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A simple contagion process describes spreading
of traffic jams in urban networks
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The spread of traffic jams in urban networks has long been viewed as a complex spatio-

temporal phenomenon that often requires computationally intensive microscopic models for

analysis purposes. In this study, we present a framework to describe the dynamics of con-

gestion propagation and dissipation of traffic in cities using a simple contagion process,

inspired by those used to model infectious disease spread in a population. We introduce two

macroscopic characteristics for network traffic dynamics, namely congestion propagation

rate β and congestion dissipation rate μ. We describe the dynamics of congestion spread

using these new parameters embedded within a system of ordinary differential equations,

similar to the well-known susceptible-infected-recovered (SIR) model. The proposed

contagion-based dynamics are verified through an empirical multi-city analysis, and can be

used to monitor, predict and control the fraction of congested links in the network over time.
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Traffic congestion in cities, also known as traffic jams,
propagate over time and space. Existing approaches to
model city traffic often rely on microscopic models with

high computational burden as well as excessive parameterization
required for calibration1–3. Further, the lack of available trans-
portation network data in many countries, especially those that
are less economically developed, poses a challenge for traffic
modelers. However, the fast-paced development and deployment
of mobile sensors offers the opportunity to generate continuous
spatial data, which further enables the estimation of road traffic
conditions in real time and at the macroscopic level.

Numerous studies have explored different macroscopic
approaches to model the spread of traffic jams in cities4–9,
including through the lens of percolation theory10,11, machine-
learning methods12, and queuing theory13,14. However, machine-
learning models12 and models based on queuing theory13,14 are
unable to capture and quantitatively describe the propagation and
dissipation patterns of congestion over time and space. They are
instead formulated based on input (arrival) and output (depar-
ture) rates to estimate the number of vehicles (i.e., accumulation)
in an area, similar to conservation-based models using Macro-
scopic or Network Fundamental Diagram (MFD or NFD)4. In
this work, we show that traffic systems exhibit underlying
spreading dynamics similar to those observed and applied in
other network systems, for example, social networks, population
contact networks, or technological networks. Specifically, we
propose and empirically demonstrate that traffic congestion in
urban networks can be characterized using a simple contagion
process, similar to the well-known susceptible-infected-recovered
(SIR) model used to describe spread of infectious diseases in a
population, wherein traffic spreads and recovers throughout the
network over time. A previous study by Wu et al.15 conjectured
that traffic congestion spread can be described with a SIR model,
but provided no empirical evidence. To the best of the authors’
knowledge, characterizing and modeling congestion propagation
and dissipation as a network spreading phenomenon has never
been empirically validated.

Urban traffic often exhibits high spatial correlation in which
links adjacent to a congested link are more likely to become
congested. Additionally, there is a strong temporal correlation in
urban congestion, which is known to be driven by the time-
dependent profile of travel demand. The spread of congestion at
the link level is well theorized and understood with queuing and
kinematic wave theories16–18. However, our understanding of
congestion propagation dynamics at the network level is still
incomplete. Queue spillbacks in networks are shown to be sen-
sitive to link capacities19, which could remain stable in both
under- and over-saturated conditions. Congestion also exhibits
fragmentation during recovery20 leading to greater spatial het-
erogeneity and thus results in a drop of network production21–23.
Propagation and dissipation of gridlocks can be characterized by
the number of congested links or the length of congestion in the
network23 with propagation occurring often at a much higher rate
than dissipation. Also, studies have shown that the ratio of road
supply to travel demand could explain the percentage of time lost
in congestion as an aggregate measure2,22.

Unlike individual link traffic shockwaves in a two-dimensional
time-space diagram, which are categorized as forward or back-
ward moving, network traffic jams evolve in multiple directions
over space. Therefore, we propose that a network’s propagation
and dissipation can be characterized by two average rates, namely,
the congestion propagation rate β and the congestion recovery
rate μ, which together can predict the number of congested links
in the network over time. These two macroscopic characteristics
are critical in modeling congestion propagation and dissipation as
a simple contagion process23.

Despite the complex human behavior-driven nature of traffic,
we demonstrate that urban network traffic congestion follows a
surprisingly similar spreading pattern as in other systems,
including the spread of infectious disease in a population or
diffusion of ideas in a social network, and can be described using
a similar parsimonious theoretical network framework. Specifi-
cally, we model the spread of congestion in urban networks by
adapting a classical epidemic model to include a propagation and
dissipation mechanism dependent on time-varying travel demand
and consistent with fundamentals of network traffic flow theory.
We illustrate the model to be predictive, and validate the fra-
mework using empirical and simulation-based numerical
experiments. The proposed model can be used for adaptive and
predictive control of congestion in an urban network. By mon-
itoring the network in real time and observing the number of
congested links, the model can be applied to develop optimal
control strategies with different objectives, such as minimizing the
total duration of congestion, minimizing the total number of
congested links, and minimizing the recovery time. Similar to
other macroscopic model-based control applications24–26, we can
employ the proposed SIR-based model to improve the traffic
network performance by controlling and optimizing the network
input through optimal metering of traffic flow or by increasing
the network recovery rate through improved signal timing, bot-
tleneck removal, and capacity expansion.

Results
Identifying congested links. We use empirical data from Google
that contains estimated time-dependent traffic speeds on every
link in the road network across six different cities in the world,
namely Chicago, London, Paris, Sydney, Melbourne, and Mon-
treal (see Methods). We also use simulated data from a calibrated
and validated mesoscopic dynamic traffic assignment model of
Melbourne (see Methods)1. Using both empirical and simulation
data, we demonstrate that the proposed modeling framework can
successfully describe the dynamics of congestion propagation and
dissipation in urban networks.

In the proposed network-theoretic framework, nodes represent
the intersections (controlled and uncontrolled) and links
represent the physical roads between any two intersections. For
each link i in the network, we have the time-dependent speed
vi(t). We represent the maximum speed on the link as vmax

i . To
reveal how congestion propagates and dissipates in a network, we
define

λiðtÞ ¼
viðtÞ
vmax
i

; ð1Þ

where λi(t) is the ratio of link speed vi(t) over link maximum
speed vmax

i . We then classify each link as in either a congested
si= 1 or uncongested si= 0 state (also known as free flow) using a
threshold ρ as below

siðtÞ ¼
1; λiðtÞ < ρ;

0; λiðtÞ≥ ρ;
�

ð2Þ

where ρ is a pre-specified threshold that represents different
congestion levels11. Figure 1 illustrates the identified congested
network for different values of ρ at a given t using data from the
simulation-based dynamic traffic assignment model of Mel-
bourne. The size of the congested network grows as ρ increases.
Alternatively, one can also construct the congested network using
traffic density measurements or any other classification method.

Modeling contagion dynamics of network traffic jams. Con-
sider a network with N directed links. At time t= 0 every link in
the network is in the free flow or uncongested regime, F (0)=N
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and no link is congested C(0)= 0. Let E be the set of links, j(j∈ E)
of length lj on which congestion later forms and propagates
throughout the network. F(t) represents the number of links that
are at free flow regime at time t and C(t) represents the number of
congested links at time t based on the specified ρ. For a directed
link in the road network with on average k “effective contacts”
with other links pointing at its upstream node, β is the rate of
congestion propagating to an upstream free flow link in unit time,
and is F(t)/N is the probability of a congested link being directly
connected downstream of a free flow link. Under the assumption
of homogeneous mixing, which refers to an assumption that each
link in the network has the same probability of contact with a
congested link; a congested link connects to an average of kF(t)/N
free flow links in a unit time. Although the assumption of
homogeneous mixing is simplistic, it makes the analysis tractable
while shown to be predictive at the macroscopic scale. See Sup-
plementary Note 1 for the fundamentals of congestion propaga-
tion in simplified traffic systems. See Supplementary Note 2 for
the extension of the framework when the homogeneous mixing
assumption is relaxed.

Below, we describe the dynamics of congestion propagation
with a system of ordinary differential equations (ODEs), which is
analogous to the well-known SIR model:

dcðtÞ
dt

¼ �μc tð Þ þ βkc tð Þ 1� r tð Þ � c tð Þð Þ; ð3Þ

drðtÞ
dt

¼ μc tð Þ; ð4Þ

df ðtÞ
dt

¼ �βkc tð Þ 1� r tð Þ � c tð Þð Þ; ð5Þ

where c(t) represents the fraction of congested links in the
network, f(t) is the fraction of free flow links, and r(t) is the
fraction of recovered links. Equation 3 describes the rate in which
c(t) changes over time given a propagation rate β and recovery
rate μ considering that a fraction of congested links will
eventually recover as demand for travel diminishes. Equation 4
expresses the rate at which congested links recover given recovery
rate μ. Equation 5 represents how the fraction of free flow links f
(t) in the network changes over time given c(t) and r (t). Note that
c(t)+ r (t)+ f(t)= 1, where f(t) represents links that have
remained in a free flow state from t= 0. Also, kβ/μ represents
the average number of newly congested links each already
congested link potentially creates, in a fully freely flowing road
network. In epidemic modeling, this is often denoted by R0 and
called the “basic reproductive number”. The higher is R0, the
faster congestion spreads throughout the network. If R0 ≤ 1,
congestion will not spread in the network and remains a non-
persistent local phenomenon. R0 in an urban network can be
estimated at the onset of congestion, before congestion starts
propagating in the network. Congestion propagation in an urban
network often occurs over a few hours from the onset of
congestion and recovers within a few hours after the peak point.
If R0 is known, as soon as congestion forms and starts to

propagate, the proposed SIR model can be used to predict when
congestion will peak and how long it takes to recover, which can
be used to optimize the implementation of various traffic
management and control strategies.

The formulated model simultaneously describes the dynamics
of congestion propagation as well as congestion dissipation or
recovery in a network, given estimated parameters β and μ, which
are dependent on a definite time-dependent travel demand profile
as in real-world networks. Analogous representations to the well-
known susceptible-infected (SI) and susceptible-infected-
susceptible (SIS) model of epidemics can also be formulated to
describe the spread of traffic in a network as a two-state model
(see Supplementary Note 1). If a SI model is adopted, the
estimated c(t) describes propagation of congestion in the network
as long as demand for travel continues and congestion eventually
propagates to the entire network with no recovery leading to a full
gridlock, also known as “complete jam”27,28 or “collapse of the
network”29. Here, gridlock is defined as a state of the system
under which traffic in the entire network or a portion of the
network comes to a complete standstill with zero (or minimal)
flow20 (see Fig. 2a). If an SIS model is adopted, the congestion
propagation dynamics are described such that congestion
continues to grow but does not propagate to the entire network
and remains invariant after some time leading to a partial
network gridlock (see Fig. 2b). While from a theoretical
perspective, both SI and SIS models could also be adopted to
describe congestion propagation in a network, they fall short of
realism. In a partial network gridlock, the number of congested
links can grow or shrink depending on whether the gridlock is
propagating or resolving itself (dissipating) as what often happens
in real-world networks. Therefore, we expect that the SIR
model, as a three-state model, provides a more realistic
representation as will be empirically demonstrated in the next
section (see Fig. 2c).

Empirical evidence. We apply the proposed contagion-based
model to empirical data collected from six different large
metropolitan cities around the world (see Fig. 3a–d). We explore
changes in the fraction of congested links c(t) in the selected
networks. The proposed dynamics in Eq. 3–5 are fit to traffic data
between the onset and offset of congestion (Fig. 3b) to estimate
the propagation rate β and the recovery rate μ using an ordinary
least-square (OLS) method with a pattern search algorithm (see
Methods) for different values of ρ as in Eq. 2 and assuming an
average k= 3 for the studied networks based on the distributions
of the node degree.

The applied simple contagion process successfully describes the
congestion spreading patterns in different cities at a macroscopic
level. While the selected cities have significantly different
topology and travel demand patterns, their estimated R0 values
are almost the same for ρ= 0.2 and only slightly vary for ρ= 0.3
(see Fig. 3a). This suggests existence of a universal measure
represented by R0 for the spread of congestion in urban network
similar to what is usually observed for infectious diseases. Note

b c da

� = 0.1 � = 0.2 � = 0.3 � = 0.4

Fig. 1 Spatial distribution of congestion in the Melbourne network. At a given time t= 8:30 a.m. maps indicate the congested links (coded red) on the
network when a ρ= 0.1, b ρ= 0.2, c ρ= 0.3, and d ρ= 0.4.
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that cmax and the time where cmax occurs are different between
cities. For larger ρ values, the observed difference between the
estimated R0 grows, which is mainly due to the loose definition of
congestion when ρ is large. Therefore, we expect to see divergence
between cities as ρ increases. The fraction of recovered and free
flow links in the studied networks is also illustrated in Fig. 3c, d,
and shown to be consistent with the expected outcomes of the
theoretical SIR model.

Revealing the underlying dynamics with simulation. We now
explore changes in the fraction of congested links c(t) in the
network, given the traffic data obtained from the simulation-
based dynamic traffic model of Melbourne (Supplementary
Note 3) and the identified congested links. See Supplementary
Note 4 for a comparison between empirical and simulation-based
data from the Melbourne network. Figure 4a shows the evolution
of c(t) over time for different values of ρ using simulated data
with a calibrated travel demand profile for the morning peak
period 6:00–10:00 a.m., followed by a 4-h recovery period with
zero demand. Introducing zero demand after a complete network
loading is a common approach in network traffic analysis2,21,
which allows the network to go under a complete recovery. Many
of the interesting properties of network traffic flow can only be
observed during a full recovery such as the formation of hysteresis
in the network flow-density relationship.

The simulated congestion propagation and dissipation patterns
follow the commonly observed spreading patterns in epidemics in
which the propagation follows an initial exponential growth regime,
followed by a sum of multiple exponential processes during
recovery. Smaller values of ρ are used as they better reflect
congestion formation compared to larger values of ρ. For example,
when ρ= 0.1 is being used, the fraction of congested links in the
network is almost zero for the first hour of the simulation as
congestion has not yet formed in any link across the network.
However, when ρ= 0.9 is used, nearly 15% of the links in the
network are considered congested at the beginning of the
simulation. The adopted and formulated SIR model expressed in
Eq. 3–5 successfully describes the evolution of c(t) over time as
shown in Fig. 4b. The model is applied to traffic data between the
congestion onset and offset times at which the traffic jam starts
propagating and almost finishes dissipating, respectively.

To further reveal the congestion spreading patterns, we also
conduct a simulation with 1 h of peak demand loading followed
by several hours of recovery with zero demand, consistent with an
analysis previously reported by Olmos et al.2. Here we focus on a
target group of simulated vehicles that enter the network within
the peak hour (8:00–9:00 a.m.), specified as the hour immediately

before the peak point on the demand profile. See Fig. 5a in which
congestion propagation in the network can be approximated by
an initial growth followed by a decay. Figure 5b, c illustrates the
changes in the estimated parameters β, μ, and R0 for a range of
ρ values. It is counter-intuitive that when ρ increases, the rates of
congestion propagation and dissipation both decrease exponen-
tially. However, R0 increases when ρ increases as expected. In fact,
propagation and dissipation rates here must be interpreted
relatively. Therefore, their individual values may not provide an
absolute indication of the extent that congestion is spreading.
Instead, it is the ratio of β over μ, or more accurately R0, that has a
physical meaning. This is analogous to queuing theory in which
the size of a queue depends on the difference between the arrival
and departure curves rather than the individual arrival and
departure rates. Here, R0 can also be seen as a representation of
the rate in which the network shockwave evolves. Further, R0
follows an interesting linear relationship with ρ, as shown in
Fig. 5c.

Local congestion propagation dynamics. In order to further
investigate the spreading properties of congestion, we demonstrate
the propagation of congestion from congested links to their
upstream links in the network using simulated traffic data. Spe-
cifically, we reveal the formation of congested clusters at the
upstream of congested links. For any directed link i connecting its
source node to its target node, let us define the correspond-
ing congested upstream cluster as the subset of nodes on the
network that can reach link iʼs source node via at least one
directed path entirely consisted of congested links; the cluster
includes the source node. For a fixed ρ, we individually consider
each congested link, and calculate the size of its congested
upstream cluster at different points in time. For each time step t,
we generate a null model by randomly drawing λi(t) of each link i
from the same distribution of the link relative speeds as in the
simulated data at the same time step. To measure the significance
of the impact of congested links on their neighborhood, we
compare the size of the congested upstream cluster associated with
each link on the simulated network with that of the generated null
model, over time (see Fig. 6). Results indicate the spatial dis-
tribution of link λ’s over the simulated network is significantly
different from the null model. In particular, there are significantly
more congested upstream clusters of larger size in the simulated
traffic network compared to the null model. In other words, in
the traffic network, links with lower λi(t) tend to emerge inside
small- to medium-sized clusters, while this phenomenon is
not observed in the null model. Furthermore, the size of the
congested upstream clusters in the simulated network changes
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Fig. 2 Describing temporal evolution of congestion. Two-state model of congestion propagation in a network: fraction of congested links c(t) vs. time
resulting in a full network gridlock described by a variation of the SI model and b partial network gridlock described by a variation of the SIS model. c Three-
state model of congestion propagation and dissipation in a network, analogous to the SIR model subject to a time-varying loading–unloading demand
profile.
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over time. It starts from low values around t= 0, and gradually
increases until approximately t= 200min when it peaks for
most of the links, and then decreases toward zero until around t=
400min, when the network is empty. However, for the null model
the size of the clusters keeps fluctuating over time with large
variations, and the size of the congested upstream clusters only
reaches half of what is observed in the simulated Melbourne traffic
network. Consistent with the physics of traffic flow and kinematic
wave theory, this verifies the hypothesis that congestion at the link
level spreads over the network via upstream links. We illustrate
the difference in the distribution of the congested upstream
cluster size in the simulation network to that of the null model
at time t= 180min as an example (see Fig. 6c for ρ= 0.5 and
Fig. 6f for ρ= 0.7). The observed difference between the dis-
tributions of the cluster size in the simulated data versus the null
case confirms that congestion follows a non-random spatial
spreading pattern.

Connection with travel demand. Here, we examine the impact of
changing demand on the propagation and dissipation dynamics
of congestion. For the same network with 1 h of loading followed
by 4-h recovery, we have conducted multiple simulation runs
with a scaling factor of ζ= 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0 to
decrease or increase demand while keeping the origin–destination
demand patterns the same. We then solve the proposed ODE
model and estimate the model parameters β and μ as described in
Supplementary Note 5 and Methods section. When demand
increases, the fraction of congested links also increases for the
same network, and as a result, complete recovery of congestion
takes longer while the start of the recovery phase remains the
same. This is reflected in the reduction of μ in response to the
increase in demand for any given ρ (see Fig. 7a for the evolution
of c(t) over time for various demand levels). Counter-intuitively,
increasing demand also results in reduction of β for a given ρ (see
Fig. 7b, c). This should not be interpreted as a slower propagation
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of congestion. In fact, β is not independent of μ. The two mac-
roscopic characteristics vary interdependently, so c(t) reaches its
peak value at t= 75 min according to the demand profile.
However, R0 increases when demand increases for any given
ρ with a clear indication that the size of the network shockwave
will grow larger and it takes longer to recover. R0 has a linear
relationship with ρ in which the slope also follows an almost
linear relationship with demand (see Fig. 7d, e). Results suggest
that there is also a three-dimensional relationship between R0, ρ,
and demand as illustrated in Fig. 7f, in which for smaller values of
ρ, the relationship between R0, and demand is almost linear. The
relationship with demand is critical for applying the proposed
model to travel demand management and traffic control in real
world. The proposed model can be used for perimeter control of a
sub-network within a larger network, in which the relationship
with demand guides which R0 should be used given a fixed
ρ value, and vice versa. When R0 is known, the proposed model
can then predict when the congestion will peak and when it fully
recovers. Identifying the time of the congestion peak and recovery
duration can be used to identify the time-optimal traffic control
strategies (see Supplementary Note 6). What is missing here is the
observed relationship with demand from empirical data. Travel
demand is difficult to observe in real world. Therefore, our ana-
lysis here remains limited to the simulation environment. Passive

mobile phone use data could potentially be used to obtain travel
demand over time and relate with congestion propagation and
dissipation in the network, which remains an interesting direction
for future research.

Discussion
This study has shown that propagation and dissipation of traffic
jams in cities can be described by a simple contagion process,
which is formulated as a system of ODEs, analogous to the well-
known SIR model, dependent on two macroscopic network traffic
flow characteristics, namely congestion propagation and conges-
tion recovery rate. The paper has shown both empirically and
simulation based that congestion propagation is indeed a
spreading phenomenon. The extent to which congestion builds up
in a network and how fast it recovers are shown to be dependent
on the ratio of the propagation over recovery rates represented by
the basic reproductive number R0. Using data from a simulation-
based dynamic traffic assignment model of Melbourne, we showed
that time-dependent travel demand profile has, as expected, an
impact on the dynamics of congestion propagation and dissipation
in a network. In fact, R0 increases when demand increases for any
given ρ with a clear indication that the size of the traffic jam will
grow larger and it takes longer to recover in response to travel
demand. Moreover, empirical data from six different cities are
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analyzed to verify the validity of the proposed contagion-based
model; see also Supplementary Note 7 on the case of a very small
urban road network. We observed that different cities surprisingly
exhibit very similar R0 for small ρ values, indicating that at the
macroscopic level, they tend to have consistent congestion pro-
pagation dynamics. A limitation of this study is that in the clas-
sical SIR model when an infected individual recovers, he/she will
not be infected again (or removed). This clearly does not apply
directly to traffic networks in which a link may recover and
become congested again after a short period. However, the
assumption may still hold if the temporal aggregation of analysis is
large enough to prevent links to go under multiple cycles of
loading and recovery in a short sequence of time steps. Given the
unimodality of the travel demand profile during a peak period
(morning or afternoon), it may not be unreasonable to assume, at
a macroscopic level, that when a link recovers from congestion, it
will not become congested again until the next peak period.
Nevertheless, relaxation of this assumption and introduction of
other traffic states considering multiple cycles of loading and
recovery should be an item of research priority in the future.

Methods
Traffic simulation model. Simulation of the Melbourne network is conducted in
AIMSUN, a commercially available traffic simulation software. The model is a
mesoscopic simulation-based dynamic traffic assignment, which has been cali-
brated and validated for the morning peak period 6:00–10:00 a.m. A large number
of input (demand and supply) parameters need to be calibrated before the simu-
lation outcomes are used. Details of the calibration and validation process can be
found in ref. 1 and Supplementary Note 3.

Google traffic data. Google traffic data on 27 June 2018 are acquired and used,
which consist of speeds in the unit of km/h for each link in the network with a
unique identifier. The time frame for congestion modeling varies from city to city,
which is determined based on the profile of the fraction of congested links, so as to
get a fitted model between the onset and offset times of congestion. Nevertheless,
the total time window remains the same as in our simulation (i.e., 6:00–10:00 a.m.).
Links with missing data for the entire day are discarded in our analysis, but the
number of such links is negligible and does not affect the results. A direction for
future research is to extend the analysis to multiple days to study the day-to-day
spreading dynamics of network traffic.

Google traffic data record the speeds of road sections at continuous time
intervals. The data were estimated using floating GPS points of mobile users
once they used Google services such as Google Maps. The sampling interval of
the data is 10 min, which provides an appropriate temporal resolution for our
analysis. Cities that are selected include Melbourne, Sydney, London, Paris,
Chicago, and Montreal, which all have a complex urban transport network with
a dense population, thereby ensuring the availability of GPS data in large
volumes. Note that the reliability of estimations is directly proportional to the
amount of data. The calculation of vmax

i takes into account the maximum speed
observed on link i in a cycle of one day (i.e., 24 h). Using this measure along with
vi(t), the ratio λi(t) is calculated for the entire network. To be consistent, only the
morning peak of each city is considered in our analysis, which all lies in the time
period between 6:00 and 10:00 a.m., although being subject to some differences
from city to city.

Parameter estimation with global pattern search. To estimate the parameters
of the proposed model, we follow a similar approach presented in ref. 30. The
estimation is performed using an OLS method with a pattern search algorithm.
The estimation is formulated as a minimization problem in which the pattern
search seeks to find the model parameters that minimizes the root mean-squared
error (RMSE) calculated as the deviation between the observed and modeled c(t)
over the study time period. We have applied the global pattern search algorithm
as a derivative-free global optimization method in which the modeled curves for
c(t) are fit to the traffic data with the objective function to minimize the RMSE.
The pattern search algorithm falls under the general category of global
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optimization methods in which an initial mesh is first specified in the solution
space given an initial guessed solution. The algorithm computes the objective
function value at each mesh point until it finds a point whose value is smaller
than the objective function value at the initial solution point. The algorithm then
updates the mesh size and re-computes the objective function value at each
mesh point. This will iteratively continue until one of the stopping criteria is
met, such as the mesh size getting smaller than a mesh tolerance threshold or if
the maximum number of iterations is reached. For details about the pattern
search algorithm, see ref. 31. Also see Supplementary Table 1 in Supplementary
Note 5 for the estimated model parameters and associated RMSE for different
values of ρ.

Data availability
For contractual and privacy reasons, we cannot make the empirical data from Google
available. However, all data from the simulation-based dynamic traffic assignment model
that are needed to replicate the findings reported in the paper and Supplementary
Information are available at https://github.com/meeadsaberi/trafficspreading.

Code availability
The simulation-based dynamic traffic assignment model of Melbourne is also available as
an open access model, which can be downloaded via https://github.com/meeadsaberi/
dynamel.
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