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Socio‑economic, built 
environment, and mobility 
conditions associated with crime: 
a study of multiple cities
Marco De nadai 1,2*, Yanyan Xu 3,5, emmanuel Letouzé4, Marta c. González3,5 & 
Bruno Lepri2

Nowadays, 23% of the world population lives in multi-million cities. In these metropolises, criminal 
activity is much higher and violent than in either small cities or rural areas. thus, understanding what 
factors influence urban crime in big cities is a pressing need. Seminal studies analyse crime records 
through historical panel data or analysis of historical patterns combined with ecological factor and 
exploratory mapping. More recently, machine learning methods have provided informed crime 
prediction over time. However, previous studies have focused on a single city at a time, considering 
only a limited number of factors (such as socio‑economical characteristics) and often at large in a 
single city. Hence, our understanding of the factors influencing crime across cultures and cities is very 
limited. Here we propose a Bayesian model to explore how violent and property crimes are related 
not only to socio‑economic factors but also to the built environmental (e.g. land use) and mobility 
characteristics of neighbourhoods. to that end, we analyse crime at small areas and integrate multiple 
open data sources with mobile phone traces to compare how the different factors correlate with crime 
in diverse cities, namely Boston, Bogotá, Los Angeles and Chicago. We find that the combined use of 
socio‑economic conditions, mobility information and physical characteristics of the neighbourhood 
effectively explain the emergence of crime, and improve the performance of the traditional 
approaches. However, we show that the socio‑ecological factors of neighbourhoods relate to crime 
very differently from one city to another. Thus there is clearly no “one fits all” model.

Criminology widely recognizes the importance of  places1,2: crime occurs in small areas such as street segments, 
buildings or parks, and it is spatially stable over  time3,4. However, theoretical and empirical research showed that 
crime is also a consequence of socio-economic contextual characteristics, usually referred to as the “neighbour-
hood effect”5,6. In criminology, cooperation, as opposed to disorganization of neighbours, is indeed believed to 
create the mechanisms by which residents themselves achieve guardianship and public  order7, solve common 
problems, and reduce  violence7–9. This mechanism also finds its roots in urban planning, where the relationship 
between specific aspects of urban  architecture10 and urban physical  characteristics11 are related to security. Places 
and neighbourhoods are not to be considered islands unto themselves, as they are embedded in a city-wide system 
of social interactions. On a daily basis, people’s routine exposes residents to different conditions,  possibilities12, 
and this routine may favour  crime13. Nevertheless, many empirical studies focus on just a subset of static factors 
at a time such as socio-economic factors without considering the contextual built  environment8,9,14–17, or ignoring 
 mobility15,16,18,19, and often only drawing results in a single city (e.g. Chicago)8,9,15,19–26.

Studies on small areas and neighbourhoods roughly come from two streams of literature. The first stream 
focuses on the routine activity and crime pattern  theories13,27,28 at places. These studies suggest that crime occurs 
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when an offender, its suitable target, and the absence of any deterrence system, such as police or even ordinary 
 citizens29, converge at a place. The presence of people influence the number of offenders and targets, but the daily 
routine of residents exposes homes and people to predatory  crimes30. The built environment was also found to 
affect criminal activities, as physical disorder and specific locations (e.g. bar, taverns) attract offenders and suit-
able  targets31–33. The second stream of literature builds on the social context upon which the place of the crime is 
embedded. A notable example is the Social Disorganization  theory7,9, which found high crime concentration in 
socially and economically disadvantaged neighbourhoods. In it, the structural predictors are often seen through 
the concentrated disadvantage, ethnic diversity, residential instability of  neighbourhoods7,9,34 While most of these 
studies use census data as primary data source, recent years have witnessed a growing interest in alternative data. 
For example, scholars exploited synthetic social ties to simulate neighbourhood  cohesion35, and mobility flows 
to indicate crime opportunities and connections between  neighbourhoods23. Others leveraged crowd-sourced 
Point of Interests (POIs), taxi  flows36, and dynamic population mapping from satellite  imagery17,37 and mobile 
phone  activity14,20 to assess the presence of people. Altogether, these results highlight the tight relation between 
the socio-economic, the built environment and mobility conditions, and their impact on criminal activities. 
Although the two streams of the theory are often seen as competing, we argue that they can complement each 
other. However, very limited work has integrated socio-economic, built environment and mobility conditions 
together in multiple cities and in small areas. Moreover, while crime theories are not limited to specific  cities5, and 
several cross-disciplinary results suggest common and universal patterns in  mobility38,39, urban  environment40 
and aggregated  crime41,42 in urban systems, our comparative knowledge base is  limited5. These limitations result 
in a fragmented and incomplete  picture5,43 of how the numerous factors influence crime in the urban context 
and limit the impact of the conclusions.

Here, we seek to shed light on the diverse set of factors at play with urban crime exploring how violent and 
property crimes are related, at the same time, to the Social Disorganisation, to the built environment charac-
teristics and to human mobility. Specifically, we analyse crime at the level of group of blocks (measuring on 
average 0.378 square kilometers), considering both the local features of the group and its surrounding context, 
represented by all the blocks within a half-mile. The contribution of this paper is twofold. First, we address the 
need for a comprehensive study that explores crime patterns at fine grained resolution across multiple cities of 
the world, analysing Bogotá, Boston, Los Angeles and Chicago. Secondly, we show that taking into account the 
complex interplay between crime, people, places, and human mobility significantly improves the performance 
of the crime inference. We make use of massive and ubiquitous data sources such as mobile phone records and 
geographical data, implying that the resulting framework can be replicated at scale. Our generated insights can 
help recommend effective policies and interventions that improve urban security.

Results
We study criminal activity in Bogotá (Colombia), Boston (USA), Chicago (USA) and Los Angeles (USA), four 
very different cities with respect to cultural, urban and socio-economic conditions.

Our approach follows the aforementioned two streams of literature of place and neighborhood, assuming 
the existence of a social process named neighborhood effect, namely the relation of crime patterns with small 
places characteristics and mobility. To account for all these factors we analyse criminal activity and small places 
characteristics at census block group, the smallest geographical unit for which the U.S. census publishes data, and 
measuring on average 0.378 square kilometers. Each block group, here called core, is exposed to a surrounding 
context, named corehood, which is the set of all the surrounding block groups within a half mile from the core 
(see Figure 1). As the context of nearby cores is similar, corehoods might overlap. The idea of using overlapping 
units is not  new16,44,45, and it is focused on creating an ego-centric neighborhood for each core (see Supplementary 
Information (SI) Note 11 for a technical discussion). We describe the characteristics of the place where crime 
happens through specific features of the core, while we describe the context at which it is embedded through 
the features at the corehood. As neighborhoods in literature are loosely defined, we tested different sizes of the 
corehood, finding the half mile distance as the best to describe the neighborhood effect (see the SI Note 11).

Criminal activity is provided by police agencies, which record through police reports the geographic location 
(i.e. latitude and longitude), date, time of day and category of each crime event. For all the cities we map each 
category of crime into the US Uniform Crime Reporting (UCR)  categories46 and analyse crime belonging to 
two broad categories: violent and property crimes. They include homicides, sexual and non-sexual aggravated 
assaults, robbery, motor vehicle thefts and arson. We assign each crime to a corehood through its geographical 
position.

We describe cores through the features that were previously found to attract potential offenders and  targets36, 
such as the census residential population and the number of nightlife, shops and food POIs inside each core, 
which are extracted from web data (more details in the Methods Section). Then, we describe corehoods through 
the environmental (neighbourhood) characteristics found to influence  crime11,24. The corehood features are 
estimated from all the block groups surrounding the core. We group them in Social Disorganization (SD), 
Built Environment (BE) and Mobility (M) features. The SD characteristics include some of the standard Social 
Disorganization theory features, namely concentrated disadvantage, instability and ethnic diversity. Consistently 
with the  literature7,9,15,26, disadvantage and instability are composite variables built from the two largest principal 
components of: (i) unemployment rate, (ii) poverty rate, defined as people living below the poverty line, and 
(iii) residential mobility rate, defined as the percentage of people who recently changed residency. Again, in 
accordance with the  literature7,47,48, ethnic diversity is computed as the Hirschman-Herfindahl index across six 
population groups (e.g. hispanic, black, white people, etc.). Additional details are present in the Methods Section. 
Note that we excluded all race-specific variables that are usually employed (e.g. percentage of black people  in36) 
to build an evidence-based and race-neutral model.
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The BE corehood features are based on the Jane Jacobs  theory11, which states that the presence of people and 
a vibrant neighborhood life form a virtuous loop controlling local crime. From her own words “a well-used city 
street is apt to be a safe street and a deserted city street is apt to be unsafe”11. Four conditions have to be valid 
to ensure this virtuous loop. First, a district should serve at least two or more functions to have streets continu-
ously used by residents and strangers. Second, street blocks should be small and short to ensure both high walk-
ability and frequent meeting of people at street intersections. Third, diverse buildings make it possible to have 
low- and high-rent spaces, and thus a mixture of people and enterprises. The fourth condition is about dense 
concentration, which ensures a sufficient presence of people and enterprises to attract dwellers from different 
neighbourhoods continuously. Thus, in accordance with the  literature49 we operationalize through census and 
geographical data the four conditions in: i) land-use mix; ii) block size iii) building age diversity; iv) population 
density and walkability, which promotes social  relations50 and is connected to local cohesion of neighbors. The 
details, data sources, and formula for these metrics are available in the Methods Section.

The M features are built upon recent mobility and criminology literature, which found mobility to be tightly 
coupled with criminal activity in space and  time14,20,25,42. People at risk in urban areas can be essentially measured 
through residential and floating population. The first one measures the number of people who resides in an area, 
while the second one measures the average number of people that can be expected in an area at any given  time37 
(e.g. average number of people at a mall). We measure floating population through the average number of people 
for each core, named ambient population37, and the attractiveness of the corehood, measured through the number 
of people movements to the corehood for reasons different than travelling to work or home. We extract this 
valuable information from passively and anonimized mobile phone data, collected by mobile phone operators 
for billing reasons. From mobile phone data, we fit the mobility model  TimeGeo51 and simulate realistic urban 
traces that are used to extract the ambient population and attractiveness features. We do not include M features 
for Chicago, as we do not have mobile phone traces. Even if mobility is not available, Chicago is considered by 
many the testbed for empirical crime analysis, thus we include it to allow readers to do useful comparisons for 
socio-economic and urban environment characteristics.

Crime patterns have been observed to be highly concentrated in the space,  overdispersed52, and positively 
spatial correlated. Thus, we model and predict crime through a spatially filtered Bayesian Negative Binomial, 
which is specifically tailored for discrete data, accounts for the overdispersion of crime events, models uncer-
tainty and avoids the biased parameters of non-spatial  models53,54. Through this model, criminal activity at 
cores is described by a linear combination of an intercept, the fixed effects (i.e. the aforementioned core and 
corehood features), and some random effects that represent the latent and unexplained variance that emerge 
from the spatial-autocorrelation of neighboring areas. Our model accounts for the high spatial correlation in 
crime events, and we did not find any significant spatial auto-correlation in the model residuals (see Note 4 in 
the SI). The reader can refer to the Methods section for additional details about the model and its formulation.

Description and prediction of crime. We begin by presenting the aggregated performance of our model 
predicting crime in the four analysed cities. We evaluate our model under various feature combinations to assess 
the contribution of each group of features. We measure the capability of the model to describe crime through 
the marginal R2

m
55 and the conditional R2

c
55 (the higher the better). The marginal R2

m measures the proportion of 
variance explained by the fixed effects (i.e. the input features), while the conditional R2

c
55 takes also into account 

Figure 1.  For each block group (the core), we consider the block groups within a half mile as its corehood. 
Blocks that are near each other share most of their corehood. In this example, we show two cores in Bogotá 
and their corresponding corehood. We focus on three aspects of the core and the corehood: the Social 
Disorganization (SD), the Built Environment (BE), and the Mobility (M). The core, where crime is predicted, 
measures on average 0.378 square kilometers.



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:13871  | https://doi.org/10.1038/s41598-020-70808-2

www.nature.com/scientificreports/

the variance explained by the auto-correlation but not the input features (absorbed by the random effects). The 
difference between the two can be used to find clustering effects and missing variables. To assess the point-wise 
out-of-sample prediction accuracy we use the Pareto-smoothed importance sampling Leave-One-Out cross-
validation (here called LOO for simplicity)56 (the higher, the better).

First, we evaluate the baseline model that includes only the core variables, namely the residential population 
and the number of nightlife, shops and food POIs. Table 1 shows that the core-only model performs poorly in 
Chicago, Los Angeles and Boston, while it has high R2

m in Bogotá. We observe high difference between R2
m and 

R2
c , which means that there is a significant unexplained variance that is not explained by the core features.

The SD, BE and M features significantly increase the explanatory power of our model. Particularly, in US 
cities, the R2

m increases up to 161%, 194% and 633% in Boston, Los Angeles and Chicago. Notably, and not 
surprisingly, the SD features are very important, especially in Chicago, where the “Chicago school”57 forged 
the Social Disorganization theory and further elaborated the role of collective efficacy on dealing with crime. 
Differently, the increase in Bogotá is less pronounced, suggesting that the neighbourhood impact on crime is 
limited. Turning to M and BE features, we find that they describe the crime, but they are often as not meaning-
ful as the SD features for crime prediction. However, the importance of mobility confirms the importance of 
floating population at describing micro-dynamic behaviour of criminal  activity25,42. We observe that in all cities 
the conditional R2

c increases when adding the SD, BE and M features, revealing that the included variables also 
help explain the variance of crime.

Overall, Table 1 shows that considering together SD, BE and M variables result in the highest descriptive ( R2
m ) 

and predictive (LOO) performance. This result means that, in order to model crime, one needs to account for 
multiple aspects of urban life, including Social Disorganization, the physical characteristics of the neighbour-
hoods, and mobility. This result holds also against different combinations of the features (i.e. SD+BE, SD+M and 
BE+M). Nonetheless, some of the SD+BE and SD+M models are very competitive and might be considered when 
all data-sources are available. Particularly, the ambient population (i.e. the average number of people who stop 
at the core) is one of the most important variables in the model and allows to better assess the number of people 
at risk, as suggested by previous works on aggregated  mobility42, satellite  imagery37,  Twitter20 and census  data58. 
The R2

m improvements also indicate that the model relies less on the random effects and it is better at explain-
ing crime from the input features. However, we found that it might generate large errors due to places that are 
outliers of mobility in densely populated areas or hotspots of activity (see Figure S16 and Figure S17 in the SI).

Figure 2 shows the spatial gain in performance from the baseline in Bogotá. First, it reveals that our Full 
model prediction resembles the ground truth data (Figure 2 D-E), as confirmed by the high value of R2

c = 0.80 . 
Second, it shows that, while the SD and BE models achieve localized improvements (Figure 2 A-B), the Full model 
improves the prediction almost everywhere. However, the Full model performs quite poorly in a specific area 
of Bogotá (see Figure 2 C), part of the Engativá neighbourhood. By inspecting the coefficients of the model, we 
find that this area is an outlier as it is densely populated, thus causing an inflated prediction of crime, due to the 
high importance of residential and ambient population in the Bogotá model. Note, however, that our prediction 
is at the block level and the city-wide goodness of fit is R2

c = 0.80.
The difference between R2

c and R2
m represents the unexplained variance due to spatial auto-correlation, which 

might suggest missing effects and variables. In Bogotá, our model points out that the touristic and dangerous 
neighbourhood La Candelaria, and the populous district of Engativá have significant unexplained variance 
that our input features cannot capture (see Figure S13 in the SI). In Boston, the area near the Franklin park 
indicates missing local factors (see Figure S12 in SI). In Los Angeles, unexplained variance seems to be tied to 
places with a large number of people, namely the international airport and the UCLA campus (see Figure S14 
in SI). Again, in Chicago, missing variables are suggested near the prison and the southern area (see Figure S15 
in SI). Altogether, these signals could help policymakers on including the best factors for each city and enacting 
policies that prevent crime.

Table 1.  Quantitative results of crime description and predictions in Bogotá, Boston, Los Angeles and 
Chicago. The model including Social Disorganization, Built Environment and Mobility features achieves the 
highest descriptive ( R2

m and R2
c ) and predictive (LOO) performance. Here, we can see that contextual features 

of the neighborhood significantly increase our model’s performance against the model considering only the 
core features. The LOO metric is calculated through the Pareto smoothed importance sampling Leave-One-
Out cross-validation. The best performance is highlighted in bold.

Model

Bogotá Boston Los Angeles Chicago

R
2
m ( R2

c) LOO R
2
m ( R2

c) LOO R
2
m ( R2

c) LOO R
2
m ( R2

c) LOO

Core 0.54 (0.75) −3897 0.21 (0.64) −2035 0.18 (0.68) −9665 0.09 (0.68) −8415

Social-disorganization (SD) 0.57 (0.75) −3891 0.55 (0.68) −2019 0.53 (0.72) −9529 0.66 (0.78) −8019

Built environment (BE) 0.61 (0.76) −3881 0.36 (0.68) −2014 0.27 (0.69) −9629 0.21 (0.69) −8371

Mobility (M) 0.64 (0.80) −3804 0.42 (0.70) −2001 0.25 (0.70) −9570 - -

SD+BE 0.64 (0.76) −3881 0.65 (0.72) −1987 0.56 (0.72) −9508 0.67 (0.79) −8003

SD+M 0.66 (0.81) −3795 0.67 (0.73) −1973 0.55 (0.73) −9467 - -

BE+M 0.68 (0.80) −3819 0.50 (0.72) −1989 0.30 (0.70) −9585 - -

SD+BE+M (Full) 0.70 (0.80) −3808 0.70 (0.75) −1957 0.56 (0.74) −9454 - -
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Previous results suggested that human movements between different regions might help describing  crime36,59. 
Thus, we test our model against this hypothesis by using the people trips between areas to model the auto-corre-
lation between corehoods. This connectivity is not only influenced by distance but also by geographical barriers, 
roads, traffic, and public transportation. Moreover, it could be interpreted as a proxy of spatial mismatch and 
isolation, which was empirically found to be connected with  crime60. To build the connectivity matrix we use 
the TimeGeo model, which simulates a reliable Origin-Destination matrix between regions and it is validated 
towards transportation surveys (see Supplementary Note 3.1). However, we find that mobility flows alone do not 
have good predictive power in LA and Boston. The interested reader can find more information on the definition 
and results of this connectivity matrix in Supplementary Note 6.

While the effects of urban environment characteristics, socio-economic conditions, and mobility have been 
empirically tested  separately9,49,60–62, to the best of our knowledge, this is the first study to support with large-scale 
data the association of crime with socio-economic conditions, the built environment, and mobility. However, 
we find that these aspects do not play the same role across cities, and only some of them contribute to the crime 
prediction model.

neighborhood variables across cities. By comparing how features play different roles in different cities, 
we can understand how far can we push previous theoretical and empirical studies. In this section, we turn our 
attention to the standardized β coefficients that reveal how features correlate with criminal activity.

First, we focus on the coefficients of the Full model, which combines socio-economic features with the char-
acteristics of the built environment and human mobility. Note that here Chicago is excluded for lack of data. 
Figure 3 pictures that the β coefficients vary greatly across cities. For example, land-use mix correlates negatively 
with criminal activity in Bogotá and Los Angeles, but positively in Boston. Similarly, higher population building 
age diversity is present in low-crime areas in Boston and Los Angeles, but in high-crime areas in Bogotá. Social 
Disorganization variables are no less different, as corehood instability is correlated with crime activity only in 
Bogotá, differently from what expected from the  theory7,63.

The discrepancies between cities could be explained by the different spatial and socio-economic processes at 
play. When we look at the bivariate correlations across features, we observe interesting patterns. For example, in 
Los Angeles and Boston, walkability is strongly positively correlated with population density and neighbourhood 
attractiveness, as  expected7,63, and slightly correlated with advantaged neighbourhoods. Differently, walkable 
areas in Bogotá have low population density and are highly advantaged, while the attractiveness is slightly cor-
related (see Figure S20 in SI). A possible reason for the β coefficients disagreement lies on the multi-collinearity 
of the input features. Although we use the QR decomposition and Ridge penalty to shrink down the variables 
that are not necessary, the difference between the coefficients is present also in simpler models (e.g. core-only).

The difference between the results across cities also suggests that crime correlates differently with space and 
people. For example, we observe that in Bogotá high crime areas relate to advantaged neighbourhoods, while 
in Boston and Los Angeles higher crime seem to be linked to disadvantaged neighbourhoods, according to the 
 theory7,63. A possible explanation might be related to under-reporting and police disrespecting, which seems to be 
a problem particularly in Bogotá64. However, literature has shown how neighbourhood cultural codes, informal 
local control, and problematic policing are also related to violent criminal  activities15.

We also found some commonalities in all the cities. We find that corehoods with high disadvantage and 
ethnic diversity but, surprisingly, smaller blocks have higher crime activity. While in the core we find that the 
presence of Shops, Food POIs, and population (both residential and ambient) correlates positively with criminal 
activity. These results resonate with literature showing that the presence of POIs and ambient population increase 
crime due to a higher number of potential targets and offenders in an area. Additionally, we find that corehood 
attractiveness has a strong connection with crimes, suggesting that the presence of people that do not live nor 

Figure 2.  Maps of the estimated number of crime for each neighborhood in Bogotá for the A) Social-
disorganization, B) Built environment, C) Full model. D) shows the Full model’s prediction. E) shows the 
ground truth crime count.
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work in the area might influence crime. This result is in contrast with literature based on Jacobs’  theory11,22, but 
resonate with Oscar Newman’s one arguing that a high number of visitors results in higher anonymity and, thus, 
 crime10. Additionally, a recent empirical study from survey  data65 agrees with our result, obtained instead with 
large-scale and passively collected information. In the supplementary materials (SI), we compare all the cities 
in detail (see Supplementary Note 5-11).

We acknowledge the big difference between crime types. In this paper, we analysed serious crimes, which 
comprise heterogeneous crime types such as rape and robberies. Thus, we also test our model by disentangling 
criminal activity into two main categories: property and violent crimes. We found that the Full model still out-
performs the others, and that precise patterns can be extracted from the β coefficients analysis. For example, 
in Bogota walkability is much more important in describing property crime than violent crime, while in Los 
Angeles, higher walkability seems to suggest a lower presence of property crimes. However, we observe that the 
multifaceted picture found in the aggregated crimes still holds for the disentangled models.

We also tested the alternative assumption where all corehood features are computed at the core, and found 
that the models with features computed at the corehood perform better than the models using SD, BE and M 
features only at the core, which highlights the validity of the corehood (and neighbourhood) assumptions (see 
Supplementary Note 11).

Previous research have found universal common patterns even in highly heterogeneous data and behaviour. 
Literature has shown the existence of common mathematical models describing  mobility38,39,  cities40 and aggre-
gated crime at the city  level41,42. To test the possibility of having a universal model that predicts crime in small 
areas, we test a model that uses only the features that behave in the same direction in all the cities. This model 
consistently performs worse than the Full model (see Note 10 in SI), showing that at this moment, no model 
is convenient to be easily applied to all cities. We also studied at what extent a model trained in one city can be 
tested to another city. We found that US cities are, as expected, more similar to each other than Bogotá, and that 
Los Angeles behave similarly to Chicago.

Discussion
In this paper, we modelled the presence of crime across four cities, widely different with respect to cultural, 
economic, historical and geographical aspects. We found that the variability of the dynamics and history of 
each city poses a challenge to the existence of a model that “fits it all”, able to learn from one city and to predict 
on another one. Instead, we presented a model that could describe and disentangle the role of diverse factors in 
urban crime and draw some theoretical and practical implications.

The goal of this research goes beyond crime prediction in time (i.e. forecasting). Offences are concentrated 
in a small number of  places66, and are tightly coupled with places, stable over  time1. Thus, the easiest way to 
predict crime is modelling those few places with the highest number of crimes, also known as hotspots14,67. On 
the contrary, we seek to shed light on the diverse set of factors at play with urban crime and do predictions for 
those areas without crime statistics (i.e. nowcasting).

Figure 3.  Generalized Linear Model’s β coefficients showing that Social Disorganization, Built Environment 
and Mobility features do not play the same role in all cities. We highlight in blue the minimum and maximum 
coefficient for each feature. Overall, this figure shows that there is no universal theory of crime for spatial 
predictions.
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Our cumulative results show little evidence in support of the Jane Jacobs’ theory, arguing that specific urban 
features and people on the street generate higher security. On the contrary, we often found that Jacobs’ features 
and urban vibrancy increase people’s vulnerability to crime, suggesting that further work has to be done in this 
direction.

We found that different theories often seen as competing can complement each other in models that take into 
account the socio-economic, built environment and mobility conditions together. The importance of mobility and 
built environment characteristics showed that competitive descriptive and predictive models can be built from 
data available at large scale without the necessity of costly in-field survey studies. However, we found that aspects 
related to the Social Disorganisation are important for crime description and prediction. Therefore, it is crucial 
to consider alternative sources of data to infer social cohesion and interactions and overcome the use of census 
information, which is costly to collect and rarely updated. There have been multiple attempts at inferring social 
 interactions68,  poverty69, well-being70 and  unemployment71 but so far very little work has been done at small areas.

Comparing multiple cities in different countries do not come without limitations. First, our analysis ignore 
temporal variation such as opening times of POIs or temporal variation in mobility. Second, due to lack of 
consistent data, we did not account for variables such as political and housing policies, security perception, 
community participation, and social ties within family and within neighbourhoods that were previously found 
to be related to  crime33,72,73. Finally, official crime data do not come without errors, given that not all crimes are 
reported nor  recorded74, and there is no “ground truth” data to gauge any bias in police records. We use official 
police records similarly to recent literature in the  field14,16,20,25,36.

Our work seeks to make headway on the previous limitation of a single site of study. While recent works have 
started the use of street units and blocks to study criminal  activity19,21,75,76, they often relied on a small subset 
of variables and one city. Analysing multiple cities together exposed criminology theories to discrepancies and 
differences, and answers to the call of a framework to compare crime in different  cities43. Descriptive and com-
parative modelling can help policymakers to see common patterns between cities, understand the use of urban 
space and deploy future investments and resources thoughtfully. Moreover, from the scientific perspective, 
descriptive modelling can provide insights for strong predictors, and potentially for explanatory variables, to be 
further investigated by explanatory modelling and  experiments77. Thus, we hope that additional research keeps 
exploring multi-dimensional aspects related to crime, to clarify potential crime causes and design better cities.

Methods
The socio-economical and Jane Jacobs’ urban theories are dependent upon the actions and activities at work in 
communities. Thus, we identified corehoods as social and geographical units of analysis. Then, we obtained and 
aggregated the data for each corehood of Bogotá, Boston, Los Angeles and Chicago.

crime data. Our crime data is obtained directly from police departments. Crime records are collected by the 
police, which annotates in the report the crime event at point locations (latitude and longitude) along with the 
category of crime and the time it happened.

Through its category, we associate each event to the Uniform Crime Reporting (UCR)46 categorization. The 
UCR program is a US statistical effort to make crime reports uniform across the country. The UCR divides crime 
in two main groups: Part 1 and Part 2 offences. The former is composed by violent crimes (aggravated assault, 
forcible rape, robbery and murder) and property crimes (larceny-theft, motor vehicle theft, burglary and arson), 
while the latter are considered less serious and they include offences such as simple assaults and nuisance crimes.

We filter out those crimes not belonging to Part 1 of UCR, similarly to most of the criminology literature. 
For Bogotá we mapped crime categories consistently with UCR categories, and we released the mapping for 
future research and comparisons. We also filtered out larceny crime events, which include among others thefts 
of bicycles, shoplifting, pick-pocketing, or the stealing of any property or article that is not taken by force and 
violence or by fraud. We consider larceny-thefts (except motor vehicle theft) as sometimes noisy and we expect 
the neighborhood effect to have a negligible impact on larceny-thefts (e.g. social cohesion with pick-pocketing in 
a shop). We geo-reference crimes to cores and, when a crime event happens in a street segment shared between 
cores, we evenly assign the event to both cores. Due to the limit in accuracy of GPS positioning, we create a buffer 
of 30 meters for each crime, which is the distance usually employed for stop location detection  algorithms78 and 
criminology literature at micro-places21,44,76. We have no reason to suspect that the effect of the crime events stops 
at distances lower than 30 meters (e.g. robberies on the other side of the street are likely to affect residents on 
both sides). On the contrary, crime risk at hotspots has been observed to spread to distances up to 2000  meters67 
spatially. Moreover, we note that the median area of cores are 0.378 square kilometers, which roughly means that 
each core has a median side of 615 meters (see Figure S11 in the SI).

More details are presented in the SI. We summed crime events over one year to minimize seasonal fluctuations.

Mobile phone data. We computed the ambient population and the OD matrices for Bogotá, Boston and 
Los Angeles from Call Detail Records (CDRs) of millions of individuals in the three cities. Mobile phone activity 
includes received and made calls and SMS activity. Each time a call or SMS is made/received, a CDR is generated. 
It includes some metadata such as the time and the tower at which the phone was connected when the activity 
was collected. Due to the inherent noise of  CDRs79, which are collected only for billing purposes, we follow semi-
nal  literature78,80,81 and apply a stop location algorithm to classify the geo-located points where people stay or 
pass-by. Then, we simulate reliable human mobility traces through the TimeGeo modelling  framework51, which 
generates traces that well describe the real mobility of people. To be consistent with the travel surveys of each 
city it simulates the time, duration, direction and type of travels within the city. The types of travels are classified 
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as Home-Based from/to Work (HBW), Home-Based from/to Other type of locations (HBO) and Non-Home-
based from/to Other type of locations (NHB).

We fitted the model starting from aggregated and anonymized Call Detailed Records (CDRs) collected from 
12-01-2013 to 05-31-2014, 6 weeks in 2010, and 10-15, 2012 to 11-24, 2012 for Bogotá, Boston and Los Ange-
les respectively. We validated the model with the National Household Travel Survey (NHTS)82 and California 
Household Travel Survey (CHTS)83 datasets. We refer to the SI for the validation of TimeGeo.

To build the ambient population we counted the number of people who stops at a specific location for at least 
one hour. Since TimeGeo is validated and peer reviewed with HBW, HBO and NHB types of trips, we define the 
corehood attractiveness counting the number of NHB trips with the corehood as destination. We did not use 
HBW trips, as we cannot differentiate the origin from the destination and thus attractiveness could correlate with 
residential places. For the same reason, we excluded HBO trips from the attractiveness definition.

The anonymized data for the three cities was collected for billing purposes by two mobile operators, who also 
kindly provided to us the data for the present research.

Spatial and census data. Census blocks, population, employment and poverty for US cities were drawn 
from the American Community Survey (ACS) (https ://www.censu s.gov/progr ams-surve ys/acs). The census data 
of Bogotá was obtained by the Departmento Administrativo Nacional de Estadística (DANE), which organized 
the 2005 general census for the city (http://www.dane.gov.co). The poverty data of Bogotá was extracted from the 
Sisbén in the Identification System III of 2014. We also use the US Tiger dataset, OpenStreetMap (http://www.
opens treet map.org) geographical data and the POIs extracted from Foursquare (http://www.fours quare .com). 
The detailed description of datasets and related source URLs are listed in the SI.

Built environment features. We operationalize the Jane Jacobs conditions through some state of the art 
metrics defined in  literature49 in all the corehoods. The land-use mix is computed as the average entropy among 
land uses: LUML,i = −

∑

j∈L
Pi,j log(Pi,j)

log(|L|)  , where Pi,j is the percentage of square meters having land use j in unit i, 
and L = {residential, commercial and institutional, park and recreational} represents the considered land uses 
in the metric. The LUM ranges between 0, wherein the unit is composed by only one land use (e.g. residential), 
and 1, wherein developed area is equally shared among the n land-uses.

Then, for each corehood we determine the walkability through the accessibility of the core to the nearest 
point of interests (e.g. convenience stores, restaurants, sport facilities). Consistently with  literature84, we define 
the weighted walkability score as: walki = 1

|Bi |

∑

c∈C

∑

b∈Bi
wdist (b, closest (b, POIc)) , where C is the set of 

categories (i.e. Food, Shops, Grocery, Schools, Entertainment, Parks and outside, Coffee, Banks, Books), wdist 
is the street-network distance decay function, and POIc is the set of POIs of category c. The distance decay func-
tion gives a weight (importance) to each POI reachable from a starting point. Additional information about the 
walkability score can be find in the SI.

We then compute the average block area among the set Bi of blocks in unit i as Blocks areai = 1
|Bi |

∑

b∈Bi
area (b) , 

and the building age diversity as the standard deviation of building ages in the corehood.
Finally, we operationalize Jacobs’ density condition with the dwelling units density, computed from census 

data. Additional details are described in the SI.

Social Disorganization. We create the feature disadvantage and instability7,9,15,26 through the two largest 
PCA principal components of: (i) unemployment rate, (ii) poverty rate, defined as people living below the pov-
erty line, and (iii) residential mobility rate, defined as the percentage of people who recently changed residency 
(one year for US cities and fiver years for Bogotá). From the loadings of the PCA linear combination we verified 
that disadvantage is mainly a linear combination of poverty rate and unemployment, while instability is mainly 
about residential mobility rate.

In the Social Disorganization variables we do not include any ethnic-specific variables (e.g. percentage of 
black people) other than diversity because they might be present only in some places and not in others (e.g. native 
Americans in Bogotá), and to avoid any ethnic-specific bias. Ethnic diversity represents the difficulties of a com-
munity to communicate and collaborate for a common goal. Accordingly to the  literature7,47,48, it is computed as 
the Hirschman-Herfindahl diversity index of six population groups H = 1−

∑N
i=1 s

2
i  , where si is the proportion 

of people belonging to the ethnicity i, and N is the number of ethnicities. Consistently with the literature we 
include for US cities: Hispanics, non-Hispanic Blacks, Whites, Asians, Native Hawaiians - Pacific Islanders and 
others. For Bogotá we include: Indigenous, Rom, Islanders (San Andrés), Palenquero, Black and others.

Bayesian model. Let yi be the discrete number of crimes for a set of spatial regions i = 1, . . . ,N . We 
approximate the relation between crimes and spatial features through a Negative Binomial approach that models 
the non-negative nature of the crime-counts in a city, but also the overdispersion found in the data (Note 4 in the 
SI). Specifically, ln(E(Y)) = Xβ + b where X is the input data and β the coefficients of the model. b are the ran-
dom effects that accounts for the unexplained variability of crime (i.e. the spatial-autocorrelation). In this paper, 
we account the spatial auto-correlation with the Bayesian Spatial Filtering (BSF)85 that defines b = Eγ where γ 
are coefficients to be found. E is instead defined as the first principal components of Efull = MCM , where C is 
a spatial matrix that describes the graph between spatial locations, while M = I− X(X′

X)− X
′ , which is an 

approximation of the spatial error  model54. We tested for the presence of spatial auto-correlation on the residuals 
of all the models without finding significant auto-correlation. As the results might change with different defini-
tions of C , we tested all the models for three definitions: i) C is a binary adjacency matrix identifying whether a 

https://www.census.gov/programs-surveys/acs
http://www.dane.gov.co
http://www.openstreetmap.org
http://www.openstreetmap.org
http://www.foursquare.com
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corehood overlaps another corehood, ii) C is a inverse distance matrix between corehoods, iii) C describes the 
flow of people between corehoods, which is extracted from mobile phone data. We found that the binary matrix 
consistently outperforms other definitions. Additional details of the presented models, definition of C , and other 
competitive models tested are present in the SI.

As we have to account for collinearity, we employ a Ridge penalty to all fixed effects.

Model calibration ed evaluation. Model calibration is carried out by means of Markov Chain Monte 
Carlo (MCMC) approach. We run the MCMC method for 20,000 iterations and chose as burn-in the first 15,000 
iterations to ensure that the remaining 5,000 iterations are in the high-probability region. Convergence for all the 
models was assured by the Gelman-Rubin convergence  statistics86 and visual inspection of the traces.

We assess how well the models describe crime through the conditional R2 and the marginal R255, which adapt 
the popular coefficient of determination to the generalized linear mixed-effects models. They are defined as:

where σ 2
f  is the variance explained by the fixed effects, σ 2

r  is the variance explained by the random effects, and 
σ 2
ǫ  is the variance of the residuals. Specifically, f = Xβ , r = Eγ and ǫ is specific to the Negative Binomial and 

 defined55 as ǫ = ln (1+ 1/µ+ 1/φ) , with µ = 1
N

∑N
i yi and φ is the shape parameter of the Negative Binomial 

distribution.
We assess the out of sample predictive accuracy through the Pareto-smoothed importance sampling Leave-

One-Out cross-validation (PSIS-LOO, here simply referred as LOO)56 and the Deviance Information Criterion 
(DIC)87. Even though DIC has been used extensively for practical model comparison in many disciplines, recent 
literature on Bayesian models evaluation strongly discourage the use of DIC due to its numerous disadvantages 
including the fact that it works well only if the posterior is close to a Gaussian, its lack of consistency and the 
fact that is not a proper predictive  criterion56,88. Since LOO overcome the DIC issues, it has rapidly become the 
state of the art for evaluating Bayesian models. We employ the LOO in the main paper, while we present the DIC 
results in the supplementary. The LOO is defined in the log score as:

where n is the number of data points, θ s are draws from the full posterior p(θ |y) , s = 1, . . . , S represent the S 
draws, and ws

i  is a vector of weights that are the Pareto Smoothed importance ratios built through an algorithm 
described in the LOO original  paper56. The best model is associated with the smallest LOO value.

Data availability
We are pleased to make available the source-code and datasets accompanying this research. The projects files are 
available at https ://githu b.com/denad ai2/bayes ian-crime -multi ple-citie s/.
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