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Abstract—Energy demand and supply vary from area to
area where an unbalanced load may occur and endanger the
system security constraints and cause significant differences in
the locational marginal price (LMP) in the power system. With
the increasing proportion of local renewable energy (RE) sources
in microgrids that are connected to the power grid and the
growing number of electric vehicle (EV) charging loads, the
imbalance will be further magnified. In this paper, we first
model the EV charging network as a cyber-physical system
(CPS) that is coupled with both the transportation networks
and the smart grids. Then we propose an EV charging station
recommendation algorithm. With a proper charging scheduling
algorithm deployed, the synergy between the transportation
network and the smart grid can be created. The EV charging
activity will no longer be a burden for power grids, but a load
balancing tool that can transfer energy between the unbalanced
distribution grids. The proposed system model is validated via
simulations. The results show that the proposed algorithms can
optimize the EV charging behaviors, reduce charging costs, and
effectively balance the regional load profiles of the grids.

Index Terms—Electric vehicle, smart grid, demand response,
EV charging network, power distribution grid.

I. INTRODUCTION

AS the concept of a more extensive interconnection of the
power system, or even a global energy internet, has been

proposed and studied on a pilot basis to enhance the efficiency
of the power system, while the microgrid technology, with
its greater independence and resilience, is also being more
widely deployed. In a multi-microgrid system, different energy
attributes of each microgrid, e.g. the types of users (industrial,
commercial, or residential), the proportion of RE penetration,
the total capacity of the microgrid, etc., may lead to a
significant difference in the load characteristic, spatially and
temporally, and hence may cause the load imbalance in the
multi-microgrid system [1], [2]. Based on the information in
the electricity markets, operators of a traditional power grid
maintain the equilibrium between the generation supply and
the aggregate demand of all served regions [3]–[5]. In recent
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years, the penetration rates of renewable energy (RE) sources
in the power grid are rapidly increasing. Due to the intermittent
nature of RE sources, which are typical current sources, the
increasing proportion of RE brings huge security risks to the
operation of the power system [6], [7]. At the same time,
the electric vehicle (EV) has become the trend of vehicle
development. With the rapid development of EV charging
technology, faster EV charging stations have been developing
that has further promoted the popularization of EVs [8]. Most
of the EV charging actives are done at home or at workplaces
with alternating current (AC), but from a consumer’s point of
view, the development of public fast chargers, direct current
(DC) charging stations, will have a significant impact on the
use of EVs. Studies have shown that even with only 1-5 % of
fast charging events, the usage of EV will be increased by 25
%. To a certain extent, the availability of these fast charging
stations can help alleviate the “range anxiety” that is generally
considered a consumer’s hesitation to adapt EVs [9], [10]. Due
to the uncertainty of EV charging behaviors, uncoordinated
charging of a mass of EVs may lead to unforeseen effects
on the operation of a power distribution network [11], [12].
Without proper coordination, the increasing proportion of local
RE sources and the growing number of EV charging loads may
further magnify the imbalance of a grid and pose higher system
security risks. It is not necessary to have any correlation
between the growth of RE and EV, but both the up-growths
indeed not only endanger system security constraints but also
may cause changes of the locational marginal price (LMP) and
hence produce unnecessarily higher cost [13].

A. Literature Review and State-of-the-art
To address the above problems, efforts on the energy

demand response (DR) and the EV charging planning have
been made. In smart grids, the DR mechanism allows better
exploitation of RE, and improves the resilience and flexibility
of the grid with response to the LMP [14], [15]. EVs are ac-
knowledged to be one of the primary focuses of DR programs.
Demand-side energy consumption scheduling is proposed to
reduce the peak-to-average ratio of the power system [16].
With the involvement of EVs in the DR, the electricity demand
side management (DSM) has been proved to further benefit
in improving the utilization of RE and the efficiency of the
networks. Tushar [17] proposed a real-time DSM system to
manage the RE and residential load of the microgrid based on
predicted aggregate load. Wang [18] used the LMP in a tri-
level scheduling model to guide the aggregated electricity con-
sumption of air conditioners and EVs. Ren [19] demonstrated
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the benefits of distribution networks from the DR under a real-
time LMP through optimal scheduling of the EV aggregator.
Most of the control schemes proposed in the DR treat the
EV charging as an exogenous process, ignoring the mobility
nature of EVs and the facts that the EV may be charged at
different charging stations of the grid depending on economic
preferences and travel constraints.

Meanwhile, there is a rich literature focuses on the problem
of the network routing of EVs. Given the stochastic nature of
EV arrivals at charging stations, one can optimize various ob-
jectives such as the revenue maximization or the waiting time
minimization [4], [20], [21]. In [22], the EV charging activities
with interactions with RE are modeled as independent Markov
processes and the problem of optimal charging scheduling at
charging stations is studied. In [23], a vehicle-to-grid (V2G)
mobile energy network model is proposed to study the impact
of the EV mobility on balancing smart grid demand. Alizadeh
[24] studies the collective effects of large-scale integration of
EVs on the power network and the transportation network to
solve the path planning problem under static settings. Etesami
[25] models the EV routing problem as a repeated game
and proposed a distributed control framework to control and
balance the electricity load in a distributed manner across the
grid. In [26], the Internet-of-Things (IoT) is applied in the
EV charging network management to improve the efficiency
of the EV charging scheduling. The authors in [27] studies
the impact of the network connectivity and motor location
deployment on the robustness of the grid system under a
complex grid structure, and showed that the robustness of
the grid can be enhanced by modifying the network topology.
Sun [28] formulates the charging scheduling problem of EVs
in the transportation network as a graphic game, and studies
the correlated equilibrium and Nash equilibrium of the joint
strategy of EV participants to minimize the charging delay.
The authors in [29] proposed an energy trading online dou-
ble auction scheme among EVs in microgrids with location
privacy protection.

The above works have laid a solid foundation for modeling,
analyzing, and optimizing the EV charging systems from a
network perspective. However, most of the studies focused on
the overall characteristics of the power grid and EV charging
loads, emphasizing the stability of the grid and minimizing
charging cost, but ignoring the respective load contributions
of the charging stations in the microgrid. Much of the works
on the EV charging planning, the charging station selection,
and the system optimization requires the involvement of the
LMP as an evaluation factor and mainly focuses on global
optimization. However, we know that in a regional grid, such
as a multi-microgrid system, there may not always be timely
tariff information available and it is not sufficient for the
system to consider only the tariff influenced by the overall
grid supply and demand, sometimes as the overall microgrid
load is kept in balance but there may still be severe load
imbalances within the system and cannot be guided simply
by tariff information.

B. Contribution and Organization
The main contributions of the paper are listed below.

(1) An EV is a part of transportation networks, and a
charging station is a part of power systems. Through the EV
charging activities, the smart multi-microgrids and intelligent
transportation networks are coupled. Imitating the structure of
graphs, a cyber-physical model of the EV charging network is
modeled with considerations of both the spatial and temporal
distribution of the transportation network and the power grid,
as well as the dynamics of the charging process of EV charg-
ing. Network analysis is carried out based on the proposed
model.

(2) Aiming at the problem of the spatial and temporal
imbalance of the power load within a multi-microgrid system,
we propose a charging station recommendation algorithm
with constraints of the power load degree of microgrids. The
algorithm prevents a large-scale influx of EVs into a small
number of charging stations for charging service and avoids
the sharp increase of the charging load and hence optimizes
scheduling to make all the load of microgrids in the area tends
to be balanced and stabilized. By deploying the imbalance
degree of the microgrid as a constraint, the EV charging
location selection decision will not only consider the distance
to the charging stations or use random assignment but will
also regard EV charging process as a DR tool to balance
the regional power load. Moreover, the proposed optimal
algorithm can be implemented without the LMP information.

(3) A multi-microgrid system contains RE sources, con-
sumption units, and hierarchical EV charging schemes with
EV charging stations and EV charging aggregators is proposed.
Smart EV charging scheduling can be achieved with the
proposed system in the physical absence of the charging
aggregator. The model is suitable for areas where local RE
generation is abundant and the power supply with high reli-
ability, self-healing, and robustness is required. Further, the
proposed system can assist in the scheduling of the power
load in the microgrid to achieve the load balance without the
support of V2G.

The reminder of this paper is organized as follows. The
notation used in the paper is given in Nomenclature. Section
III introduces the system model of the EV charging networks.
In Section IV, the dynamic power load balancing algorithm
is presented. Simulation results are illustrated to show the
effectiveness of the proposed system. We conclude the paper
in Section VI.

II. NOMENCLATURE

VE Set of EVs.
VC,j Set of EV charging stations connected to the

jth charging aggregator.
VG Set of EV charging aggregators.
G(V,E) A graph G where V is the superset of the set

of charging aggregators and EVs, and E is the
set of links.

R Set of distance between EVs and charging
aggregators.

N Total number of nodes.
L Total number links.
NC,j Total number of charging stations in a multiple

microgrid system.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 28,2022 at 01:11:01 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3108698, IEEE Internet of
Things Journal

3

NG Total number of charging aggregators in a
multiple microgrid system.

NE Total number of EVs.
VE,i The ith EV.
VG,j The jth EV charging aggregator.
Vi
G Charging aggregator candidates that meet the

driving range requirements, for EV VE,i.
Bini,i Initial EV battery SoC for VE,i (%).
Barr,i EV battery SoC for VE,i when arrives at charg-

ing station (%).
Rij Distance between VE,i and VG,j
Rmax Maximum driving distance of EVs.
Cj Service capacity of a microgrid j.
Pj(t) Real-time power of a microgrid j at time t.
Dj(t) Load demand degree of a microgrid j at time

t.
v Average driving speed of EVs.
p Charging power of fast charging stations.
Er Energy consumption spends on the way to

charging stations.
Φ Total charging time for fully charging EVs.
∆Tij Traveling time duration for EV VE,i to a charg-

ing station belongs to the charging aggregator
VG,j .

T i,jini Charging time duration of EV VE,i which is
served by VG,j for its SoC from 0 to Barr,i.

a, b, c Scale coefficients of charging process in the
battery charging function.

η Valley-to-peak ratio of a multi-microgrid sys-
tem.

Pvalley Minimum load of a multiple microgrid system.
Ppeak Maximum load of a multiple microgrid system.
µ, σ, ν Time parameter, scale parameter, and shape

parameter in a probability density function of
Φ.

ϕ Upper threshold of the load demand.

III. SYSTEM MODEL

A. EV Charging Network

Given an EV charging network, EVs and charging aggre-
gators (charging stations) are regarded nodes, and the roads
between them are regarded as edges. Therefore, the topology
of the EV charging network can be expressed as a directed
graph G(V,E) where V is a set of nodes and E is the set
of links. Moreover, V is the superset of the set of charging
aggregators, VG, and the set of EVs, VE , i.e. V = VG ∪ VE .
The total number of nodes and links is N and L, respectively.
Specifically, we denote the number of charging aggregators
and EVs as NG and NE , respectively. N = NG + NE , L =
NG×NE . N indicates the network size. Fig. 1 illustrates the
model of an EV charging network through which the traffic
flows in the intelligent transportation networks and the power
flows in the smart microgrids are coupled. A microgrid in the
model consists of the power load units, RE resources, and the
EV charging infrastructures.

For simplicity, we assume all EV charging stations within a
microgrid are connected to an EV charging aggregator which

Intelligent transportation network Smart multi-microgrids

EV charging

EV charging network

Cyber layer 

Physical layer 

EV

Charging aggregator

Transport link

Fig. 1. An illustration of the cyber-physical EV charging network model.
In the subfigure of the smart microgrids, each block represents a microgrid,
and the red circle represents a substation. Connected by the red power lines,
the electrical equipment in the microgrid, including charging stations, and the
power generation units will be connected to the substation through which the
grid is connected to. In the subfigure of the intelligent transportation networks,
the blue circle represents a road traffic intersection, and the blue line represents
the road traffic link. In the graph model, EVs and charging stations form the
nodes, and the links are the road transportation between EVs and charging
stations. In the graph model, the charging station node is not a single charging
station port or station but a set that includes all the charging station charging
ports under the power substation.

A

Charging stations

Charging 
aggregator

Transformer/
Substation

Fig. 2. An illustration of the charging aggregator in a microgrid. All charging
stations within the same microgrid are connected to a charging aggregator
which can be either a power flow aggregator or a virtual one which is
functionally played by the transformer of the substation in the microgrid.

is located at the same node with the substation or transformer
of that microgrid. As shown in Fig. 2, a charging aggregator is
modeled as the summation of all EV charging stations in the
microgrid. We assume that there is one and only one charging
aggregator in each microgrid. The charging aggregator we
deployed in this paper can be either a simple power flow
aggregator or a virtual one that is functionally played by
the transformer of the substation in the microgrid. The total
number of EV charging stations is NC =

∑NG
j=1(NC,j). If all

charging stations are considered as nodes in the networks then
the number of nodes N will increase exponentially. Hence, in
the graph network computational model, we only consider the
nodes of the charging aggregators and EVs.

Considering the geographical locations of the nodes VG and
VE in the spatial analysis of the network, the distance between
them represents the required travel distance for an EV to the
charging stations. An NE × NG matrix R, defined in (1), is
used to describe the connectivity and the distance between
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nodes, defined as follows,

R =


R11 R12 . . . R1NG

R21 R22 . . . R2NG
...

...
. . .

...
RNE1 RNE2 . . . RNENG

 , (1)

in which Rij is the distance between the nodes VE,i and VG,j .
The distance between EVs and charging stations, R, plays

a key role in selecting a charging station for an EV driver.
When the state of charge (SoC) of an EV is low, the driver will
consider charging the EV. In this paper, we consider the cases
that EVs are only charged at public fast DC charging stations.
Normally, a closer charging station gains a higher possibility
of being deployed by an EV driver. Our objective is to balance
the load demand within all local microgrids, hence, other than
the distance to the charging stations, the power load of local
microgrids will be taken into considerations in EV charging
dispatching. It should be noted that the model does not require
the charging stations to be geographically adjacent, in fact,
they can be in any location as long as they are electrically
connected.

Furthermore, there are some assumptions we made in this
paper. First, we assume that the charging stations powered by
the same substation and the RE sources connected to the same
substation all belong to the same microgrid and they are spatial
identical. Second, we assume EVs will follow the dispatching
recommendation from the system. As it is possible to incentive
EV drivers to follow the dispatch suggestions [30], it is safe to
say that the assumption is fair, reasonable, and feasible. Third,
we assume there will be sufficient enough charging ports at a
charging station, hence, no queue and zero waiting time for
charging services.

B. Battery SoC Dynamics

Fig. 3. Charging curve for DC charging method. The parameters setting is
from [31]

The charging power of the fast charging station is generally
30 kW and above. Depending on the battery size, it takes about
2 ∼ 3 hours to fully charge an EV. The fast charging process
is highly nonlinear. To capture the dynamics of the SoC in a
charging process, we adopt a biexponential model in [31]:

SOC(t) = 1.0 + ae−bt − (1 + a)e−ct, (2)

where SOC(t) is a nonlinear function gives the SoC of the EV
at time t, and a, b and c are scale coefficients of the charging
process. Both the battery charging and discharging processes
are nonlinear. The charging process affects the grid as a power
load, whose curve directly determines the charging time. The
discharging process has minor direct impacts on the grid. In
this paper, we focus on the charging process.

C. Load Demand Function

A local microgrid is interconnected to higher levels voltage
power grids through a substation by which the charging
stations are served and the RE sources are connected. Each
microgrid has a maximum service capacity limited by its
equipment, such as the transformers or the transmission lines.
With the help of the dynamic capacity-increase technology and
the incorporation of the RE power supply, the service capacity
of the microgrid can be dynamically increased under certain
conditions, however, generally speaking, the service capacity is
predetermined at the stage of grid design and planning. In the
actual operation of the grid, speaking of the operation cost and
safety, the absolute value of real-time power is essential, but
what is equivalently important is the relative demand degree
of the capacity. A demand degree provides operating states
information of the grid. When a demand degree is too high, a
grid might reach its security thresholds. On the contrary, a low
demand degree implies inefficient and uneconomic operation.

We denote the real-time demand degree of a microgrid as:

Dj(t) = Pj(t)/Cj , j ∈ VG, (3)

where Dj(t), Cj and Pj(t) are the relative demand degree,
the service capacity, and the real-time power consumption
of a microgrid, respectively. Note that the demand degree
does not reflect the absolute value of demand, but rather the
relative demand in the microgrid. The relative demand is more
important to a microgrid operator than the absolute demand
because the security boundary is also the electricity usage
associated with the capacity of that microgrid.

D. EV Charging Dynamics

When an EV driver decides to find a charging station
for charging. There are two factors that bound the possible
charging stations. One is the distance between the EV VE,i,
and the charging station VG,j , and the other is the EV’s SoC.
The constraint condition for selecting charging stations is as
follows.

Rij ≤ RmaxBini,i, (4)

where Rmax is the maximum driving range of the EV with a
fully charged battery, and Bini,i is the current SoC of EV VE,i.
RmaxBini,i gives the furthest distance an EV can drive with its
SoC. The battery consumption process is in fact also nonlinear
and can sometimes be characterized by sudden drops in the
SoC. We do not consider the dynamics of battery consumption.
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Only the upper limit is constrained. Thus, the inequality (4)
holds. The set of charging station candidates (Vi

G) for VE,i
is:

Vi
G = {VG,j |Rij ≤ RmaxBini,i}, (5)

An EV VE,i selects its charging station VG,j for charging.
Barr,i, the SoC of the EV reaching the charging station is
given by:

Barr,i = Bini,i − Er,i (6)

where Er,i is the energy consumed by driving on the way to
the charging station. If the consumption of the SoC is linear,
then,

Er,i =
Rij
Rmax

. (7)

The traveling time to the charging station, ∆Tij , is given
by:

∆Tij =
Rij
v
, (8)

where v is the average driving speed of the EV.
When an EV arrives at charging station for charging, its

remaining SoC is Barr,i. It will take the charging time of
T i,jini for the SoC of the EV to charge from 0 to Barr,i. The
relationship between Barr,i and T i,jini is shown in (9).

Barr,i = SOC(T i,jini). (9)

The time duration to fully charge an EV is denoted as Φ. Φ
is not a constant, but a function that approximately conforms
to the time-scale distribution. Follows [32], Φ is modeled as
follows.

fΦ(t|µ, σ, ν) =
Γ(ν+1

2 )

σ
√
νπΓ(ν2 )

[
ν + ((t− µ)/σ)2

ν

]− ν+1
2

,

(10)
in which f(·) represents the probability density function of
Φ, Γ(·) is the chi-square distribution, and µ, σ and ν are the
time parameter, the scale parameter, and the shape parameter,
respectively.

Given an EV at the time moment ti, it will reach the
charging station VG,j at the time moment tj , thus,

tj = ti + ∆Tij . (11)

When selecting a charging station, if (4) is satisfied, in the
set Vi

G, the EV VE,i will further consider D(t) as another
constraint.

Dj(t) ≤ ϕ t ∈ (tj , tj + Φ− T i,jini), (12)

where Dj(t) is the load demand degree of the j microgrid at
time t and ϕ is the upper threshold of the load demand.

For VG,j ∈ V iG, the power of the charging stations Pj(t) is
as:

Pj(t) =

{
Pj(t) + p, t ∈ (Tj , Tj + Φ− T i,jini),
Pj(t), others,

(13)

where p is the charging power of the charging station.

IV. LOAD BALANCING ALGORITHM

Our main goal is to balance the load between the areas
in the distribution grids and to reduce the load difference of
the microgrids. The valley-to-peak ratio (VTPR) of a multi-
microgrid system is defined as η(t) and given in (14).

η(t) = Pvalley(t)/Ppeak(t)× 100%, (14)

in which Pvalley(t) and Ppeak(t) are the minimum and maxi-
mum load of a multi-microgrid system at time t, respectively.
VTPR reflects the load difference degree among all the micro-
grids in the multi-microgrid system. A larger VTPR indicates
the multi-microgrid is in a relatively balanced state, and there
is no extreme difference between the load valleys and peaks.
That is beneficial to the economic and safe operation of the
microgrids.

The matching of EVs and charging stations is a game
problem. By Properly assigning charging stations to EVs,
the VTPR of the multi-microgrid can be enhanced. The load
balancing matching strategy (LBMS) algorithm is described
in Algorithm 1. First, it calculates the distance of the EV to
all charging stations, and gets the set of available charging
stations; then it selects a charging station with the lowest load
demand degree among all available charging stations.

Algorithm 1: Load Balancing Matching
Input: EV information: location, time, SoC and speed;

charging station information: location, power
and microgrid load status;

Output: Matched charging station;
1 Calculate the distance matrix R, Dj(t);
2 for VE,i ∈ VE do
3 for VG,j ∈ VG do
4 if Rij ≤ RmaxBini,i then
5 VG,j ∈ Vi

G ;
6 end
7 end
8 Choose the charging station VG,j from Vi

G with
the lower power Pj(t);

9 for t ∈ (tj , tj + Φ− T i,jini) do
10 if Dj(t) ≥ ϕ then
11 delete VG,j from Vi

G ;
12 Choose the charging station VG,j from Vi

G

with the lower power Pj(t) again;
13 end
14 end
15 Pj(t) = Pj(t) + p;
16 end

V. SIMULATION RESULTS

We set up simulations in MATLAB to verify the proposed
algorithm and compared with the other two charging station
assigning schemes, which are the random matching strategy
(MRS) and the shortest distance matching strategy (SDMS).
Follows [30]–[33], the parameters settings in the simulations
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are given in TABLE I. The charging stations/aggregators are
set to be evenly distributed in the area of 10 km × 10 km.

The actual data of electricity demand in California, USA
are deployed as the basis of load information in simulation
verification [34]. After being scaling down, the electricity
demand data are randomly assigned to the 100 microgrids.

TABLE I
SIMULATION PARAMETER SETUP

Parameter Value Parameter Value
a 2.096 b 0.0669
c 0.0469 µ 156.81
σ 5.40 ν 2.16
ϕ 0.9 v 30 km/h
p 50 kW NG 100

Rmax 300 km NC 100

Combined with the given simulation parameters, the distri-
bution of the full charge time Φ is shown in Fig. 4.

Fig. 4. Distribution percentage vs. Charging time t

Fig. 5 shows the power load of the multi-microgrid system
at 20:00 under different charging station recommendation
schemes with 16,000 EVs and 100 charging stations. The red
circles in Fig. 5(a) represent the locations of charging stations.
As shown in Fig. 5(a), the initial power distribution of the
multi-microgrid system is extremely imbalanced, and there are
peaks and valleys at different charging station locations. From
Fig. 5(b) and (c), it can be seen the RMS and the SDMS cannot
effectively fill the demand valley with EV charging loads.
Oppositely, in some areas, the power peaks are strengthened.

That is the opposite of our optimization target. From Fig.
5(d), it can be clearly seen that the locations of the initial
power valley (deep blue) have favorably been filled, and most
of the load is within the range of 7, 500 ∼ 9, 000 kW. This
shows that the proposed LBMS guides EVs to choose the
charging stations in lower power demand microgrids, and
hence effectively balances the load among the 100 microgrids.

Fig. 6 shows the accumulated daily energy consumption
distribution of 16,000 EVs and 100 charging aggregators.
Through Fig. 6(b) and Fig. 6(c), the RMS and the SDMS have
failed to fill the energy valleys. Contrarily, in some locations,
the load of the energy peak increased. The minimum energy

Fig. 5. Heat maps of the power load at 20:00 under different charging station
recommendation strategies: (a) initial load (no EV charging), (b) the RMS,
(c) the SDMS, and (d) the proposed LBMS.

density is about 1.3 × 105 kWh, the largest value is almost
2.0× 105 kWh. Shown in Fig. 6(d), the initial energy valleys
of the charging station have been well filled, and the energy
density ranges in 1.6× ∼ 1.9× 105 kWh. The results indicate
that the proposed LBMS has led the EVs to charge at the
places where the energy density is low. The EV charging
load not only does not reinforce the peaks microgrid load in
a multi-microgrid system but also fills the microgrid trough.
Therefore, from the perspective of the multi-microgrid system,
under LBMS, the energy consumption of charging stations
promotes the load distribution of the multi-microgrid system
towards balance.

In this study, there is no requirement for the power system
to be V2G enabled. Knowing that V2G is still not enabled
in most utilities. It is not due to technical problems of not
considering V2G, but regulatory reasons. The proposed system
will not have the ability to reduce load peaks, but can only
improve the utilization in the low demand areas, if V2G is
disabled in the system. Yet, simulation has illustrated great
capability in load balancing of the proposed system in V2G
disabled systems.

Under the RMS, an EV selects charging stations randomly.
Under the SDMS, the nearest charging station from charging
stations sets will be selected. Fig. 7 shows the comparisons
results of η of different matching strategies with a different
numbers of EVs, NE of a 100 charging aggregators multi-
microgrid system. while NE increases, η under the RMS and
the SDMS are both gradually decreasing, which reflects that
the gaps between the peak and valley load of microgrids are
widening and that may have negative impact on the safety and
stable operation of the power grid. Contrariwise, the LBMS
makes η gradually rise, while the number of EVs increases,
indicating that the load gaps between the peak and the valley
are narrowing, and the load demand among the microgrids in
the multi-microgrid system is balanced.
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Fig. 6. Contour plots of accumulated daily energy consumption distribution
under different charging station recommendation strategies: (a) initial load (no
EV charging load), (b) the RMS, (c) the SDMS, and (d) the proposed LBMS.

Fig. 7. Comparisons of η with the numbers of EVs.

The load standard deviation shows the severity of the
fluctuation of the charging stations load. Smaller deviation
means that the real-time load fluctuation of the charging
stations is weak and the load is relatively stable, which is
beneficial to the safe operation of the microgrid. Shown in Fig.
8, as the number of EVs increases, the load standard deviation
under the RMS and the SDMS will rise, which indicates the
fluctuation of the load is becoming severer. Instead, the load
standard deviation drops significantly under the LBMS, which
shows that proposed algorithm can better balance the load
fluctuations of the charging stations.

Fig. 9 compares η of different charging stations recommen-
dation strategies at different periods of the day. Compared to
the RMS and the SDMS, η has been greatly improved under
the LBMS. Even in the period when the η of the above two
strategies is low, it can still increase η significantly, which
shows that it can effectively balance the grid load and enhance
the safety and stability of the grid operation at all time.

When prioritizing the charging station recommendations,
because the RMS, the SDMS, and the LBMS have considered

Fig. 8. Comparison of load standard deviation with the number of EVs.

Fig. 9. Comparisons of η in a day.

the distance between EVs and charging stations with different
weights, the ultimate distance between the EV and the charg-
ing station will also be different. Fig. 10 shows the histogram
of the driving distance to the charging stations under the three
strategies with 16,000 EVs and 100 charging stations. As it can
be seen from Fig. 10, under the SDMS, EVs select the nearest
charging stations, and the driving distance are all within 10 km.
The driving distance to the recommended charging stations
under the RMS and the LBMS is statistically similar.

VI. CONCLUSION

In this paper, based on graph theory, we modeled EV
charging networks by coupling smart grids with intelligent
transportation networks. A load balancing algorithm for multi-
microgrid systems through EV charging station selection was
proposed. By analyzing the distance factors between EVs
and charging stations, and the statues of the microgrid load
demands, the proposed algorithm can match an EV with a suit-
able charging station for charging. Simulation results showed
that compared with the random matching and the shortest
distance matching, the proposed load balancing algorithm
can effectively reduce the peak-valley difference in multi-
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Fig. 10. Driving mileage per charging trip.

microgrid systems, and reasonably distribute EVs to charging
stations. The proposed system can work effectively without
V2G support.
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