et al. (2019). How-

ever, recent studies show that route choice discipline may not valid for macro-paths for large-scale60

networks (Mariotte et al., 2020). At the same time, there have not been any works proposed to es-

timate the path flow coefficient from the empirical data. These research gaps can be appropriately

addressed by using the massive phone data to calibrate the above discussed models.

The present work proposes a method to estimate the empirical MFD of any urban network

from the Location Based Service (LBS) data. This type of data is generated by the smart phone65

Apps, which share their location data actively to the App developer. The positioning of the user

device is provided by either GPS or Wi-Fi. LBS data can be collected from the various applica-

tions on the smart phones, if the users allow the application to share the location data. Recently,

LBS data has been used to propose frameworks on data driven metrics like Origin-Destination

(OD) matrix estimation (Jin et al., 2014), travel route identification (Hsieh et al., 2015), etc. One70

obvious advantage of the LBS data over the FCD is that the LBS has wide coverage of the popu-

lation in the urban network and therefore, high penetration rates are observed. Hence, LBS data

has potential to accurately estimate the urban scale MFD. However, the major drawback from this

data is the diversity of users providing the GPS locations. In other words, data contains not only

the information about people traveling in private cars or taxis, but also pedestrians, bicyclists,75

people using public transport, etc. Hence, it is important to pre-process the data to extract the

information of cars and taxis. Another important factor in the case of LBS data is the sampling

rate, which can vary from few seconds to few minutes depending on the type of App being used.

Even though travel time computation is not effected by the data with large sampling interval, in-

accuracies in the traveled distance are inevitable in the urban network cases. This work proposes80

a method to enhance the data with poor sampling rates in order to obtain accurate travel distance

within each interval. This work also introduces a framework to estimate the time dependent pen-

etration rates. Ji and Geroliminis (2012) used GPS data of taxis with a constant penetration rate

for the whole network. This resulted in a large uncertainty in the outcome of their study. The

importance of computing accurate penetration rates for estimating MFD is discussed thoroughly85

in Du and Rakha (2019). This issue is addressed in this work by proposing a method to estimate

penetration rates as a function of both time and OD pair. The secondary contribution of this work

is the analysis of trip lengths inside the network. A static analysis is proposed, which yields
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the major macro-paths (or regional paths) along with their trip length distributions for each OD

pair. Following, a dynamic analysis is also presented to demonstrate the dynamic effects in the90

trip lengths during the peak hours. The final part of the manuscript discusses the estimation of

path flow distribution. The validity of UE hypothesis is discussed in-detail using the empirically

estimated path flow distribution. This work presents the techniques to segment the records into

individual trips, enhance the trips with sparse data, compute penetration rates, estimate MFD, trip

lengths and their corresponding path flow distributions. This is a generic framework and it can be95

used to process any type of phone data that has records of GPS coordinates and timestamps.

The paper is organized as follows: Section 2 presents the details about data and data process-

ing techniques, Section 3 discusses the trip enhancement method used to improve the trajectory

data for trips with sparse data points, Section 4 briefs about the computation of macroscopic

variables and penetration rates, Section 5 presents the estimated MFDs for the city of Dallas,100

Section 6 presents the static and dynamic analysis of trip lengths and finally, Section 7 discusses

the estimation of path flow distributions from the data.

2. Data Description and Pre-processing

The data contains the positioning of the smart phone devices either by GPS or WiFi Position-

ing System (WPS) for the city of Dallas, Texas in United States for a period of 2 months from105

March, 2017 to April, 2017. Dallas is one of the most populous cities in the US with an estimated

1.3million inhabitants. In the present work, downtown Dallas and neighboring suburbs as shown

in Fig. 1a are considered to calibrate the MFD models. Fig. 1b shows the link level presentation

of the area under consideration, which extends across 160km2 and contains 18386 nodes and

48287 links. The length of the road network is 4800km, which includes all types of roads . The110

raw data contains anonymized user ID, time stamp, longitude, latitude and uncertainty of the lo-

cation. The data consists of 3.7million users and there are around 4.5billion records available for

processing. Fig. 2a shows the visitation map for the considered area for a period of 14 days. It

is clear from the heat map that the data is more concentrated in the downtown Dallas and major

arterials surrounding the downtown. As already stated, LBS data is only generated when the user115

is interacting with the application on the smart phone. At the same time, different applications

use the location data at different frequencies. For instance, the applications that use map-related

services share their location more actively than the others. Therefore, each user in the LBS data

has different sampling intervals that range from few seconds to few minutes. A sampling interval

is defined as time difference between two consecutive records for the same user. Fig. 2b presents120

the distribution of the sampling intervals of the raw data for the month of March, 2017. Even

though, major fraction of users have sampling interval around 100 sec, it can be noticed from

the distribution that there are peaks at 600 sec and around 1000 sec. A large sampling interval

is a limitation while computing macroscopic variables like total traveled distance, trip length,
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(a) Map of the Dallas, TX ©OpenStreetMap 2019.
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(b) Link level representation of the Dallas.

Figure 1: Dallas network: map of the area and its link level description.

etc. This issue is addressed in the following sections by introducing a map matching scheme by125

re-constructing the trajectory of the user for the records with large sampling intervals.

Data selection and segmentation of individual records into trips are discussed in-detail in Xu

et al. (2019) and a similar approach is used in this work. Data processing is done in various

stages to extract more useful and representative data for the estimation of different macroscopic

traffic variables. Firstly, records that have an uncertainty of more than 100m are removed from130

the analysis. This LBS data contain different types of users like residents, tourists, people using

motorways, etc. There are several users that leave either very few records or stay during very

short period of time. In order to obtain a representative trips from regular users of the urban

network, it is necessary to filter the users with few records from the frequent users. Hence, only

users with more than 1000 records that span across 30 days are considered in the present work.135

The resulting fraction of active users and selected records are 25% and 93%, respectively.

The following step is to segment the records of each user into individual trips. This is done

in two stages namely coarse segmentation and fine segmentation. As the names suggest, the first

stage involves coarse segmentation of selected records into trips. The second stage deals with the

refinement of already segmented trips either by splitting them into further trips or removing the140

records in the trips that do not comply with the user movement. In the coarse segmentation, the

records are clustered into the trips based on the following assumptions. Firstly, the user starts a

new trip if the time interval between two consecutive records is more than 30min apart. Since,

the data can contain the information of pedestrians and bicyclists, only trips that have an average

speed of more than 5kmh−1 over the course of whole trip are selected. Finally, only trips that145

have at least 5 records are selected in order to have more robust trip information. The second

stage refines the already segmented trips in order to enhance the quality of the trip. In this stage,

the mean speed between the consecutive records is monitored and the data points having a mean

speed of less than 4kmh−1 are removed from a given trip. For example, if the data points in
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(a) Heatmap of the data for randomly selected 14 days in

March, 2017. The contour corresponds to log scale of number

of data points observed.
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(b) Distribution of sampling rates for the raw data for the

month of March, 2017.

Figure 2: Heat map and sampling rate distribution of the raw LBS data.

the middle of the trip are removed, the trip is further segmented into two individual trips. If the150

data points at the beginning or the end of the trip are removed, the method just truncates the trip

removing the records, where user is idle. This process yields a total of 3.3 million number of trips.

This method ensures the records are clustered into representative individual trips. However, few

trips, especially from taxis or ride sharing vehicles, cannot be refined with the discussed strategy.

This is due to very short duration between two different trips. The occupancy of taxis tend to155

be high close to downtown and the idle time between the trips can be almost non-existent. This

prove to be a bottleneck to segment the aggregation of several trips into individual trips. At the

same time, having these type of aggregated trips have very little influence of computation of the

macroscopic variables like distance and time traveled. On the other hand, they can introduce bias

in the estimation of the trip lengths. Hence, care is taken to remove these type of aggregated trips160

for the estimation of trip lengths. It is done by comparing the shortest path distance and actual

trip distance for a given trip. If the actual trip length is more than twice the shortest path distance,

that trip is removed for the trip length analysis. It is noticed in the present work that this technique

removes a very small proportion of trips, improving the trip length analysis.

As already discussed, the sampling intervals of the raw LBS data vary across a wide range.165

Consequently, each segmented trip might have a different sampling interval, even within the trip.

This can introduce considerable biases in the computation of travel distances. In the current

work, the Haversine formula is used to compute the distance between given coordinates to take

the curvature of the planet into account. When two GPS coordinates are far apart, even the

distance computed by the Haversine formula leads to inaccurate estimation of traveled distance,170

especially when the points lie on different links in the network. One trivial solution to minimize

the biases in the traveled distances is to choose the trips that have records relatively close to each
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other. As a first step, trips where the consecutive records are within a radius of 500m to each other

are selected. This filtration process reduced the total number of trips to 290000, i.e., 9% of the

segmented raw trips. This averages to around 4700 trips per day for a relatively large area under175

investigation. Hence, a trip enrichment method based on the map matching scheme is proposed

in this work to process the trips with sparse records.

3. Trip Enrichment Method

The main idea behind the enrichment method is to find the shortest path between the sparse

records of a given trip. Two important tools are used in this context namely, OSMnx (Boeing,180

2017), which is a Python package that is used to analyze the road networks and NetworkX (Hag-

berg et al., 2008), another Python package used to study the dynamics of road networks. The

enrichment method is explained with an example in the following.

Figure 3a shows three example traces of a sample trip with sparse records from the given data.

All the three trips have either 3 or 4 records for relatively long trips lengths of around 10 km. The185

result is very poor resolution of the trajectory of the trip, which is shown in the Fig. 3a. It is

also evident that the trips either start or end close to downtown region of Dallas and ends in the

suburbs of the city. Hence, they are realistic trips across the city that spans considerable amount

of time. A simple Haversine distance between successive data points of each trip introduce a

huge approximation in the traveled distances. At the same time, the traveled time estimation is190

unaffected due to the sparse records. The combination of these two phenomenon can introduce a

considerable scatter in the MFD and poor estimation of trip lengths. Hence, it is desirable to map

the trajectory of the trip to the underlying road network as closely as possible.

In the current work, the trips are enriched using the spatial geometry of the network. OSMnx

contains the information of the whole network in the form of links and nodes. For the each trip,195

the distance between successive records is estimated. If the distance is bigger than a threshold,

defined a priori, the location of nearest nodes close to the GPS positions of those records are

obtained. The threshold distance to be defined depends on the size of the block in the road

network. In the current case of Dallas city, the block size in the downtown is smaller than the

suburban areas. It is possible to define different threshold distances based on the location of the200

trip in this framework. However, a constant threshold distance of 200m is chosen in the present

work. Once the locations of the nodes are obtained between the sparse data records, a shortest

path between those two nodes is computed using NetworkX shortest path subroutine. The shortest

path is represented as the sequence of nodes at each intersection between the given two nodes.

Consequently, the GPS locations of the nodes in the shortest path are added to the trip between205

those two sparse records. Fig. 3b presents the traces of considered trips after computing the

shortest paths between the sparse records. It can be clearly noticed that the trajectory of each trip

is matched to the network after the enrichment process.
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(a) Original traces of low resolution trips.
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(b) Traces of the trips after enrichment method.
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(c) Randomly sampled original traces.
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(d) Randomly sampled traces after enrichment method.

Figure 3: Trip enhancement method: Original and enriched traces.
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Another method to enrich the trips is to estimate the shortest path between the origin and

the destination locations of each trip. However, this method fail to capture the longer paths that210

users tend to take during the peak hour congestion periods. However, the scheme proposed in the

current work keeps the blueprint of the actual trip, while only adding the shortest path between

the records that are sparsely placed. Hence, this can be considered as the closest approximation

to the actual path that user had taken. The main advantage of this method is that it results in a

trace that conforms the actual network, which can be observed from Fig. 3b. The main limitation215

is that the shortest path is computed between two nodes and not two points. Since there can be

negligible distance between the actual GPS location and its closest node, this method introduce

some errors in the traveled distances. Also, the curvature of links between two nodes, if exists, is

neglected i.e., the Haversine distance between two nodes is assumed to be the traveled distance.

In spite of the limitations, it is shown in the subsequent sections that the errors of the present220

framework are within the acceptable tolerance.

Whenever the trace of the trip is enhanced between two sparse records, the time stamps are

also interpolated to match the spatial data. The time stamps are interpolated based on the average

speed between the two records in the original trace. Hence, this method transforms the sparse

spatial and temporal data into dense data, thereby improving the overall accuracy and the rep-225

resentation of the MFD. Figs. 3c and 3d present a sample set of traces of trips before and after

enrichment method, respectively. It is clear from the plots that original traces do have sparse

records and the enhancement of trips result in the high resolution traces. It is to be noted that the

trips in Figs. 3c and 3d are randomly sampled and do not correspond to the same set of trips.

4. Computation of Macroscopic Variables230

4.1. Partitioning of the Network

Partitioning of the considered network into homogeneous reservoirs is the first step to esti-

mate the macroscopic traffic variables. A prerequisite to obtain a well-defined MFD is to partition

the network into homogeneous subnetworks (Geroliminis and Sun, 2011). There have been parti-

tioning algorithms proposed in the literature based on the properties of links (Ji and Geroliminis,235

2012; Saeedmanesh and Geroliminis, 2016) and based on the traffic data (Ambühl et al., 2019).

As the primary objective of the current work is to propose a methodology to estimate the MFD

and the trip lengths from mobile phone data, a simple partitioning scheme is assumed. However,

it is to be noted that the present framework can be used with any of the partitioning schemes pro-

posed in the literature. The considered network is divided into 5 reservoirs as shown in Fig. 4a.240

The rationale behind the partitioning scheme is to have one reservoir for the downtown region

and divide the region around the downtown into similar sized reservoirs. It is worth noting that

the boundaries of reservoirs are not placed along the road network, but in-between the road net-

works. Generally, partitioning of the network is made along the bi-directional roads, where each
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(a) Partitioning of Dallas network: Representation of the

reservoirs along with their identities.©OpenStreetMap 2019.
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(b) Partitioning of Dallas network: Link level representation

of the reservoirs.
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(c) Normalized demand profile for 24h period.

Figure 4: Partitioning of Dallas network and normalized demand pattern for a typical day scenario.

zone contains one direction of the road. Since GPS data has uncertainties, dividing the network245

along the road might result in trips that alternate between two adjacent reservoirs, even though

they belong to one of those neighboring reservoirs in entirety. These type of alternating trips can

be avoided by placing the boundaries within the blocks of the road network and it is the reason

for having an irregular boundary in the present partitioning.

4.2. Error Estimation of Trip Enrichment Scheme250

In this section, the error in traveled distances introduced by the proposed trip enrichment

method is estimated. In order to do so, trips from the raw data with dense records, i.e., each record

that is within a radius of 200m its neighbor, are chosen for each OD pair. Since the records of

these trips are relatively close to each other, no enrichment process is required to conform the trip

to the network structure. This set of trips for each OD pair is considered as the reference trips to255

estimate the error in the traveled distances. The idea is to convert these high resolution reference

trips to low resolution reference trips by randomly removing the intermediate records of each trip.
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Table 1: Relative RMSE norm of trip lengths for the reference trips.

Origin Destination Error No. of trips Origin Destination Error No. of trips

1 1 0.076 3629 3 1 0.062 1802

1 2 0.056 1052 3 3 0.049 10182

1 3 0.055 1766 4 4 0.055 1429

2 1 0.058 1321 5 5 0.050 4742

2 2 0.057 9403
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(a) Reference low resolution trip samples for all OD pairs.
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(b) Reference enriched trip samples for all OD pairs.

Figure 5: Randomly sampled reference low resolution and enriched trips for all OD pairs.

In this work, 70% of intermediate records are removed for each reference trip keeping the origin

and the destination records unchanged. Now, these low resolution reference trips are enriched

using the enrichment method discussed in the previous section to obtain the map matched trip260

trajectories. The error is computed based on the difference in the traveled distances between the

high resolution reference trips and the enriched reference trips.

Table 1 presents the relative Root Mean Square Error (RMSE) norm of the errors in the trip

lengths for the major OD pairs for the reference trips. It is clear from the error values that the

enrichment scheme is very accurate in terms of traveled distances. Only the OD pairs, where there265

are more than 1000 reference trips are presented in the table and the error values for the remaining

OD pairs are also between 0.05 to 0.07. Fig. 5 shows the sample reference low resolution and

enriched traces. Even though the major arterials are well represented in the low resolution traces,

there is considerable scatter between the arterials. This is corrected in the enriched traces, where

the trip trajectories are well conformed to the underlying network. Hence, it can be concluded270

that the errors introduced from the proposed trip enrichment scheme are within the acceptable

limits for the present purpose of estimation of the macroscopic variables.
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Table 2: Total number of vehicles (×104) for 24h period between different macroscopic OD pairs.

Reservoir 1 2 3 4 5

1 7.9 3.4 2.6 0.5 0.7

2 4.8 7.2 1.8 0.2 0.4

3 7.0 4.4 6.5 0.4 0.2

4 1.7 0.9 0.7 0.7 0.1

5 4.0 3.0 0.7 0.2 2.2

4.3. Estimation of Penetration Rates

Since the available mobile phone data accounts only for the part of the total traffic, it is

necessary to estimate the penetration rate (ρ) of the vehicles to compute a well-defined MFD and275

path flow distributions. An average penetration rate can be estimated by using the traffic counts

from fixed loop detectors and aggregate number of vehicles passed through those points in the

LBS data. However, this method gives a mean penetration rate across the network. Depending

on the heterogeneity in the network under investigation, this mean penetration rate might not

be accurate enough. For example, in the present case where network extends from downtown280

Dallas to suburbs, penetration rates can vary widely. It is already proposed that using an OD

specific penetration rate is important to estimate an accurate MFD (Du et al., 2016). In addition,

penetration rates can vary with time, where higher penetration rates are normally observed at the

peak hours compared to the off-peak hours.

In this work, penetration rates are estimated by fusing the OD matrix data, LDD and LBS data.285

The OD matrix data is obtained from North Central Texas Council of Governments (NCTCOG)

for the morning peak period, i.e., 06:30 AM to 08:59 AM. This data contains the total count of ve-

hicles for different microscopic OD pairs (defined by NCTCOG) in the stated 2.5h period. Since

this data does not have dynamic information of OD matrix, LDD is used to transform this static

OD matrix into dynamic OD matrix. There are various loop-detectors placed all over the urban290

network of Dallas city and historical data is made available by NCTCOG. Several loop detectors

are sampled all over the network and traffic counts for all vehicles for each 15min interval in

a day are considered. Each LDD is normalized with total number of vehicles throughout 24h

period of that particular LDD. Finally, the mean of all normalized curves is approximated as the

demand pattern of the city network. Fig. 4c presents the estimated normalized demand profile295

from the loop-detectors in the network. Now, using the OD matrix data for the given 2.5h period

and the normalized demand profile, it is possible to expand the partial OD matrix to a typical full

day OD matrix. Table 2 gives the total number of vehicles for the macroscopic OD pairs, i.e.,

vehicle counts from one reservoir to another for 24h period.

According to the generalized definitions of Edie (1963), the average network density (k) and

12



flow (q) can be expressed as,

k =

N
∑

i=1
T Ti

Ln ∆T
and q =

N
∑

i=1
T Di

Ln ∆T
, (1)

where T Ti and T Di are time traveled and distance covered on a link l, respectively, Ln is the total

network length, ∆T is the aggregation interval and N is the total number of links in the network

under consideration. In the present work, an aggregation interval of 15min is used. It is clear from

eq. (1) that the density is computed using Total Traveled Time (TTT) and the flow is estimated

by Total Traveled Distance (TTD) in the network by all vehicles within each aggregation interval.

Density and flow of the network can be estimated using eq. (1) only if the trajectories of all the

vehicles are known a priori. Often, that is not the case in reality and only trajectories of fraction

of the vehicles are available. Hence, it is necessary to correct the expressions in eq. (1) with

penetration rates. According to Nagle and Gayah (2014), density and flow of vehicles in the

network can be re-defined as,

k =

P
∑

i=1
T Ti/ρ

Ln ∆T
and q =

P
∑

i=1
T Di/ρ

Ln ∆T
, (2)

where ρ is the penetration rate and it is defined as number of probe vehicles to the total number300

of vehicles in the network. In eq. (2), the sum is made over the total number of probe vehicle

trajectories P.

The final step to compute the macroscopic variables is to estimate the penetration rate. The

current work proposes two different types of penetration rates namely, OD specific penetration

rate (ρod) and origin specific penetration rate (ρo). It is possible to estimate the trip OD matrix

based for each day from the mobile phone data based on the departure time of each trip. Since

the number of trips between the same OD can vary from day-to-day, trip OD matrix based on the

mobile phone data is estimated for each day separately. Let NI
od,p be number of trips from the data

between origin o and destination d starting within the aggregation interval I. Similarly, NI
od,n is

total number of trips estimated by data fusion of loop detectors and OD matrix from NCTCOG as

elaborated earlier within a given interval I. Now, OD specific penetration rate at the aggregation

interval I can be defined as,

ρ
I
od =

NI
od,p

NI
od,n

. (3)

Similarly, let NI
o,p be the total number of trips from the data originating from origin o to all the

destinations for a given interval I. In the same way, NI
o,n is the total number of trips from origin

o to all the destinations computed from the NCTCOG data. Using these two quantities, origin

specific penetration rate can be expressed as,

ρ
I
o =

NI
o,p

NI
o,n
≡

r
∑

d=1
NI

od,p

r
∑

d=1
NI

od,n

, (4)
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Table 3: Total network length in km for each reservoir.

Reservoir Length of the network (km)

1 324.8

2 414.8

3 431.2

4 309.6

5 522.3

where r is the total number of macroscopic reservoirs in the network.

As the OD matrix provide the data of trip production to trip attraction, penetration rates should

be used based on the departure time of the trip. Consider a trip i starting within an aggregation

interval I between the OD pair od has traveled time and traveled distance of T Ti and T Di, re-

spectively. The expanded travel distance (T De
i ) and the expanded travel time (T T e

i ) for the whole

network considering the two types of penetration rates for that trajectory can be expressed as,

T T e,od
i =

T Ti

ρ
Ip
od

and T De,od
i =

T Di

ρ
Ip
od

, (5a)

T T e,o
i =

T Ti

ρ
Ip
o

and T De,o
i =

T Di

ρ
Ip
o

, (5b)

where suffixes/prefixes od and o represent that the expansion is done by OD and origin specific

penetration factors, respectively and Ip is the aggregation interval corresponding to the departure

time of trip i. Similarly, k and q can be expressed as,

kod =

P
∑

i=1
T T e,od

i

Ln ∆T
and qod =

N
∑

i=P
T De,od

i

Ln ∆T
, (6a)

ko =

P
∑

i=1
T T e,o

i

Ln ∆T
and qo =

N
∑

i=P
T De,o

i

Ln ∆T
. (6b)

Finally, the total length of the network Ln is estimated per reservoir to compute mean density and

mean flow. Only major roads are considered and the roads connecting the residential areas are305

neglected to estimate the total network length. Table 3 shows the resulting lengths of the road

networks per reservoir.

5. Estimated MFDs

The average values of density and flow for each day are estimated using eqs. (6). Only data

from the weekdays, which are 43 in total, is considered in the computation of the macroscopic310

variables to estimate a stable and reproducible MFD. By computing the average of all the week

days, a mean MFD for each reservoir can be estimated. However, there can be specific events

like accidents, road works, etc. that can influence the shape of MFD on certain days. Since, the
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information of these type of events that can influence the characteristics of the MFD is not avail-

able, the data is filtered based on the estimated MFD shape. Another important factor to consider315

in this context is the phenomenon of hysteresis in the MFD for the urban networks (Leclercq and

Paipuri, 2019). It is normal to observe the clockwise hysteresis loops in the MFD due to net-

work heterogeneity, demand pattern, driver’s behavior, etc. However, the loading of the network

from near empty state, which is observed during late night hours, is more stable and reproducible.

Hence, a parabolic curve is fitted for the estimated MFD for each weekday for the data point320

ranging from the midnight till the morning peak hour, which is 08:00 AM in the present case.

Only the days that show similar MFD fit characteristics are chosen to compute the mean MFD for

each reservoir. Fig. 6 shows the estimated flow MFDs for the reservoirs, where the macroscopic

variables are computed by the OD specific penetration rate. Firstly, it can be noticed that all the

MFD curves are relatively stable with very less scatter. Reservoir 1 experiences the highest flow325

rate among all the reservoirs in the considered region. From Fig. 4a, it is clear that this reservoir

corresponds to the downtown Dallas area and hence, higher mean flow in this reservoir is ob-

served. Another important inference to be made from the MFD plots is the presence of clockwise

hysteresis loops in the MFDs. Different colors of the data points correspond to the different times

of the day to differentiate the loading and unloading phases of morning and evening peak hours.330

Reservoirs 1 and 3 in Figs. 6a and 6c, respectively exhibit more clearer hysteresis during the

morning peak hour compared to others. In the case of reservoir 1, the difference in the flow dur-

ing onset and offset of congestion is around 100vehh−1 lane−1 for the same value of density. The

hysteresis phenomenon is present in other reservoirs too, albeit the size of the loop is relatively

smaller.335

Figure 7 presents the mean speed MFDs using the OD specific penetration rate. The hysteresis

phenomenon can be clearly observed in the speed MFDs, where in Figs. 7a and 7c, the mean

speed during the loading is clearly higher than the unloading during the morning peak hour. The

estimated speed MFD in the reservoir 4, which is shown in Fig. 7d has scatter in the shape of

MFD. This is due to the sparser phone data available in this reservoir. The reservoirs surrounding340

the downtown Dallas area, i.e., reservoirs 2 to 5 have freeways included as shown in Fig. 4a. This

implies that the free-flow speed of reservoirs 2 to 5 should be higher compared to reservoir 1,

which is downtown area. It can be observed from the plots that the free-flow speed of reservoirs

2 to 5 is higher than reservoir 1 and hence, the estimated MFDs are qualitatively verified.

Figure 8 presents the estimated flow MFDs using origin specific penetration rate for comput-345

ing macroscopic variables. Firstly, it is clear that the MFDs are qualitatively and quantitatively

very similar to the ones presented in Fig. 6, where OD specific penetration rate is used in com-

putation of macroscopic variables. The hysteresis loops observed in the reservoirs 1 and 3 in the

previous case are also noticed in the present case. However, the scatter in the reservoir 5 in Fig. 8e

is comparatively larger than the scatter in Fig. 6e. This is true for not only reservoir 5, but also to350

all the reservoirs. This can be demonstrated using speed MFD plots shown in Fig. 9. Even though
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(a) MFD for reservoir 1.
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(b) MFD for reservoir 2.
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(c) MFD for reservoir 3.
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(d) MFD for reservoir 4.
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Figure 6: Flow MFD estimates using the OD specific penetration rate for computing the density and the flow.
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(a) Speed MFD for reservoir 1.
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(b) Speed MFD for reservoir 2.
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(c) Speed MFD for reservoir 3.
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(d) MFD for reservoir 4.
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Figure 7: Speed MFD estimates using the OD specific penetration rate for computing the density and the flow.
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(c) MFD for reservoir 3.
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(d) MFD for reservoir 4.
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Figure 8: Flow MFD estimates using the origin specific penetration rate for computing the density and the flow.
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all the plots show a good relation between mean speed and density, it is evident that the scatter

in the present case is relatively larger than the previous case. This is expected as the OD specific

penetration rate is more accurate than the origin specific counterpart. Expanding the macroscopic

variables without considering the destination might result in overestimation in few OD pairs and355

underestimation in the rest. This can contribute to the scatter in the MFD, which is noticed in

the Figs. 8 and 9. Despite the presence of scatter, both flow and speed MFDs show a reasonable

correlation between the macroscopic variables.

Figure 10 shows the average penetration rates of probe vehicles from LBS data for each

reservoir. Notice that according to the present framework, the penetration rates within same360

interval is not same and depends on the starting time of the trip as presented in eq. (5). Hence,

multiple penetration rates are possible for same interval as multiple trips can transverse during

that period. Average penetration rates are computed by comparing the expanded macroscopic

variable like travel time and travel time values estimated from the LBS data. The estimated

penetration rates for different days are again averaged to obtain an average trend of penetration365

rates during a typical day. In order to obtain a representative trend of the penetration rates, only

days that show similar MFD shape is considered to estimate the average penetration rates. This is

done for both OD specific and origin specific penetration rates. The first inference from the plots

is that both proposed penetration rates show very similar trend as expected. It can be observed

that peak penetration rates are observed during the morning and the evening peak hours. This370

phenomenon is clearly noticed in the reservoir 1, where two peaks, one at morning and another

at evening, are noticed. It is also evident that the variation of penetration rate within day cannot

be neglected when estimating the MFD and using a mean penetration for whole day can lead

to erroneous results. In order to show the relative accuracy between using constant and time

dependent penetration rates, MFD is calibrated using a constant penetration rate for whole 24 h375

period. Fig. 11 presents the estimated MFD for reservoir using time averaged constant and time

dependent penetration rates for reservoir 1. It is clear from the plots that the MFD estimated using

constant penetration in Fig. 11a has less scatter than its counterpart. In other words, the hysteresis

phenomenon is absent in the case of constant penetration rate. This is expected outcome as using

the constant penetration rate expands the macroscopic variables in the same proportion in all the380

aggregation intervals. However, this is not the case in the reality, where higher penetration rates

are observed during the peak hours compared to the off-peak hours. Therefore, MFD estimated

using constant penetration rate yields a mean MFD curve without hysteresis.

6. Trip Lengths Estimation

6.1. Static Analysis385

The second part of the present work presents the details of trip lengths estimation from the

mobile phone data. As already stated earlier, estimating trip lengths is impossible without massive
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(a) Speed MFD for reservoir 1.
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(b) Speed MFD for reservoir 2.
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(c) Speed MFD for reservoir 3.
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(d) Speed MFD for reservoir 4.
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Figure 9: Speed MFD estimates using the origin specific penetration rate for computing the density and the flow.
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Figure 10: Average penetration rates for each reservoir.
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(a) MFD estimated using time averaged constant penetration
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Figure 11: Comparison of MFDs using constant and time varying penetration rates.
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(b) Randomly sampled trajectories between macroscopic OD

pair 2−4.

Figure 12: Sample set of trajectories between OD pairs 4−2 and 2−4.

individual data. Most of the works in the literature are based on the network exploration methods

to build virtual trips. The present type of mobile phone data, i.e., LBS data is a unique opportunity

to fill the gap in the estimation of trip lengths. Since, the trajectory of each individual trip is390

readily available, it is possible to cluster the trips based on the reservoir sequence. Once the trips

are clustered based on the reservoir sequence, major macro-paths between the macroscopic OD

pairs can be identified. Note that in the present section, all the macro-paths are represented as

the reservoir sequence. For instance, a trip that starts in reservoir 1 and ends in 3 by transversing

through reservoir 2, it is named as 1→ 2→ 3.395

Consider the macroscopic OD pairs 4− 2. From Fig. 4a, it is clear that there can be several

possible macro-paths between the considered OD pair like 4→ 1→ 2, 4→ 3→ 2, etc. Notice that

these are only few sample macro-paths and still more realistic combinations like 4→ 3→ 1→ 2,

4→ 1→ 3→ 2, etc. are possible from the considered clustering. Assuming a single macro-

path per OD pair is too crude for accurate resolution of the traffic dynamics. On the other hand,400

considering all the possible and realistic macro-paths between OD pair adds complexity to the

MFD-based simulation, thereby losing the spirit of the framework. This issue can be appropriately

addressed by using the trajectory data of the mobile phones.

Figure 12a shows the randomly sampled trajectories estimated from the phone data between

the OD pair 4− 2. At first, it is clear that most of trips transverse the network in the sequence405

4→ 1→ 2. Hence, it can be considered as the major macro-path for the considered OD pair.

However, it is clear from the plot that there are other macro-paths like 4→ 3→ 1→ 2, 4→

1→ 3→ 2, 4→ 5→ 1→ 2 and 4→ 1→ 5→ 2, which contribute towards the OD flow. The

trajectory data for all the days considered can be used here to rank the most used macro-path to

the least used. Consequently, macro-paths with very few trips can be safely neglected without410

compromising the modeling framework. In the present example of OD pair 4− 2, almost 70%
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Table 4: Average trip length in m inside each reservoir using OD and origin specific penetration rates using method 1.

Reservoir
Average trip length

using OD pen. rate (m)

Average trip length

using origin pen. rate (m)

1 1957 1916

2 2178 2023

3 2125 2080

4 2580 2458

5 2742 2480

of the trips take the macro-path 4→ 1→ 2 and the majority of the rest are distributed among

4→ 3→ 1→ 2 and 4→ 1→ 3→ 2. Fig. 12b presents the sampled trajectories for the OD pair

2− 4, which is symmetrically opposite to 4− 2. It can be observed that the trips have a similar

macroscopic behavior as the OD pair 4− 2. This can be verified by the trajectory data, where415

the major macro-path is 2→ 1→ 4 and the rest of the flow is observed in 2→ 1→ 3→ 4 and

2→ 3→ 1→ 4. It is inferred from the data that the present network of Dallas city shows this

symmetric property for most of the OD pairs. This might not be the case always depending on the

structure of the network and its corresponding partitioning. It should be noted that whatever the

macro-path patterns are, the LBS data provide enough samples to define the major macro-paths.420

This may not be the case with other data sources, which leads to more uncertainties.

Once the macro-paths between the OD pairs are established, the following question is to es-

timate the lengths of each macro-path. A straightforward and simple method, say method 1, is

to estimate the average trip length inside each reservoir taking into account all the trajectories.

This corresponds to the original approach proposed by Daganzo (2007). This can be considered425

as constant static trip lengths as dynamic changes in the trip lengths are neglected. This method

does not account for origin and destination of the macro-path. For instance, if the average trip

length in the reservoir 1 is 1000 m, the same value is assigned for reservoir 1 for the macro-path

1→ 2 and 4→ 3→ 1→ 2. However, this can introduce big discrepancies in the MFD simulation

results (Batista et al., 2019). Table 4 presents the average trip lengths inside each reservoir esti-430

mated using OD and origin specific penetration rates. In accordance with the previous results, the

estimated average trip lengths are very similar using both types of penetration rates. The lengths

are representative to the size of the reservoirs considered. A more intensive method, say method

2, is averaging the trip lengths inside each reservoir based on the macro-path, i.e., taking the mean

of all trips that transverse a given reservoir for a given macro-path. Again, this approach is possi-435

ble only because of the massive phone data available, which guarantees enough observations on

all major macro-paths. The difference between two approaches is that the former considers the

average of all trips inside each reservoir irrespective of the macro-path, while the later consider

the mean trip length inside each reservoir for a given macro-path individually. In other words,
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Table 5: Average trip length in m using OD specific penetration rate for selected macro-paths.

Macro-path
Avg. length

per reservoir (m)

Avg. length

per macro-path (m)

Rel. difference

in total length

1→ 1 {1957} {1366} 0.4331

1→ 3 {1957, 2125} {1736, 2339} 0.001

3→ 1→ 5 {2125, 1957, 2742} {2815, 4581, 3499} 0.3736

4→ 1→ 2 {2580, 1957, 2178} {2961, 4546, 3138} 0.3692

Table 6: Average trip length in m using OD specific penetration rate for selected macro-paths along with their correspond-

ing standard deviations.

Macro-path
Avg. length

per reservoir (m)
Std. (m) Coefficient of variability

1→ 1 {1366} {1079} {0.79}

2→ 2 {1738} {1502} {0.86}

2→ 1→ 5 {2898, 2751, 3183} {1951, 907, 1922} {0.67, 0.32, 0.59}

3→ 1→ 5 {2814, 4580, 3498} {1941, 863, 1968} {0.68, 0.18, 0.56}

4→ 1→ 5 {2910, 3861, 3310} {2072, 1235, 1972} {0.71, 0.32, 0.59}

5→ 1→ 4 {2961, 3734, 3333} {1795, 1348, 2084} {0.60, 0.36, 0.62}

the average trip length in reservoir, say 1, is same in all macro-paths in the first method. Whereas440

in the second one, mean trip length of reservoir 1 changes for each macro-path. It is already

discussed in-detail in Batista et al. (2019) that the second method is more accurate than the first

one based on the simulation results. In the current work, the discrepancies between two methods

are demonstrated using the data.

Table 5 shows the average trip lengths of selected macro-paths using both approaches and the445

relative differences in the total trip lengths. Consider the internal macro-path 1→ 1. The mean

trip length estimated by method 1 is 1957 m, while method 2 gives 1366 m, which is significantly

lower than its counterpart. As reservoir 1 is the downtown area of the Dallas city, majority of

the internal trips are between the freeways that encompass the area. One of the longest trips

possible, without considering freeway network, in this reservoir is around 2500 m. Taking this450

into the account an average trip length of 1957 m over more than 100000 trips is unrealistic. The

reason for such a high mean trip length is due to averaging all the trips that transverse reservoir

1 irrespective of the OD pair. This can be elaborated clearly using macro-paths 3→ 1→ 5 and

4→ 1→ 2. From Fig. 4a, it is clear that both stated macro-paths need to cross the reservoir in its

entirety. As they are mostly long distance trips, users tend to use freeways, which are ring roads455

in the reservoir 1. Hence, longer average trip lengths are observed for these macro-paths in the

reservoir 1, as vehicles need to circumnavigate the downtown area. In the method 1, these type of

trips are aggregated along with internal trips of reservoir 1 and hence, a higher average trip length
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is estimated. On the other hand, the method 2 estimates a more representative shorter trip length

for the internal trip 1→ 1 and a longer trip length for macro-paths 3→ 1→ 5 and 4→ 1→ 2 as460

expected. This conclusion is in-line with the results in the literature (Batista et al., 2019) and the

present results demonstrate that phone data provides a practical and effective way to calibrate the

trip lengths.

The standard deviation of the trip lengths are estimated inside each reservoir in order to deter-

mine the accuracy of the estimated lengths. Table 6 presents the trip lengths for selected macro-465

paths using method 2 and their corresponding standard deviations. In the case of internal trips,

i.e., 1→ 1 and 2→ 2, the standard deviation is quite large compared to the mean trip length. This

is expected as trip lengths vary widely across inside the reservoir and hence, higher coefficient

of variation. However, macro-paths that transverse across reservoir 1, for instance 2→ 1→ 5,

3→ 1→ 5 , etc., the coefficient of variation inside the reservoir 1 is relatively low. This shows470

that the estimated macro-paths captured the patterns of the trips effectively, where average trip

length across reservoir 1 is very similar for all the trips. The coefficient of variation in origin

and destination reservoirs for the stated macro-paths are relatively large. This is due to the exact

points of departure and arrival can vary across a wide range in the reservoirs and hence, wide

range of trip lengths. It is also to be noted that the considered reservoirs are relatively large in475

area and using a partition with smaller reservoir will decrease the variability of the trip lengths.

In order to illustrate the importance of considering average trip length per macro-path, con-

sider two macro-paths 4→ 3→ 1→ 2 and 4→ 1→ 3→ 2. Even though same reservoirs are

transversed, albeit in different order, between the considered OD pair, the mean trip lengths inside

each reservoir for both trips are not same. Figs. 13 and 14 show the trip lengths distribution for480

the stated two macro-paths, respectively. It is clear from the distributions that even for the same

OD pair, the mean trip lengths inside each reservoir depends on the macro-path. In the presented

trip length distributions, except for the mean trip length inside reservoir 2, other mean trip lengths

show significant differences. For instance, the mean trip length in reservoir 1 for the macro-path

4→ 1→ 3→ 2 is 3461 m, whereas in the case of 4→ 3→ 1→ 2, it increases to 4080 m. Hence,485

this inference reinforces the previous conclusion about the importance of considering mean trip

lengths per OD pair and per macro-path.

6.2. Dynamic Analysis

The analysis presented till now neglects the dynamic information of the trip lengths. There

had not been many works on dynamic variation of trip lengths using empirical data because of490

lack of data. However, this is known as the important factor as local congestion changes the trip

length distributions, where users tend to avoid shorter congested routes to take longer ones. The

average trip lengths presented in Tables 4 and 5 and distribution in Figs. 13 and 14 takes into

the account all the trips observed during the whole 2 months period. However, it is intuitive that

trip lengths within and between the reservoirs tend to be dynamic, where the users tend to prefer495
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the alternative paths during the congestion periods. Batista et al. (2020) proposed a framework to

estimate the dynamic trip lengths explicitly and concluded that including the dynamic changes in

the trip lengths improves the accuracy of the MFD-based simulations. However, as stated already,

the authors built a virtual set of trips by network sampling to do this analysis in the stated work

and not real trip lengths.500

In the present work, the dynamic trip lengths between macroscopic OD pairs is estimated

using starting time of each trip. In order to do so, an aggregate time period of 60min is considered

and hence, for each day there are 24 aggregation periods. For a given OD pair, all the trips that

are starting within a given aggregation period are selected and a mean trip length is estimated for

that given period. This is done for each weekday separately in the considered 2 month period.505

Finally, the mean trip length within each aggregation interval is estimated for all the weekdays.

Fig. 15 presents the mean evolution of the trip length for different macroscopic OD pairs. The

macro-paths that show different types of trends are selected for the discussion. Consider Fig. 15a,

where the evolution of internal macro-path 3→ 3 is presented. Two peaks, one at the morning

peak hour and another at the evening peak hour, can be clearly noticed in the plot. This trend510

signify that the users perhaps take the longer paths during the peak hours to avoid the most used

routes. The difference between the trip lengths at the peak and non-peak period is only less than

10% for the macro-path 3→ 3. However, this relatively insignificant difference can introduce a

considerable bias in the traffic dynamics at the peak hour in the MFD-based simulations (Batista

et al., 2019). Fig. 15b shows the dynamic trip lengths of the macro-paths 1→ 3 and 3→ 1. It515

is clear from the plots that the dynamic trip lengths evolution of the two macro-paths are nearly

symmetric. This is due to movement of the people from the suburban region to the downtown in

the morning and vice-versa in the evening. The mean dynamic trip length evolution of the macro-

path 4→ 4 is shown in Fig. 15c, where the changes in the trip length are relatively insignificant.

This is due to the presence of large urban spaces for leisure activities, which decreases its overall520

contribution to the mean flow of the network. This can be verified using the length of the network

presented in Table 3, where reservoir 4 has the least network length amongst all the reservoirs.

Hence, a more stable trip length evolution is noticed. Finally, Fig. 15d presents the dynamic trip

lengths of the macro-paths that involve reservoirs 1, 2 and 3 in different sequences. Even though,

all the macro-paths show the variation within the same limits of trip lengths, no clear trend in the525

evolution is observed. It is clear that these types of behaviors are justified, given the topology of

the network. However, it is difficult to predict these trends between different OD pairs a priori

and appropriately calibrate the MFD models. This type of analysis has not been done before

in the literature due to lack of sufficient and reliable data. Therefore, this framework estimates

the mean evolution for different macro-paths, which can be directly used in the MFD simulation530

framework.
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Figure 15: Mean dynamic trip lengths for different macro-paths.
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6.3. Analysis on Path Flow Distribution

The principal input data for a MFD-based simulation are underlying MFD, macro-paths and

their corresponding trip lengths, which are discussed until now. As already seen earlier, there

can be more than one macro-path feasible between a given macroscopic OD pair. It is noticed535

that almost all the major macro-paths, i.e., the ones that have higher flow compared to the others,

in the present partitioning transverse across the reservoir 1, which is the downtown area. So,

considering just one major macro-path between an OD pair and assigning the total flow to this

path might lead to unrealistically high flows in the reservoir 1, which might result in the gridlock.

Hence, depending on the relative flow between all the feasible macro-paths for a given OD pair,540

it is necessary to have more than one macro-path. For instance, for the internal trips that start and

finish in the reservoir 1, it is noticed that 97% of the trips have the macro-path 1→ 1 and the rest

follows 1→ 2→ 1, 1→ 3→ 1, etc. In this case, it is safe to neglect the other macro-paths and

consider only the major macro-path. It is observed that all the internal trips in the present work

shows this behavior and hence, only one major macro-path is considered for them. However, this545

is not true for the transfer trips that have origins and destinations in different reservoirs.

In the case of having more than one macro-path between an OD pair, it is essential to know the

amount of flow to be assigned to each path. In this context, path flow coefficient for a macro-path

p for a given OD pair, od can be defined as,

α
p
od =

N p
od

∑
i∈Pod

Ni
od
, (7)

where Ni
od is the number of trajectories on macro-path i and Pod is the set of all major macro-

paths between the OD pair, od. The path flow coefficient can be estimated using DTA determining

the UE conditions. However, DTA can be computationally demanding depending on the size of

the network under study and it is possible to extract the information on the path flow coefficients550

using the trajectory data. However, at the network level it is not possible to observe the path flow

distribution between all local OD pairs. This becomes feasible only at the regional level and this

is extracted using phone data. Since path flow distributions are computed assuming UE settings,

it is possible to validate this hypothesis by empirically deriving the gap to the UE conditions from

the phone data. The important research questions in this context are to determine (i) if the gap for555

macroscopic OD pairs are close to zero as assumed by UE hypothesis and (ii) if the gaps change

in time.

Figure 16 shows the mean evolution of the path flow coefficients for few OD pairs. There are

two major macro-paths for each between the OD pairs 1− 2 and 2− 1 and their corresponding

path flow evolutions are presented in Fig. 16a. It can be observed that the macro-paths 1→ 2560

and 2→ 1 has majority of the flow in both cases and they remain stable over the course of the

day. On the other hand, path flow for the macro-paths between OD pair 3−4 show a significant

variation, which is shown in Fig. 16b. It is clear that during the peak hours, users tend to use the
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Figure 16: Mean evolution of path flow coefficients between different macroscopic OD pairs.

macro-path 3→ 4 over 3→ 1→ 4, whereas both macro-paths experience nearly equal amount

of flow during the off peak hours. Fig. 16c shows a similar trend, albeit, users tend to take one565

macro-path during the morning peak and another during the evening peak. Consider the OD

pair 2− 5, where the users prefer the macro-path 2→ 1→ 5 over the macro-path 2→ 5 during

the morning peak hour and vice-versa during the evening peak hour. A symmetrically opposite

case is observed in the reverse trip, i.e., for the OD pair 5− 2, where users use the macro-path

5→ 2 in the morning over the macro-path 5→ 1→ 2. Finally, Fig. 16d shows the path flow570

coefficients of the three major macro-paths for the OD pair 5−4, where a stable evolution in all

the three macro-paths is observed. Therefore, it can be concluded that it is possible to estimate the

valuable information like dynamic trip lengths and path flow coefficients from the mobile phone

data, which is otherwise very difficult to obtain from other data sources.

Finally, the current work is concluded by presenting the estimates of User Equilibrium (UE)
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gaps for each macroscopic OD pair. The gap corresponds to the relative difference between the

travel time on the macro-path and minimum travel time among all the macro-paths for a given

OD pair (Sbayti et al., 2007). The UE gap for a given OD pair, God can be expressed as,

God =
1

T T od
min

∑
i∈Pod

α
i
od

(
T T od

i −T T od
min

)
, (8)

where T T od
i is the travel time of the macro-path i, T T od

min is the minimum travel time between575

the OD pair od and α i
od is the path flow coefficient of the macro-path. If all the macro-paths

between the OD pair are shortest paths in time, God is zero by the definition. On the other hand,

if the macro-path that has longest travel time experiences higher flow, the gap is bigger and the

network is far from the equilibrium. Hence, this parameter shows how far is the network from

the UE conditions. The dynamic gap evolution can be computed by using the eq. (8) within each580

aggregation period of 60 min. The trips starting within a given aggregation period are collected

for a given OD pair and the minimum travel time amongst all the macro-paths is estimated. Using

this minimum travel time and path flow coefficients computed earlier, it is trivial to estimate the

dynamic UE gap, God(t).

Figure 17 presents the evolution of UE gaps for different macroscopic OD pairs. The selected585

OD pairs show different trends as discussed in the previous cases. Fig. 17a shows the OD pairs

that involve the downtown Dallas city from the neighboring suburbans. Since the OD pair 5−1

has only one major macro-path, G53(t) is always zero. It can be observed that the OD pairs

2− 1 and 3− 1 are close to UE, where the observed gaps are less than 10%. However, OD pair

4−1 shows the peaks in the morning and evening with a relatively high gap values. For the OD590

pairs 2− 1 and 3− 1, the major macro-paths are 2→ 1 and 3→ 1, respectively, where on an

average more than 90% of the users choose this path. In the case of OD pair 4−1, the proportion

of users choosing the macro-path 4→ 1 is comparatively low and more than 20% choose the

longer macro-path of 4→ 3→ 1. Hence, bigger UE gaps are noticed for this particular OD pair.

Fig. 17b presents the gaps for OD pairs 4−3 and 5−3, where peaks at the morning peak and the595

evening peak can be observed. Symmetric peak hours can be noticed for the OD pairs 2−3 and

3− 2 in Fig. 17c, where OD pair 3− 2 has the bigger gap during the morning peak hour and its

counterpart has the bigger gap during the evening peak hour. This is clearly due to the difference

in the direction of traffic flow during the morning and evening periods. Fig. 17d shows the mean

UD gap evolution for OD pairs 3−5 and 5−2, where cyclic variations are obtained. At the same600

time, it is also clear that the magnitude of the gap is relatively low for the stated OD pairs, where

the day averaged gap is close to 5%.

Finally, Fig. 17e presents the time evolution of relative number of ODs for a given gap con-

dition. For instance, the red curve corresponds to the number of ODs with gap God > 0.01. It

is clear from the plot that almost 70% of total OD pairs satisfy this condition. In other words, if605

the network is assumed to be in UE conditions when the gap less than or equal to 0.01, from the

plot it is evident that less than 30% of ODs fulfill the condition. It is trivial that if the threshold
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is increased, the number of ODs satisfying the UE conditions increase. It can be observed in the

plot, where threshold gaps of 0.15 and 0.2 are also presented. In the cases of threshold gaps of

0.15 and 0.2, two peaks, one at morning rush hour and another at evening can be clearly noticed.610

This is an expected outcome as the network tends to far from the equilibrium during the peak

hours. Overall, if the threshold gap of 0.15 or more is assumed, almost 90% of ODs pairs satisfy

the UE conditions. However, this analysis can be refined by partitioning the network into smaller

reservoirs and it is out of scope of the present work. Hence, the data can be used to extract the

useful information like UE gap, which in other case is only possible to estimate by doing a DTA615

simulation. This type of data can also be used to validate DTA simulations and calibrate the input

parameters in the simulation framework.

7. Conclusions

The present work proposes a framework to calibrate the multi-region MFD models using the

mobile phone data. The methodology to select the data and segment the individual data records620

into representative trips is illustrated. Since LBS data is used in the current work, the frequency

of data collection varies widely resulting in trips with very sparse records. A method to enrich

these types of trips using map matching scheme is discussed in-detail.

Following, a simple partition of the Dallas city network is considered to estimate the macro-

scopic variables. It is important to state that the proposed framework is independent of parti-625

tioning scheme and can be used with any other network partition. Firstly, the error of the trip

enhancement scheme is estimated using the set of high resolution trips from the raw data. It is

concluded that from the relative errors that the map matching scheme introduces little or accept-

able error in the traveled distances. The next step is to estimate the penetration rates of the data

and to this extent, OD matrix data from the city council, LDD and present LBS data are fused630

together to obtain time dependent penetration rates. Two different types of penetration rates are

proposed namely, OD specific penetration rate and origin specific penetration rate. As the names

suggest, the OD specific rate takes into account the OD flow, while the origin specific rate is

computed based on the flow that originates within a zone irrespective of its destination. Using the

estimated time dependent penetration rates, mean density and mean flow of different reservoirs635

are computed to estimate the MFD for each day separately. Only days that show MFDs with

similar characteristics are selected and a mean MFD is estimated. It is noticed that the MFDs for

all the reservoirs are reasonably well-defined with low scatter. It is also observed that the MFDs

computed from both OD specific and origin specific penetration rates are very similar. It is worth

noting that the penetration rates in the present framework are not constant and they depend on640

the time. The following part of the work presents the analysis on the trip lengths between the

macroscopic OD pairs. This type of analysis is only possible with the phone data because of

the massive number of records available. The importance of considering the average trip length

per macro-path instead of using mean trip length per reservoir is demonstrated. The evolution of
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dynamic trip lengths that depends on the traffic conditions is discussed in-detail. The coefficient645

of variation for selected macro-paths are presented to show the accuracy of the present methodol-

ogy. Finally, the third part discusses the evolution of the path flow distributions and UE gaps. The

evolution of mean path flow coefficient for different OD pairs are illustrated. It is noticed that the

path flow coefficient in few OD pairs exhibit a strong variation during the morning and evening

peak hours. Similarly, the evolution of UE gap is estimated based on the travel time information.650

This gap parameter can be used to observe how far is the network from the UE and as well, it can

be used to validate the DTA simulations. It is also noticed that UE gap varies with time during a

typical day scenario and this variation is explained for few OD pairs. Finally, the proportion of

OD pairs that satisfy the given threshold UE gap condition is presented. When a higher threshold

gap is chosen (> 0.15), it is noticed that most of the OD pairs satisfy the UE condition. However,655

it is also observed that during the peak hours the number of OD pairs satisfy the condition is less

than the off-peak hours suggesting that the network is relatively far from UE conditions during

peak hours.

The proposed framework is very generic and network independent. It can be applied to any

network that has sufficient phone data and all the parameters necessary to do a MFD simulation660

can be calibrated. In the case of absence of OD matrix data, it can be replaced by the census

data of the network to estimate the penetration rates. Overall, the present framework can estimate

lot of interesting and useful parameters that can be used to perform MFD simulations as well to

validate them. Most of the analysis presented in the current framework cannot performed using

other types of data sources and it is to be re-iterated that the trip lengths and path flow distributions665

analysis can only be achieved because of massive phone data.
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