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Abstract

Improved understanding of fire activity and its influencing factors will impact the
way we interact and coexist with not only the fire itself but also with the ecosystem
as a whole. We consolidate more than 20 million wildfire records between 2000
and 2018 across the six continents. This data is processed with artificial intelligence
methods to discover global fire regimes, areas with characteristic fire behavior
over long periods. We discover 15 groups with clear differences in fire-related
historical behavior. Despite sharing historical fire behavior, regions belonging to
the same group present significant differences in location and influencing factors.
Groups are further divided into 62 regimes based on spatial aggregation patterns,
providing a comprehensive characterization. This allows an interpretation of how a
combination of vegetation, climate, and demographic features results in a specific
fire regime. The current work expands on existing classification efforts and is a step
forward in addressing the complex challenge of characterizing global fire regimes.

1 Introduction

Fire is a global phenomenon, existing since the emergence of terrestrial plants [26]]. The long
cohabitation of vegetation and fire has induced their co-evolution [25]] and shaped adaptive strategies
within different plant species. Our understanding of fire activity and the relationship with its
influencing factors is lacking, especially at large spatial scales [21] because of the absence of
consistent long term data [20]. Although studies that characterize fire activity at regional level are
common [9, |10} 19, 24], the lack of long temporal series has limited the study and assessment of
global fire regimes [2,[7].

Several researchers have utilized global forest fire data to investigate various questions including
evaluating the impact of fire on vegetation and emissions as well as studying factors influencing
spatial and temporal fire activity variation [[13}|14}[17, 21} |29]. It has been demonstrated that changing
environmental conditions and human activity can and will continue to modify fire activity in several
parts of the world. However, these findings have been primarily based on regional-scale studies.

The relationship between vegetation and fires, for a specific ecosystem, is characterized by a fire
regime or pyrome [3| |5, 25]. A fire regime is defined as a set of consistent and repeated wildfire
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conditions in a particular region over a long period of time [18] 20]. These regimes depend on a
combination of factors that influence fire occurrence and behavior such as ignitions, fuel composition
and arrangement, and conductive fire weather [22]. Those fire conditions that define a fire regime
[11}20] have a clear impact not only on the presence of certain vegetation types but also on soil and
atmospheric characteristics [7]].

Increased understanding of fire regimes will provide an essential knowledge for between regions
sharing a regime. As a result, any study on factors altering fire activity evolution or its impact
will be significantly improved if implemented per fire regimes [2| [7]. In addition, the knowledge
gathered could unveil useful insights and improve various studies, providing relevant information to
characterize and assess the impact of current fire regimes on ecological aspects such as vegetation
adaptability, soil degradation, carbon stocks, air quality/pollution, and conservation of the biosphere
[4} 150 23] [28]], impacting multiple areas of knowledge.

We present a study on understanding of current global fire regimes using Al and a statistical framework
that analyzes yearly global wildfire events over 20 years. We process and consolidate this data into grid
covering the entire planet to calculate annual statistics on fire behavior. Next, a global classification
of fire regimes is derived based on unsupervised machine learning methods. Given the dispersion
and complexity of the groups, we further propose a spatial assessment of the core areas of the fire
regimes, to evaluate variations in the seasonality of fire activity and to determine key underlying
factors such as climate, land use, and socio-economics (see framework details in Appendix).

2 Methods

Data. Two global datasets containing observations of individual wildfires obtained from MODIS
MCD64A1 collection 6 with an underlying resolution of 500m were used. The Global Fire Atlas
from NASA provided individual wildfires between 2003-2016. Individual wildfire samples between
2000-2018 were obtained from the GlobFire Database. We consolidated yearly observations and
statistics in global rasters at multiple resolutions (0.05° - 1°). The temperature and accumulated
precipitation at resolution of 0.25° was obtained from the ECMWF ERA 5 reanalysis dataset. We
used the TerraClimate dataset to extract the Palmer severity drought index and climate water deficit
with a resolution of 2.5 arc-min. Annual land cover with a resolution of 30 m was obtained from
the MCD12Q1 dataset. The estimated population density (number of people per square kilometer)
for years was extracted from the GPWv4 Revision 11 dataset at a resolution of 30 arc-s grid cell.
Accessibility to cities, measured as the land-based travel time (minutes) to the nearest densely-
populated areas with 1,500 or more inhabitants per square kilometer was obtained from the Malaria
Atlas Project with a resolution of a 30 s-arc. In addition, we used the gridded global datasets of Gross
Domestic Product and Human Development Index at a 5 arc-min resolution.

Clustering analysis. A numerical database derived from the global wildfire data between 2000-
2018 was generated, with each row associated with a cell in the global grid map. Features correspond
to yearly fire-related variables. Clusters were defined using the normalized yearly average values of
the whole data of the frequency (number of fires per year), size (area in square kilometers covered by
the fire), perimeter (km), duration (days until the fire was suppressed), daily expansion (area evolution
per day), and ratio perimeter/area of the observations. Multiple clustering and unsupervised machine
learning algorithms including DBSCAN, OPTICS, K-Means, and self-organizing maps along with
dimensionality reduction techniques (PCA and t-SNE) were tested and compared. Quantitative and
qualitative comparisons were performed using various performance metrics such as intra/inter distance
between groups, the silhouette value, and the elbow method comparing the sum of squared distances
from each point to its assigned center. The final number of groups was obtained by performing
statistical analysis of all possible classifications by comparing multiple subsets of features, number of
clusters, algorithms, and expert assessment.

Spatial and temporal analysis. Gaussian kernels using a radius of 5° and bandwidth h that
minimizes the difference between the original function f(x) and its kernel density estimator fj, ()
are applied for the spatial characterization of regimes. Contour lines are calculated for each local
region (regime) accounting for 10, 30, 50, 70, and 90% of the local observations to determine the areas
of the world where the fire regime is focused. Regions with at least 30% of the local observations are



then ordered by area (largest to smallest), characterizing the top five or maximum numbers with a
significant area in terms of demographic, climatic, and soil features.

3 Results and discussion
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Figure 1: Fire regimes. Cells covering the gridded world are classified into the six macro groups
(different colors) based on historical averages of fire characteristics including average annual burning
frequency, size, perimeter, duration, daily expansion, and perimeter to area ratio values. Regimes
cover multiple regions of the globe that do not seem to be related by climatic or demographic
conditions.

We determine fifteen clusters defining general fire regimes distributed across the globe (Fig. [I). These
regimes differ in the mean characteristics of their fires and their spatial distribution (see Appendix
Tables 1-15 for details per regime) and can be further condensed into six relevant macro-groups
sharing fire behavior characteristics (Appendix Figs. [3land[d): very large, fast spreading, and frequent
wildfires (R10); large and frequent fires (R11, R2, and R4); medium-sized, slow spreading and
infrequent fires (R7, and R14); small, medium-to-high frequency, and long-shaped fires (R13, RO,
and R5); small and infrequent fires (R9, R1, and R8); and small/medium and very frequent wildfires
(R12, R3, and R6).

A further analysis of the different regimes based on their fire sizes, expansion, and frequencies reveals
that R10 regime, mainly distributed across northern Australia and South Africa, is defined by the
largest fires, with an average fire size of 511 km?. Following in fire size but with medium-to-high
occurrence frequencies (average of 172 fires per year), are R11, R2, and R4 regimes with mean fire
sizes of 107, 34, and 24 km?, respectively. We observe that R11 regime regions usually surround the
most fire-affected R10 areas. In some cases, the surrounding R11 cluster is accompanied by milder
R4 and R2 regimes, even though the latter regimes generally occur in the Central African region,
Brazil, and Kazakhstan. This spatial pattern of the observed fire activity, matches with the gradient of
environmental conditions, a common process of several ecological phenomena [16].

Fire regimes R7 and R14 have average fire sizes of 34 and 9 km?, respectively, but significantly
lower frequency than the previous regimes. The occurrence of R7 and R14 regimes show similar
patterns, being mainly distributed across the boreal forests of America and Asia. A heterogeneous
macro-group was created from R13, R0, and R5 regimes, consisting of small-to-medium fires, with
sizes between 2 to 5 km2, and medium frequencies. In the case of RO and R8, there are 31 and
9 fires per year, respectively. In the case of R13, there are 307 fires per year on average. These
regimes are distributed across most of Europe, Asia, and America, on warmer zones than those where
R7 and R14 are distributed. R12, R6, and R3 groups comprise a more spatially compact category
defined by small to medium sizes (2.94 to 4.7 km?) and very high frequencies (598.62 fires per year
on average) of fires occurring almost exclusively in the tropical areas of Africa and in South Asia.
Finally, regimes R8, R1, and R9, with average fire sizes of smaller than 2 km? and low frequencies
(lower than 2 fires per year for R1 and R9, and 9.44 fires per year in the case of RS8), are widely
distributed across the world, particularly abundant in both cold and dry vegetated regions as well



as in wet evergreen tropical forests. From this analysis, it can be seen that there is a relationship
between vegetation, climate, socio-economic factors, and fire activity. However, the distribution of
the areas corresponding to a majority of the fire regimes is rather disperse, and no single combination
of factors seems to explain the occurrence of individual regimes.

Next, we explore the spatial distribution of the fire regimes. For this, we determine the most relevant
(largest and densest) disjoint subregimes belonging to each regime sharing similar fire behavior in
different locations. These regions represent the locations where observations belonging to each fire
regime are mainly distributed. Interestingly, although each subregimes shares historical fire patterns,
significant differences can be observed in terms of location, climate, socio-economic variables, and
the proportion of dominant land covers. Similarly, different seasonal patterns and trends of fire-related
variables such as frequency and average size, are observed. A representative example of how similar
regimes occur commonly in very different regions of the world and are caused by different influencing
factors is presented by the subregimes of R1 (Appendix, Fig. [5)). That is, the five largest areas covered
by the regime present significant variations in seasonal fire activity and influencing factors. In this
example, differences are especially clear between the Amazonian hot-spot denoted in blue and the two
subregimes located on the northern hemisphere denoted by different shades of green. We found that
the largest subregime (R1-a) located in the western part of North America describes the characteristic
of low fire activity (1.63 fires per year on average) of R1 regime, driven by cold temperatures and
sparse vegetation on the inland parts of the area and an intense suppression on the coastal zones. On
the other hand, the Amazonian hot-spot (R1-b) is influenced by very high moisture (PDSI of 75.39,
0.23 m of average yearly precipitation) due to rainfall and closed vegetation coverage.

The hot-spot located in the area of large lakes (R1-c) is characterized by a heterogeneous landscape of
mixed forests (16.8%) and croplands (35.9%), which together with suppression policies may justify
its limited fire activity. From the two subregimes located in Asia, the one on the eastern part of
Siberia (R1-e, orange) is characterized by cold weather (an average of -8.88 C° through the year), low
population density (0.056 individuals per km?), and sparse vegetation, whereas the area in central
Asia (R1-d) is clearly defined by the lack of water (average water deficit of 415.79 mm) and absence
of large plants (86% of the land covered by a combination of grasslands and non-vegetated areas).
Whereas some subgroups show a clear tendency to aggregate the number of fires and area burned in
summer in the northern hemisphere, the Amazonian subregime shows a lesser tendency to aggregate
over a specific season, with the peak fire activity between December and January, but still occurring
in the rest of the year. The eastern Siberian subregime also shows a different temporal pattern, having
most of the fires in spring, but those of larger size during summer (see Supplementary Tables 1-15 for
a comprehensive description of all regimes and subregimes).

Regime R9 has similar characteristics and even distribution, where fire activity can be controlled
by the lack of conductive vegetation, presence of closed evergreen rain forest [8]], and suppression
efforts. It is also possible to observe for other areas in the limits of the Amazonian forest (R4-c)
that continuous coverage of the rain forest is disrupted [9, [12] and can sustain frequent fires of
considerable size. Contrary to this process of increased fire activity due to deforestation processes, in
western Australia (R4-e), an arid environment is also able to sustain recurrent fires after stabilization
of the allochthonous vegetation [|6]. Other natural processes can be observed across Asia, where
slight differences in climate and subsequently in vegetation, e.g., increased rainfall in Kazakhstan
(R4-a) or higher temperatures (R0-a), modify the recurrence and size of fires. Based on the results,
it can be stated that there is a clear, but still complex relationship between the distribution of the
driving factors and fire activity. Different combinations of climatic, vegetation, and human factors
may lead to similar fire patterns in different regions of the world. However, a change in those factors
may induce swifts on fire activity to nearby locations [1} [27]].

It is also possible to determine clear gradients of fire activity if one of the influencing factors,
especially climate or vegetation, changes accordingly. This spatial gradient is clear in the regimes
with little fire activity and limited by low temperatures and scarce vegetation in northernmost boreal
areas (R9 shifting into R1, and, when fire-related conditions become more conducive, to R7 or R14).
Similarly, the regions with larger and intense fires (R10) are surrounded by regimes sustaining smaller
but still large fires (R11, and this one, surrounded by R4) if the climate and vegetation becomes
gradually less hazardous.



Conclusions

The proposed framework and classification system allow the determination of fire regimes and
their most common regions in a systematic way, without assuming geopolitical borders or climatic
characteristics of vegetation biomes as constraints when framing their influencing area. This type
of assessment, as shown by the study, requires a two-step clustering process. One based on fire
characteristics alone and a second one focused on the spatial distribution of those fire characteristics.
Without splitting a fire regime into spatially framed subregimes, understanding the underlying factors
that cause such specific fire behavior becomes not only difficult but also may produce inconclusive or
even misleading results.
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Appendix

Wildfire regimes
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Figure 2: Overall framework of the study. (1) Wildfire data describing individual events in terms
of fire-related characteristics such as size, perimeter, duration, and average expansion are collected
from products derived from MODIS satellite observations. (2) Data are processed and consolidated
into a raster dividing the world into a grid with a resolution of 1 x 1°. Annual statistics and features
are calculated for each cell, generating numerical and spatial datasets. (3) Statistical methods to
analyze multidimensional data are combined with unsupervised learning in order to discover similar
groups of cells sharing fire-related characteristics. No explicit spatial components are included. (4)
Climatic and socio-economic layers are introduced for each fire regime. (5) Spatial density plots are
generated for each regime, detecting the regions of the world with more observations. Detected fire
regimes are characterized by climatic and demographic data. An evaluation of the influencing factors
is performed for the most relevant areas. A temporal analysis to determine trends and seasonality
patterns of fire activity is also carried out. (6) All results and generated datasets are deployed on cloud
services and a public-access repository, along with the scripts to reproduce all steps of the study.
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Figure 3: Discovering regimes . Self-organizing maps are useful for summarizing multidimensional
fire data and for determining potential groups of similar characteristics. These data are reduced to a
two-dimensional grid and samples are organized according to their Euclidean distance. Observations
sharing similar characteristics are easily visualized in a topographic map (top) where warmer colors
represent widely separated samples and cooler colors depict closely related values. Using image
processing algorithms, we detect significant potential regimes/clusters (red circles). The number of
observations belonging to each section of the map can be presented in a matrix known as hit-map
(bottom). As an example, we can easily observe the group of cells without fire activity as a large dark
blue region (top) and white valley (bottom), representing a significant percentage of the observations.
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Figure 4: Regimes’ hierarchy. Dendrogram summarizing the hierarchy of the determined fifteen
regimes and similarities between them. As observed, the regimes can be collapsed into six macro
groups sharing fire behavior characteristics, consistent with our statistical results (see Supplementary
Methods), where, for example, the regime of observations representing extreme and rare events (R10)
is clearly independent of other clusters.
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Figure 5: Characterizing subregimes. Five largest spatial sub-groups are determined and repre-
sented with different colors for R1 regime after a kernel and contour level analysis. Despite belonging
to the same regime, dense observation areas are spread in regions with very different climatic and
demographic characteristics. In this regime, three of the largest subgroups cover parts of the western
coast of Canada and Alaska (dark green), the Amazonian forest of Peru and Brazil (blue), and the
eastern extreme of Russia (orange). Significant differences can be observed between these regions
from the standardized radial graphs in terms of average temperature (-1.81, 25.47, and 6.49 C),
Palmer drought severity index (-44.22, 75.39, and 82.67), precipitation levels (0.07, 0.23, and 0.08
m), accessibility (1,266.64, 2,327.39, and 334.84 min) and gross domestic production (42,948.77,
9,339.71, and 41,295.28 USD). Moreover, the dominant land covers of all regions are completely
different; in the first case, more than 65% of the land is covered by savannas (WDS, SAV), grasslands
(GRS), and conifers (ENC); in the second case, the Amazonian region is clearly dominated by
evergreen broadleaf palmate (EBP); and in the third case, 90% of the area is covered by shrublands
(OSL) and grasslands (GRS). Other land cover categories present in these subregimes are mixed
forest (MFS), water bodies (WBS), non-vegetated (NV), croplands (CRO), and permanent wetlands
(PWL). Similar comparisons can be performed for all subgroups and regimes (Supplementary Tables
1-15).
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