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N E T W O R K  S C I E N C E

Deconstructing laws of accessibility and facility 
distribution in cities
Yanyan Xu1,2,3, Luis E. Olmos1,2,3, Sofiane Abbar4, Marta C. González1,2,3,5*

The era of the automobile has seriously degraded the quality of urban life through costly travel and visible 
environmental effects. A new urban planning paradigm must be at the heart of our road map for the years to 
come, the one where, within minutes, inhabitants can access their basic living needs by bike or by foot. In this 
work, we present novel insights of the interplay between the distributions of facilities and population that 
maximize accessibility over the existing road networks. Results in six cities reveal that travel costs could be reduced 
in half through redistributing facilities. In the optimal scenario, the average travel distance can be modeled as a 
functional form of the number of facilities and the population density. As an application of this finding, it is possible 
to estimate the number of facilities needed for reaching a desired average travel distance given the population 
distribution in a city.

INTRODUCTION
At a time of the very visible effects of the climate impact on our 
urban lives, some cities have become unbreathable, and greenhouse 
gas emissions are produced by buildings heating and cooling networks 
and all-round petrol transport. At a time when transport has become 
the first emitter of CO2, we need to imagine, propose, other ways of 
occupying urban space. This calls for a better understanding of the 
spatial distributions of facilities and population (1–7). The informa-
tion age and the online mapping revolution allow us to globally study 
the interactions of humans with their built and natural environment 
(8–13). Pioneering work in multicity studies has uncovered scaling 
laws relating population to distribution of facilities and socioeconomic 
activities at macroscopic scale (3, 6, 14–16). It has been asserted, for ex-
ample, that more populated cities are more efficient in their per capita 
consumption (3, 4), and their occupation diversity can be modeled 
as social networks embedded in space (10). However, a systematic un-
derstanding of the interplay of the urban form, their facilities distri-
bution, and their accessibility at multiple scales remains an elusive task.

At the country scale, when maximizing for the accessibility of 
population to a fixed number of facilities, Gastner and Newman 
(17) demonstrated a simple two-thirds power law between the opti-
mal density of facilities d and their population density . The power 
law was fitted by allocating 5000 facilities in the continental United 
States using population data within more than 8 million census 
blocks. In this case, each facility covers an area about the size of a 
county (∼1000 km2). In a follow up study, Um et al. (18) proposed 
distinct optimization goals to differentiate public services, such as 
fire stations and public schools, from commercial facilities, such as 
banks and restaurants. Public service facilities aim to minimize the 
overall distance between people and the facilities and follow d ∝ 2/3. 
However, in the case of profit-driven facilities, which have the goal 
of maximizing the number of potential customers, the power law 
has an exponent close to 1, that is, d ∝ . The authors found align-

ment in the analytical optimization and empirical distributions in 
the United States and South Korea, confirming the 2/3 exponent for 
public services and the 1 exponent for profit-driven facilities. The 
simple power law at city scale reveals the equilibrium of empirical 
allocation of resources across cities with different population. However, 
distributing facilities at fine scale within cities, where the coverage 
area per facility is of few blocks (∼10 km2), results in more hetero-
geneous settlements of population with different socioeconomic 
characteristics. Studies of accessibility within cities merit attention 
for science-informed land use planning and the redistribution of 
public services after disasters and evacuations (19–23). Forward- 
looking approaches for planning facilities in cities would also con-
sider individuals’ preferences to facilities via mining mobility 
patterns. Zhou et al. (24) introduced a location-based social network 
dataset to derive the demand for different types of cultural resources 
and identified the urban regions with lack of venues. While efforts 
have been devoted to address the optimal allocation problem in specific 
cities (24–27), systematic understanding of the optimal distribution 
of facilities is still lacking from the urban science perspective.

To contribute in this direction, we propose a multicity study that 
measures the accessibility of city blocks to different types of facili-
ties through their road networks and investigate the role of popula-
tion distributions. While at large scale, travel cost can be substituted 
by the Euclidean distance from residents to the facilities, road net-
works and geographic constraints play important roles for human 
mobility within cities (28–31). It has been well established that road 
network properties affect the daily journeys of residents (32–34), their 
urban form (35, 36), and their accessibility (29, 37). As a complement 
to most studies devoted to travel costs of commuters, we analyze in 
this work the road network distance of individuals to the nearest 
amenity of various types, dividing the space in high-resolution 
blocks of constant area of 1 km2. For each city and facility type, we 
optimally redistribute the existing facilities and compare the result 
with their empirical distribution. We observe that, in the redistribu-
tion, some blocks increase their accessibility and others decrease it. 
This implies that, to make the best use of the existing facilities for a 
more equitable accessibility, some blocks would benefit, whereas 
others would have facilities removed. At the city level, the gap 
between the empirical facility distribution and the optimal planning 
offers the opportunity to assess the planning quality of facilities in 
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diverse cities. We also revisit the power law between facility and 
population densities and observe that the two-thirds power law is 
not followed by the empirical cases, and it is observed in the optimal 
scenario only when the number of facilities is small compared to the 
total number of blocks in the city.

We further investigate optimal distributions of facilities by model-
ing its average travel distance in different cities as a function of the 
number of facilities to assign. A model of this quantity is derived on 
both synthetic and real-world cities and fits different cities well with 
only two free parameters. Furthermore, this gives us a universal 
function between the average travel distance and the number of 
facilities controlled by the urban form derived from the population 
distribution. As an application case, we estimate the number of 
facilities required to achieve a given accessibility via the proposed 
function in 12 real-world cities.

RESULTS
Empirical distribution of facilities
We select three cities [Boston, Los Angeles (LA), and New York City 
(NYC)] in the United States and three cities (Doha, Dubai, and Riyadh) 
in the Gulf Cooperation Countries (GCC) to study the empirical 
distribution of facilities. For each city, we collect the population in 
blocks with a spatial resolution of 30 arc sec (1 km2 near the equator) 
from LandScan (38), road networks with the OpenStreetMap (39), 
and facilities from the Foursquare (40) service application. These 
novel, rich, and publicly available datasets have proven value in 
transportation planning (34, 41, 42), land use studies (43, 44), and 
human activity modeling (45–47). The boundary of each city is drawn 
along with the Metroplex, encompassing both urban and rural re-
gions. Figure 1 depicts the road network, population density, and 

10 selected types of facilities (e.g., hospitals and schools) in NYC and 
Doha. The statistical information of six cities is summarized in 
Table 1. For clarity, all variables and notations introduced in this 
work are summarized in note S1. The distribution of all available 
facilities in Foursquare data for the six cities is presented in fig. S1. 
Details of the data sets are described in Materials and Methods and 
note S2. Figure S2 presents the distribution of population and 
different facility categories as a function of the distance from the 
central business district, indicating the diversity of the selected cities. 
Specifically, it can be observed that Doha and Dubai have more 
facilities that are located in the highly populated areas, whereas Boston 
has the majority of facilities located near the city center where fewer 
people reside. Discrepancy in the distributions between population 
and facilities can also be observed in LA, NYC, and Riyadh. In these 
three cities, the population density peaks near the city center, but 
the facilities are distributed more uniformly across the city.

 It is noteworthy that, for calculating facility density and total 
number of facilities, we first merge the same type of facilities (e.g., 
hospitals) located in the same block as one facility. Thus, the number 
of facilities thereafter refers to the number of blocks accommodat-
ing a given type of facility, denoted by N. We define Nmax as the total 
number of blocks in one city. Furthermore, as nearly unpopulated 
blocks do not weigh in the calculations of accessibility, we define 
Nocc as the number of occupied blocks given by the blocks with pop-
ulation over a threshold. We set the threshold as 500 in real-world 
cities, which is commonly used to distinguish between urban and 
rural regions. The ratio between the number of blocks occupied by 
facilities N and populated blocks Nocc is denoted by Docc. Table 1 
reports Docc of the 10 selected types of facilities in the six cities of 
study. As an example, Docc of hospital in Boston equals to 0.11, indicat-
ing that about 11% of populated blocks are occupied by hospitals.
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Fig. 1. Illustration of the three datasets. (A) Datasets in NYC. The lower layer depicts the map and road networks of the city. The middle and upper layers illustrate the 
population density and the locations of the 10 selected types of facilities in the same region, respectively. (B) Datasets in Doha. Compared with very dense NYC, Doha has 
a simpler road network, less population, and sparser facilities. Illustration of the three datasets in NYC (A) and Doha (B). The lower layer depicts the map and road networks 
of the city. The middle and upper layers illustrate the population density and the locations of the 10 selected types of facilities in the same region, respectively. Compared 
with very dense NYC, Doha has a simpler road network, less population, and sparser facilities.
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To quantify the accessibility of the population to facilities, pre-
vious work used the Voronoi cell around each facility as a proxy of 
the tendency of individuals to select the closest facility in a Euclidean 
distance (17, 18). However, within cities, the distance that people 
travel in the road networks is constrained by the infrastructure and 
the landscape. In this context, the routing distance is a better proxy 
of the accessibility from the place of residence to each amenity. 
Figure S2C compares the distributions of routing distance of the 
actual and optimal locations of facilities versus the Euclidean dis-
tances, respectively. Our findings confirm that the optimal strategy 
based on the Euclidean distance achieves similar costs to the actual 
distribution of facilities, which is much less effective than the strategy 
that optimizes for routing distance.

Optimal distribution of facilities to maximize  
overall accessibility
Accessibility indicates the level of service of facilities to the residents. 
In network science, accessibility is defined as the ease of reaching 
points of interest within a given cost budget (48–50). How to 
allocate the facilities to maximize the overall accessibility in cities is 
one of the most essential concerns of facility planning. From this 
point of view, we redistribute the facilities by minimizing the total 
routing distance of population to their nearest facilities. In the 
following, we refer to this redistribution as the optimal scenario. 
Likewise, the empirical distribution of facilities is referred to as the 
actual scenario. Specifically, among the Nmax blocks of one city, we 
denote as facility-tagged the N blocks that are occupied by a given 
type of facility in the actual scenario and redistribute the same 
number of facilities in the optimal scenario. The shortest distance 
between any pair of two blocks is calculated using the Dijkstra’s 
algorithm in the road network. The idea is to find a new set of N 
blocks and label them as facility-tagged such as it minimizes the 
total population-weighted travel distance from all Nmax blocks to 
the newly selected N blocks. This optimal allocation problem in 

networks is known as the p-median problem and, here, it is solved 
with an efficient algorithm proposed by Resende and Werneck (51) 
(Materials and Methods).

The difference of the travel distance between the actual and the 
optimal scenarios assesses the quality of the distribution and there-
fore, of the accessibility in different cities. In each scenario, each 
residential block is associated with the facility that can be reached in 
the shortest routing distance. The block is linked to itself if it is 
occupied by a facility. It is important to note that we do not consider 
in the present study the capacity of facilities as a constraint, i.e., the 
number of people using the same facility is not limited. We group 
the set of blocks served by the same facility and define them as a 
service community. Considering hospitals as an example, we present 
in Fig. 2 (A and B) the service communities in Boston in the actual 
and optimal scenarios, respectively. The color of each cluster depicts 
the total population   p j  S   in the service community of the jth facility. 
The communities in optimal scenario are more uniform in both size 
and population compared to those in the actual scenario. Particularly 
in the actual scenario, the communities have small area in down-
town Boston but large in the rural area, revealing the uneven distri-
bution of hospitals.

To quantify the disparities between blocks in the level of service 
for a given type of facility, we compare the actual and optimal travel 
distances to facilities. We define a gain index of the ith block as

   r  i   =    l  i   ─ 
   ̂  l    i  

     (1)

where     ̂  l    i    and li are the shortest travel distances from the ith block to 
its nearest facility in the actual and optimal scenarios, respectively. 
An ri >1 identifies that the block is better served by the facility in the 
actual than the optimal scenario. Residents living in these blocks 
benefit more from the distribution of facilities than they would in 
the scenario of social optimum. In Fig. 2C, we illustrate in Boston 
the ri of each block to hospitals in a logarithmic scale. The blocks in 

Table 1. The statistical information of the six cities.  

Boston LA NYC Doha Dubai Riyadh

No. of facilities [×1000] 66.3 319.8 207.5 12.9 38.7 64.0

Population [million] 2.36 9.59 8.12 0.99 2.91 5.17

Area [km2] 1649 3869 1132 309 1402 1091

Nocc 1125 3696 947 217 657 847

Nmax 1947 5505 1357 380 1635 1305

UCI 0.21 0.17 0.19 0.24 0.35 0.26

Docc Hospital 0.11 0.13 0.27 0.27 0.20 0.33

School 0.32 0.33 0.74 0.37 0.18 0.29

Supermarket 0.06 0.08 0.38 0.13 0.12 0.14

Park 0.42 0.45 0.74 0.22 0.17 0.26

Pharmacy 0.23 0.30 0.67 0.22 0.24 0.37

Bank 0.37 0.35 0.67 0.42 0.33 0.47

Fire station 0.13 0.09 0.32 0.03 0.02 0.01

Concert hall 0.05 0.07 0.14 0.05 0.03 0.07

Soccer field 0.08 0.04 0.11 0.14 0.07 0.10

Bar 0.30 0.26 0.66 0.18 0.15 0.19
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green, near to hospitals, are located in the central, southern, and 
northeastern areas, while the blocks in red have lower accessibility 
to hospitals when compared with the optimal scenario and are 
located in the northern, southwestern, and southeastern areas. This 
has some resemblance with the spatial distribution of wealth in Boston 
metropolitan area (52). The actual travel distance     ̂  l    i    and the gain index 
ri in the ith block to hospitals for six cities are presented in fig. S3.

Although the inequality of the distribution of facilities can be 
visually observed from Fig. 2C, for comparing the inequality across 
facility types and between cities, we compute the Gini coefficient of 
ri of all blocks per facility type per city, as illustrated in fig. S4A. We 
observe that the Gini coefficients of all selected facility types in Boston 
are similar and around 0.5. NYC has the most discrepancies in the 
Gini coefficients over the 10 facility types, where the distributions 
of schools, parks, pharmacies, banks, and bars are more equitable 
than others due to their high densities (see Table 1). In the GCC 
cities, fire stations are the most equitably distributed facilities, while 
bars, hospitals, parks, and pharmacies are distributed less equitably 
than others. The Lorenz curves and the values of the Gini coefficients 
per facility type are presented in fig. S4B. The three cities in the 
United States are generally planned more equally than the GCC cities.

Thereafter, we compare the difference in accessibility across cities 
to various facility types. Figure 3A presents the average travel dis-
tances in the actual scenario (   ̂  L   ) and optimal scenario (L) to the 10 
selected types of amenities. The first row displays the facilities with 
higher densities in the United States cities: banks, pharmacies, schools, 
parks, and bars. Next come hospitals and supermarkets, followed by 
concert halls, soccer fields, and fire stations, which have the lowest 
densities. As expected, the lower the density, the longer the travel 
distance there is to them. Note that the accessibilities to parks, fire 
stations, and bars have the largest differences between the United States 
and GCC cities mainly due to lower availability in the latter. To com-
pare the travel distance in different cities in the same order, we ex-
hibit the scatterplots of    ̂  L    and L versus Docc, the ratio between N 
and Nocc, in Fig. 3 (B and C). The discrepancy of actual travel dis-
tance    ̂  L    among the six cities is mainly caused by the difference in 
facility planning strategy and urban form. As expected, the optimal 
travel distance L displays a more uniform tendency than    ̂  L   , reveal-
ing the potential of modeling L with the number of facilities N.

An interesting measure is the improvement of overall accessibility 
if the locations of facilities are optimally redistributed at a city scale. 
To that end, we define the optimality index R for a given type of 
facility at city level as the ratio between the average travel distance 
to the nearest facilities in the optimal and actual scenarios

  R =   L ─ 
  ̂  L  

   =   
  i=1   N  max     p  i    l  i   ─ 
  i=1   N  max     p  i      ̂  l    i  

     (2)

where pi is the population in the ith block. R ranges from 0 to 1, with 
1 indicating that the facilities are optimally distributed in reality. In 
note S3 and fig. S4C, we discuss the change of R with N/Nmax by 
introducing two extreme planning strategies, random and population- 
weighted assignments, described in note S3. We observe that R score 
of actual planning is mostly between the two extreme strategies, ex-
cept Riyadh, in which R is even lower than random assignment. 
This suggests the imbalance between facility locations and service 
delivery in Riyadh (53). Besides, we observe that the R score of actual 
planning is the highest when N/Nmax is the smallest for cities, except 
LA and NYC. For the two extreme strategies, we observe R is u-
shaped as a function of N, except for LA. This suggests a higher R 
for both small and large N values. This is because, for a small N, 
simply allocating the facilities in the most crowded blocks would 
shorten the total travel cost to a great extent, while for a large N, 
most blocks are occupied by facilities. The R score of LA keeps flat 
compared to other cities mainly due to the polycentric distribution 
of population, indicating that a small number of facilities cannot 
efficiently serve most of the population.

Figure 3D depicts the box plot of R of the 10 types of facilities in 
the six cities. R is generally lower with larger facility density, suggest-
ing that the gaps between actual and optimal distribution are larger. 
For example, hospitals and fire stations have much lower density 
than bars, but their R scores are larger. Public services need to be 
uniformly distributed, while commercial ones do not. The more 
available facilities are banks, pharmacies, schools, parks, and bars, 
with an R between 0.4 and 0.5 on average, revealing that the average 
travel distance could be reduced by 50% if all facilities are planned 
in the optimal locations.

Revisiting scaling law between facility and  
population densities
Previous work has related the facility density to population density 
as a power function both in the actual and optimal scenarios at the 
national scale (18). Here, through introducing the road networks, we 
dissect these power laws in the two scenarios in diverse cities. We 
calculate both facility and population densities in the service com-
munities, as shown in Fig. 2 (A and B). Specifically,   d j  S  = 1 /  a j  S   and   
 j  S  =  p j  S  /  a j  S  , where   a j  S   is approximated by the product of the number 
of blocks   n j  S   and the average block area in the city, that is,   a j  S  =  n j  S   a  ̄  . 
Taking hospitals as an example, their densities versus the population 
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Fig. 2. Service communities of hospitals in the actual and optimal scenarios in Boston and gain of travel distance per block. (A) Service communities of the hospi-
tals, as measured from empirical data in Boston. The dots refer to the blocks in the city. The color indicates the population in each community. (B) Service communities of 
the optimally distributed hospitals in Boston. In this optimal scenario, both of the area and the population of communities are generally more equable than those in the 
actual scenario. (C) The block gain index ri in logarithmic scale in Boston. The blocks in green indicate that the residents are better served in reality; ri does not have units. 
The blocks in red indicate that their actual travel distance to the hospital is larger than the optimal distance and they are underserved, such as in the northern and south-
eastern areas.
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densities of the service communities in the actual scenario over the 
six cities are illustrated in Fig. 4A. The full lines represent the fitted 
power law functions with least squares method and with communities 
with more than 500 residents. Cities have different exponents and 
the r2 scores of the fitting are less than 0.5 in most cases. These 
results show that, although the two-thirds power law was found for 
public facilities at county resolution (18), we do not find a uniform 
law between facility and population densities at finer resolutions, 
i.e., intra-city community level.

Once facilities are optimally redistributed in the city, the service 
communities are reorganized accordingly. The fitted power laws 
between the distribution of hospitals and population in optimal 
scenario of the six cities are shown in Fig. 4B. The fitted exponents 
are closer to 2/3 and have a larger r2, and the 95% confidence intervals 
are narrower than those in Fig. 4A, depicting the actual scenario. 
The exponents for the 10 selected types of facilities in the actual and 
optimal scenarios are reported in table S1. As expected, cities have 
different exponents for both actual and optimal scenarios. In all cases, 
we observe that the optimal exponents deviate from the analytical 
2/3 previously reported when the facilities are optimally distributed 
by a Euclidean distance at national case (17). Sources of difference 
are both the constraints introduced by the road networks and the 
higher density of facilities to be distributed.

For a comprehensive understanding of the existence of the power 
laws, we optimally allocate varying number of facilities N in our six 
cities of study and in synthetic cities. In Fig. 4 (C and D), we relate 
the  to Docc, the ratio of N to Nocc, and observe 2/3 when Docc < 
0.2(0.1) for the real-world (synthetic) cities. We simulate controlled 
scenarios via four synthetic or toy cities of size 100 ×100, with pop-
ulation distributions depicted in Fig. 5A. Note that the population 
threshold is set as 50 in toy cities to count Nocc, and the total popu-
lation is fixed as half million, which is about 1/10 of the studied cities. 

We find that the curves of diverse cities collapse into a single one, 
indicating that the difference in the change of  across cities is 
mainly caused by different Nocc. In the toy cities, we notice that the 
change of  is not monotonous. It stays around 2/3 when Docc is 
below 0.1. Subsequently,  decreases with Docc as more facilities are 
assigned to the low-density regions and then increases as facilities 
start to refill the high-density regions. After all high-density blocks 
are assigned with facilities,  starts to drop to zero, implying that all 
blocks are filled with facilities. The same fluctuation of  is not 
observed in real-world cities because the large and low-density 
regions are not segregated like in the synthetic cities. In summary, in 
the optimal scenario, the two-thirds power law can be found for a lim-
ited number of facilities but tends to disappear for larger values of N.

Modeling accessibility to optimally distributed facilities
In Fig. 3B, we see that Docc is the most determinant factor to decrease 
the average distance    ̂  L    to a facility independent of its type and city. 
In Fig. 3C, we observe that these decreasing functions L(Docc) col-
lapse for the optimal distributions in each city. Following up on this 
observation, we explore further the relation between travel distance 
in optimal scenario L and the number of facilities N for diverse cities 
with various geographic constraints and population distributions. 
To this end, we designed 17 toy cities with different levels of urban 
centrality; 4 of these are illustrated in Fig. 5A. Population distribu-
tions of the toy cities are generated by a two-dimensional Gaussian 
function (e.g., cities a and b) or a mixture of several two-dimensional 
Gaussian functions (e.g., cities c and d). The toy cities have the same 
population of half million and are equal sized, consisting of 100 × 100 
blocks. The size of each block is set to 1 km2, and the travel cost 
between two blocks is calculated with the Euclidean distance between 
their centroids. We measure the centrality of a city by computing 
the urban centrality index (UCI), proposed by Pereira et al. (54), of 
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Fig. 3. Optimality of planning by facility type and city. (A) The average travel distance in actual scenario,    ̂ L   , and optimal scenario, L, for the 10 types of facilities in the 
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are ranked by their average densities in the six cities in the descending order. Among the facility types, fire station is the most optimally distributed and bank and school 
are the worst. In general, facility type with lower density is better located than dense facility type from the perspective of collective benefit maximization.
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the population distribution (Materials and Methods). UCI ranges 
from 0 to 1, with 0 indicating the totally polycentric—with the pop-
ulation of the city uniformly distributed—and 1 indicating totally 
monocentric—with all the population residing in one block. In 
addition, we include 12 real-world cities for further exploration, 
the six aforementioned to which we add: Paris, Barcelona, London, 
Dublin, Mexico City, and Melbourne. Population distributions of 
four selected cities are illustrated in Fig. 5B. Paris is the most mono-
centric, with a UCI of 0.50 and most residents residing in the urban 
region, while Melbourne is the most polycentric, with a UCI of 0.08 
and residents dispersed over the city.

For an estimate of the optimal travel distance L in each city, we 
first assume that the in-block travel distance is constant lmin = 0.5 km, 
and the average travel distance within a service community approx-
imates to   g j  S   √ 

_
  a j,occ  S     , where   g j  S   denotes the geometric factor in the com-

munity;   a j,occ  S    denotes the area of the occupied blocks (17). Then, 
L is expressed as the sum of two terms, the first for the population 
in the N blocks with facilities and the second for the population in 
the Nmax-N blocks without facilities

   L =   1 ─ P   ⋅  (    l  min   ⋅     
j=1

  
N

    p  j   +     
j=1

  
N

    g j  S     ̃  p   j  S    (    a j,occ  S   )     
0.5

  )     (3)

where P is the total population in the city, and     ~ p   j  S   denotes the pop-
ulation in the service community of the jth facility after removing 
the block where the jth facility is located, that is,     ~ p   j  S  =  p j  S  −  p  j   . We find 
that   a j,occ  S    follows power law relation to the total area in community 
  a j  S   in most cities, that is,   a j,occ  S   ∝   (    a j  S  )     


   (fig. S5A). We assume that   g j  S   

is constant in each city, written as gcity, and   a j  S  ≈   ̄   a   S   =  a ̄   ·  N  max   / N , 
with   a ̄    denoting the average block area in the city. Then, we can re-
write Eq. 3 as

  L(N ) =  l  min   ⋅ p(N ) + A ⋅  N   −  ⋅ (1 − p(N ) )  (4)

where p(N) denotes the share of population in blocks with facilities; A 
and  are both constant. More details of this derivation can be found 
in note S4.1.

We further study how the share of population in blocks without 
facilities is related to the number of facilities N, and find that 1 − 
p(N) ≈ e−N when N ≪ Nocc (see details in fig. S5B and notes S4.2 
and S4.3). Thereby, we could model L as

  L(N ) =  l  min   ⋅ (1 −  e   −N  ) + A ⋅  N   −  ⋅  e   −N   (5)

where the number of facilities N is the main variable that deter-
mines L. While  controls the relation between p(N) and N, A and  
are two free parameters to calibrate. The model of L(N) summarizes 
the fact that to model L, the only two essential ingredients are the 
number of facilities to allocate N and the distribution of population 
in space.

Next, we numerically assign the optimal distribution of facilities 
given varying number of facilities for both toy and real-world cities. 
We present the average travel distance L versus the number of facilities 
N in the toy and real-world cities in log-log plots in Fig. 5 (C and D). 
In Fig. 5C, we see that for the same N, the global travel costs in poly-
centric cities are larger than in the monocentric ones. To validate 
the proposed function L(N), we first calibrate  by fitting 1 − p(N) = 
e−N per city (fig. S5B), and then calibrate the two free parameters A 
and  in Eq. 5 with the simulated L. All parameters are presented in 
table S2. The fitted L(N) values are shown with lines in Fig. 5 (C and D). 
The simulated and modeled L values are presented separately for 
each city in fig. S6, showing good results under various empirical 
conditions.
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Fig. 4. Fitted power law for the distribution of hospitals per city. (A) Actual hospital density (inverse of the area of community) versus population density at service 
community level. Each colored dot refers to a service community and the size represents its population, as shown in Fig. 2A. The full line represents the best fitted power 
law. The colored shadow represents the 95% confidence interval. The low r2 indicates that a clear power law can not be found and the fitted exponent differs from the 
empirically observed 2/3 at larger scales (18). (B) Hospital density versus population density in the optimal scenario. The full lines show clear power laws, with exponents 
close to 2/3 in all cities. The r2 values are higher and confidence intervals are narrower than the actual scenario. The fitted exponents for other facility types are numerical-
ly provided in table S1. (C) Change of fitted exponent  with Docc in the optimal scenario in the six cities. Each  is calculated by optimally distributing a given number of 
facilities in the city. The gray dashed and full lines indicate that  = 2/3 and Docc = 0.2, respectively. (D) Change of fitted exponent  with Docc in the optimal scenario in 
four toy cities.
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For seeking a universal function to approach the simulated L 
in diverse cities, we use  in Eq. 5 as a constant, fixing its average 
empirical value    ̄   = 0.382  in the 12 real-world cities. Combining 
the observation that Nmax is inversely proportional to  and  A ≈  
g  city      ̄  a       ̄      N max    ̄       (note S4.1), we can expect that  A ∝     −  ̄     . Figure S7C 
confirms this, showing that  A = 1.4443     −  ̄     . We can rewrite Eq. 5 as 
follows

  L(N ) =  l  min   ⋅ (1 −  e   −N  ) + 1.4443 ⋅  (N)   −  ̄     ⋅  e   −N   (6)

This function with only one free parameter  suggests that we 
are able to rescale N with  to collapse the curves of L in all cities 
into one, as shown in Fig. 5F that depicts Eq. 6 as solid line. The 
same rescaling of N in toy cities is presented in Fig. 5E, where the 
collapse is not as good as in the real cities due to the divergent values 
of  of toy cities in table S2. Next, we go beyond the average distance 

L and plot the distribution of travel distances when keeping N 
fixed (fig. S7, F and G). In all cases, the travel distance follows a 
gamma distribution. This universality suggests that (i) given a 
certain N, all real-world cities can reach comparable accessibility; 
and (ii) the overall accessibility in the optimal scenario depends not 
only on the availability of the resources but also on the settlement of 
population, independently from the road network and total area of 
the city.

Empirically, the decay of population share in blocks without fa-
cilities  depends on the population distribution in space. Taking 
into account that unpopulated blocks are not ideal when optimizing 
accessibility, Nocc is a better variable to express . A good agreement 
 = 1.833/Nocc (R2 = 0.96) over the 12 real-world cities is shown in 
Fig. 5G, suggesting that  can be estimated by Nocc. Given that  = 
1.833/Nocc and the universal relation of L(N), we can explain the 
collapses found in Figs. 3C and 4 (C and D).
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Fig. 5. Modeling of optimal travel distance to facilities in toy and real-world cities. (A) Population distributions of four selected toy cities. (B) Population distributions 
of four selected real-world cities, among which Paris is the most centralized and Melbourne is the most polycentric. (C and D) Simulated and modeled optimal travel 
distance, L, versus the number of facilities, N, in toy cities and real-world cities, respectively. The dots represent the simulated L with varying N. The lines represent the 
fitted model L(N) in Eq. 5. Cities are ranked by urban centrality (UCI) in the descending order in the legend. (E) Simulated and modeled L versus N in toy cities. By scaling 
N with , we collapse the curves of L with UCI lower than 0.9 into a single one. (F) Simulated and modeled L versus N in real-world cities. The black line represents the 
function in Eq. 6, approached by the simulated L in all cities. (G) Relation between  and Nocc.  can be well fitted with Nocc, suggesting that the decay rate of shared 
population in blocks without facilities is in inverse proportion to the urban area in one city for a small N. (H) Validation of the universal function in LA and Barcelona.
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As a concrete application of this universal model for optimal dis-
tance of facilities, in Eq. 6, we can plan for facilities by, for example, 
extracting how many facilities are needed for varying levels of ac-
cessibility to a given type of service. In this context, the number of 
facilities N can be estimated with the inverse function of Eq. 6. As the 
second term in Eq. 6 dominates the L for a limited N, we simply invert 

the second term to estimate N, given by   N(L;  ) =      ̄  _   · W (     (L / 1.4443)   −1/   ̄    _    ̄    )    , 

where W( · ) is the ProductLog or the Lambert W function (note 
S4.5). Figure 5H presents the estimated and simulated N versus L 
for two limiting cases, LA, in which the approximation agrees well 
with the simulation, and Barcelona, in which the approximation 
underestimates N. The results of other real-world cities are depicted 
in fig. S8, showing in general a good agreement between the analyt-
ical approximation via the Lambert W function and the numerical 
simulations.

DISCUSSION
As cities differ in their form, economy, and population distribution, 
the interplay between population and facility distributions is chal-
lenging to plan. The accessibility of facilities is constrained by their 
availability, the road network, and means of transportation. While 
efforts are devoted to managing daily commuting and transit-oriented 
developments, the planning of the distribution of different urban 
facilities deserves attention to a paradigm shift toward walkable cities. 
We present a framework that uses publicly available data to com-
pare the optimal and the actual accessibility of various facility types 
at the resolution of urban blocks. This allows us to efficiently pin-
point blocks that are underserved, i.e., those where people have to 
travel longer distances to reach the facilities they need compared to 
the social optimum. By relocating the facilities to optimize the global 
travel distance, we find that the relation between facility and popu-
lation densities follows the scaling law, d ∝  only in the limit of 
few or limited number of facilities, regardless of the differences in 
road network structures. The observed exponent  is generally around 
2/3 if the number of facilities is diluted or less than 10% of the occu-
pied blocks, and it starts to decay for larger number of facilities. 
This confirms the continuous limit for diluted number of facilities 
presented at national scale (18). We observe that the empirical con-
ditions within cities do not follow the continuous approximation 
for the power law with population density because facilities are not 
equally planned, and the number of facilities is large in comparison 
with the number of populated blocks.

To gain further insights when the number of facilities is large, we 
analytically model the average travel distance L in the optimal scenario 
versus the number of facilities N and three parameters. Parameter  
represents the rate of the population share in blocks without facilities, 
and the other two parameters can be approximated as constant 
among cities. A universal expression L(N) is verified with 17 syn-
thetic cities and 12 real-world cities depicting diverse urban forms. 
Furthermore, the travel distance to optimally distributed facilities 
follows a gamma distribution for all cities once N is fixed. This 
function can be applied to estimate the number of facilities needed 
to offer services to people within a given accessibility in average. 
The results estimated with the derived function find a good match 
to the numerical simulations that require solving the optimal distri-
bution of facilities. When relating  to the urban form, we uncover 
that centralized cities require less facilities than polycentric cities to 

achieve the same levels of accessibility. Applications of this framework 
could be to optimally reallocate resources that provide emergency 
services, such as the placement of shelters, ambulances, or mobile 
petrol stations in the event of natural disasters.

The optimal planning of facilities in this work supposes that all 
residents equally need the resources, and the accessibility is measured 
from their places of residence. In reality, the socioeconomic segrega-
tion in cities results in heterogeneous needs for resources. Cities in 
different social systems and economic development levels also exhibit 
different needs for various types of facilities that would need to be 
taken into account for economic considerations. On the other hand, 
people’s needs are naturally dynamic and change in time and space 
owing to their time-varying mobility behavior. All these factors result 
in complex interactions between the allocation of facilities and 
settlements of residents and can be considerable avenues for future 
research. Another important avenue is to consider the limited capacity 
of facilities in the optimal planning. This became ever more evident 
when distributing the health care system resources during the out-
break of a pandemic, such as the COVID-19 in 2020.

MATERIALS AND METHODS
Datasets description
Population density
The population with a spatial resolution of 30 arc sec (approximately 
1 km2 near the equator) of each city was obtained from the LandScan 
(38) in 2015. The average population density varies from 1431 per km2 
in Boston to 7175 per km2 in NYC.
Facility data
Facilities were crawled from Foursquare using their public application 
programming interfaces (APIs) in 2017 (40). In the dataset, each facil-
ity is associated with a name, geographical location, a facility type 
(e.g., hospital, supermarket, and bank), and a category (e.g., arts and 
entertainment, nightlife spot, shop, and service). Facilities are then 
assigned to the blocks defined by the LandScan population data with 
their locations. The total number of facilities in the six cities is given 
in Table 1. The distributions of facility categories for each city are pre-
sented in fig. S1. We select 10 types of facilities to inspect their actual 
and optimal planning, and they are given in the legend of Fig. 1. After 
merging facilities of the same type located in the same block, the occu-
pancy of each type of facility, N/Nocc, is presented in Table 1. The United 
States cities generally have more dense facilities than the GCC cities.
Road networks
We extract the road networks from OpenStreetMap (39). The road 
network is represented as a directed graph, in which edges indicate 
road segments and nodes indicate intersections. Each edge is associated 
with a weight representing its length. The travel distance between 
two blocks is computed by finding the shortest path between two 
randomly selected nodes in these blocks using the Dijkstra’s 
algorithm (55).

Optimal distribution of facilities in space
Finding the optimal locations of facilities to minimize the total travel 
cost is essentially an optimal placement problem in network theory, 
which is non-deterministic polynomial (NP) hard and known as 
p-median problem. The problem in this work is formalized as fol-
lows: “Given a set of blocks Nmax in a city, a set of residential blocks 
X ∈ Nmax is with population, and each block in Nmax can only ac-
commodate one facility. The goal is to open N facilities in Nmax so 
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as to minimize the sum of population- weighted travel distances 
from each residential block to its nearest open facility.” (56).

For simplicity, the p-median problem is written as a linear 
programming problem

   

 

  

minimize
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    (7)

where i and j are indices of the blocks; xi, j = 1 means that people 
living in block i are assigned to their nearest facility in block j, and i = 
j signifies that there is a facility located in residential block i; yj = 1 if 
there is a facility in block j, else yj = 0; N is the number of facilities to 
assign, and we assume that one block can only accommodate one 
facility of the same type; ci, j is the travel cost from block i to block j, 
which equals to the total routing distance of all population residing 
in block i. In this work, we solve the p-median problem with a fast 
algorithm based on swap-based local search procedure implemented 
by Resende and Werneck (51).

Urban centrality index
We adopt the UCI proposed by Pereira et al. (54) to measure the 
centrality of the population distribution in cities. UCI is the product 
of two components, the location coefficient (LC) and the proximity 
index (PI). The former is introduced to measure the inhomogeneity 
of population distribution in space. The latter is introduced to mea-
sure the difference between the current distribution and the most 
decentralized scenario. The calculation of LC and PI are as follows

   LC =   1 ─ 2       
1
  

 N  max  
  (    s  i   −   1 ─  N  max     )     (8)

  PI = 1 −   V ─  V  max      (9)

where V = 𝒮′ × 𝒟 × 𝒮. 𝒮 is a vector of population fraction in block i, 
si = pi/P, signifying the share of population in block i (pi) of the total 
population of the city (P); 𝒟 is the distance matrix between blocks. 
Vmax is calculated by assuming that the total population are uni-
formly settling on the boundary of the city, which indicates an 
extreme sprawl. UCI ranges from 0 to 1. Large UCI values indicate 
more centralized population distributions.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/37/eabb4112/DC1
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