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Abstract—The increasing number of electric vehicles (EVs)
on the road brings both opportunities and challenges to the
power system. For the EV charging stations (EVCSs), it is often
difficult to conduct effective operations due to the incomplete
information in EVs’ departure times and the opacity of their pref-
erence information. To tackle this challenge, we seek to design the
optimal deadline differentiated dynamic price menu that offers
multiple choice-pairs of deadlines and charging prices. We prove
that such price menus can incentivize EVs to truthfully reveal
their departure time. We then analyze the properties of the
optimal price menu with complete EV information, i.e., social
optimality and first-degree price discrimination. For the incom-
plete information case, we first design a systematic method to
estimate the utility and demand information for a large pop-
ulation of EVs based on EV behavior data. Then, we employ
mixed-integer quadratic programming for the efficient optimal
price menu design. The numerical study based on field data in
California verifies the remarkable performance of our designed
price menu.

Index Terms—EV charging, price design, behavior analysis.

NOMENCLATURE

Acronyms

EV Electric Vehicle
EVCS Electric Vehicle Charging Station
EDT Earliest Departure Time

Sets

M Price menu
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Mi Customized price menu for EV i
Mt Uniform price menu at t
Ui EV i’s temporal utility
Ŝt Clustered EV information set at t
Û t

i Temporal utility set for EV pattern i at t

Parameters

Tbase (Tbase
t,i ) Minimal charging time (of EV pattern i at t)

Textend Contract extend period
Tdelay (Tdelay

i ) EV’s (EV i’s) delay tolerance
ξ Charging efficiency
pmax Maximal charging rate
P0 Conventional unit charging price
Cdelay Unit overstay fee
Cconv Conventional overall charging cost
H Price menu length
D (Di) EV’s (EV i’s) charging demand
D̂t,i Estimation for the demand of EV pattern i

at t
Dt,i The charging demand of EV i at t
ct Unit real time electricity price at t
ti EV i’s arrival time
Ri The revenue of EVCS by serving EV i
αi, βi The parameters of EV i’s utility function
Ii EV i’s average time value
STi EV i’s spatial-temporal trajectory entropy
STS

i EV i’s spatial trajectory entropy
STT

i EV i’s temporal trajectory entropy
Wi The number of visited places of EV i
Di,j The travel distance for EV i to visit the next

place from the jth place
Ti,j The stay duration in jth visited place of EV i
Nt

c The number of target clusters at t
α̂t,i (β̂t,i) Estimation for α (β) of EV pattern i at t
σ̂t,i Estimation for proportion of EV pattern i at t
Ût

i,k Estimated utility for EV pattern i at t with
delay tolerance k

θt The social welfare allocation ratio at t
δt The revenue transfer fee at t
UEVCS

t,conv The revenue for EVCS at t under conven-
tional pricing scheme

UEV
t,conv The revenue for EV population at t under

conventional pricing scheme
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Ut
i,k The temporal utility of EV i at t with

contract extend period k

Variables

Pk (Pt,k) Unit charging price with contract extend
period k (at t)

Cmenu Menu-based overall charging cost
Ui,k EV i’s temporal utility with delay tolerance k
Qi EV i’s overall utility
Pi,k Unit charging price of the kth option of price

menu Mi

k∗
i EV i’s optimal price menu choice

k∗
t,i EV pattern i’s optimal menu choice at t

E(t, k, D) The minimal energy purchase cost at time
t to satisfy an EV with menu choice k and
charging demand D

B̂(t, i, k) The minimal energy purchase cost to satisfy
EV pattern i’s charging demand at t with
contract extend period k

B(t, i, k) The minimal energy purchase cost to satisfy
the demand of EV i in population at t with
contract extend period k

at,i,k The binary indicator for whether EV pattern
i arriving at t chooses the kth service

UEVCS
t,menu The revenue for EVCS at t by serving EV

population with menu-based scheme
UEV

t,menu The utility for EV population at t under
menu-based pricing scheme

SWt The increased social welfare introduced by
EVs’ flexibility at t

I. INTRODUCTION

THE COMBAT with climate change warrants joint efforts
from all sectors, ranging from the transportation sector

to the electricity sector. With the global efforts in the electri-
fication of the transportation sector, the last decade witnessed
a dramatic increase in the number of electric vehicles (EVs)
on the road, the number of EV charging stations (EVCSs),
and the capacity of the EV charging market. In this paper, we
focus on the EVCS operation issue.

Specifically, facing real-time electricity prices, the EVCS
seeks to incentivize EVs to truthfully reveal their departure
times. With such information, the EVCS can flexibly adjust the
charging schedule to serve the EVs’ charging demand at the
minimal electricity purchase cost. However, the departure time
is private information, which complicates the effective EVCS
operation. Hence, it is crucial to design a proper mechanism
to enable EV information revealing.

In order to tackle the challenge, we design a deadline
differentiated dynamic charging price menu which includes
multiple pairs of deadlines and corresponding charging prices.
We prove that rational EVs will truthfully reveal their depar-
ture times when facing the price menu. Based on this property,
we further design the optimal price menu for the cases with
complete and incomplete information, respectively.

A. Related Works

We identify two major streams of closely related works. The
first research stream is the investigation of EV charging price,
and the second focuses on menu-based price design.

EV charging price design is at the core of EV’s inte-
gration into the grid. Recent works concentrate on charging
price design to maximize the profits of EVCSs. For example,
Wang et al. propose a framework to conduct joint pricing for
EV admission control and charging scheduling in [1]. Cui et al.
design the optimal charging price for multiple EVCSs consid-
ering the inter-dependency between transportation network and
power network in [2]. Mao et al. propose a vehicle-to-grid
pricing policy combining system load condition, maximum
charging limit, and residential electricity price in [3]. The
uncertainty in the system warrants dynamic charging pric-
ing. Luo et al. propose an approach to designing stochastic
dynamic price for EVCSs dealing with charging demand
volatility and renewable energy generation [4]. Soares et al.
propose a dynamic pricing and day-ahead energy resource
scheduling for EVs through stochastic optimization in [5].
Lu et al. characterize the equilibrium charging price consid-
ering the competitions among multiple EVCSs in [6], [7]. In
addition, various machine learning methods have been applied
to EV charging pricing recently, such as deep reinforcement
learning [8], the multi-agent deep reinforcement learning [9].

However, most of these works focus on setting a single
charging price at each time and do not consider providing
EVs with multiple differentiated service options. Therefore,
much can be improved for the EVCSs to better utilize the
EVs’ charging flexibility, which is our focus.

We are not the first to consider differentiated EV charg-
ing services. Tan and Wang propose a reliability-differentiated
charging pricing mechanism to enhance the reliability of
the distribution system in [10]. Moradipari and Alizadeh
investigate pricing priority and charging demand-differentiated
services for EVs offered by EVCS to maximize social wel-
fare in [11]. As for pricing deadline-differentiated services,
Bitar et al. propose a deadline-differentiated pricing approach
for deferrable electric power services, which can reduce
charging fees with increasing charging flexibility [12], [13].
However, these works only consider homogeneous EV util-
ity function, without capturing the heterogeneous preferences
among a large EV group. Ghosh and Aggarwal consider the
menu-based EV charging pricing customized for each single
EV in [14]. Based on this work, Ghosh and Aggarwal fur-
ther extend their work to vehicle-to-grid charging scenarios
in [15]. Salah and Flath design a uniform price menu for
EVs with local PV generation in [16]. Zeng et al. design the
price for both flexible and inflexible charging services, which
incorporates EV behaviors in [17].

The major limitation of this research line is that they mainly
consider the complete information case. However, in practice,
the incomplete information about EVs will bring a large bur-
den to the price menu calculation. The time-invariant price
menu is also not customized and often suboptimal.

In contrast, we consider the scenario that the EVCS partic-
ipates in the real-time electricity market and charges the EVs
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with an overstay fee, which is compatible with the overstay
fee-based pricing used by most EVCSs. To tackle the problem
caused by the incomplete EV information, we propose a
systematic method to estimate the distribution of EV popu-
lation’s utility and demand based on large EV behavior data.
Further, to tackle the computational intractability of large-scale
EV population optimization, and enable dynamic price menu
design for EVs on different days and at different times, we
utilize the K-means clustering algorithm to extract the time-
variant EV information patterns. Based on the estimated EV
information, we design an efficient algorithm to construct the
optimal price menu.

B. Our Contributions

We target to design the price menu such that the EVCS
can provide customized services with different deadlines in
both complete and incomplete information scenarios. Our
contributions can be summarized as follows:

• Price Menu Design with Complete Information: We pro-
pose a constructive approach to design the optimal price
menu yielding the maximal EVCS revenue. We prove
its key properties, including social optimality and first-
degree price discrimination.

• EV Information Estimation: We design a systematic and
scalable method to dynamically estimate the distribu-
tion of EV population’s utility and demand based on
EV behavior data. We also utilize the K-means cluster-
ing algorithm to extract the time-variant EV information
patterns.

• Price Menu Design with Incomplete Information: Based
on the estimated EV information, we provide an efficient
algorithm to solve the optimal price menu design, which
transforms the original intractable bi-level mixed-integer
optimization into a tractable mixed-integer quadratic pro-
gramming (MIQP).

• Extended Price Menu Design: To enable a more flex-
ible price menu design, we introduce the notion of
revenue transfer fee to dynamically allocate social wel-
fare between EVCS and EVs. Further, we demonstrate
the scalability of the price menu design framework and
extend it to design customized price menus for EVs with
different charging demands.

Specifically, the logical flow of this paper is illustrated in
Fig. 1, and our work is organized as follows: Section II intro-
duces our system model, including the charging price menu,
the EV choice model, and the EVCS model, which allow
us to mathematically characterize the key challenge in price
menu design, truthful departure time revealing. To tackle this
issue, in Section III, we first design and analyze the optimal
price menu with complete information for more theoretical
insights. Based on such insights, we further our analysis to
the practical and challenging incomplete information case.
We estimate the EV population’s utility and demand dis-
tribution based on EV behavior data in Section IV. These
estimated parameters allow us to investigate the optimal price
menu in Section V, where we also transform the original
intractable mixed-integer bi-level optimization into a tractable

Fig. 1. Structural Diagram.

MIQP. In addition, we propose the advanced design for the
price menu, including the revenue transfer fee and demand-
differentiated price menu design. We numerically verify the
performance of our proposed price menu design framework
in Section VI. Finally, Section VII concludes our work and
suggests interesting future directions. All the necessary proofs
are deferred to the Appendix.

II. SYSTEM MODEL

Consider the EV charging coordination for an EVCS. The
EVs arrive at the EVCS in real-time to charge themselves.
Before the charging service, the EVCS offers a charging price
menu (possibly time-varying) to the EVs, and then provides
the service according to their choices. The goal of the price
menu is to better exploit the EVs’ flexibility. In this section,
we sequentially introduce the charging price menu model, the
EV choice model, and the EVCS model.

Specifically, in subsequent analysis, we discretize the time
into slots when considering EV’s arrival, departure, and the
corresponding price design. To improve the readability, we
first introduce the following definitions:

Definition 1: Earliest Departure Time (EDT): the earliest
time to satisfy the charging demand. We further denote Tbase

to be the difference between the EV arrival time and its EDT.
Definition 2: Contract Extend Period Textend: the time

difference between EDT and the contract end time.
Definition 3: Delay Tolerance Tdelay: the time difference

between EDT and the actual departure time.

A. Charging Price Menu

We first revisit the conventional charging price scheme
widely adopted by existing EVCSs. The conventional charging
price consists of two parts, the fixed charging fee (including
electricity price and service surcharges) and the overstay fee.
The first part is proportional to the EV charging demand, and
the second part is proportional to the EV’s delay.

Specifically, for an EV with charging demand D and
the delay tolerance Tdelay, the overall charging cost
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Fig. 2. Illustration of the service process.

Cconv(D, Tdelay) with conventional pricing is as follows:

Cconv(D, Tdelay) = ξ−1DP0 + TdelayCdelay, (1)

where ξ is the charging efficiency satisfying 0 < ξ < 1. P0
denotes the unit charging fee designed by the EVCS ($/KWh);
Cdelay denotes the unit overstay fee ($/h).

The deadline differentiated dynamic charging price menu,
on the other hand, seeks to exploit the flexibility during EV
charging. For an EV with charging demand D and maximal
charging rate pmax, it will take at least Tbase time slots to meet
the charging demand:

Tbase =
⌈
(ξpmax)−1D

⌉
. (2)

The price menu provides more options for EVs to choose
the time completing charging service in exchange for a lower
price. If the EV provides more flexibility during charging,
it will receive a cheaper charging fee. Specifically, the price
menu M contains H + 1 time-price pairs1 as follows:

M = {(0, P0), (1, P1), . . . , (H, PH)}. (3)

Each pair (k, Pk) in M denotes a service contract between
the EVCS and the EV: The EVCS commits to satisfy the
charging demand D within Tbase + k time slots; and the EV
should stay at the EVCS for at least Tbase + k slots to enjoy
the unit charging fee Pk.

The aforementioned definitions are illustrated in Figure 2.
Clearly, the contract extend period Textend is exactly the k that
the EV chooses in the price menu. Note that the unit charging
fee for k = 0 should equal the conventional unit charging
price, as the conventional scheme is a special case of the menu-
based scheme with H = 0, and the conventional charging price
scheme is also a part of the menu-based price scheme (option
(0, P0)). The designed charging price menu should also satisfy
a partial order relationship that, the unit charging fee with more
flexibility to complete charging should be cheaper. Formally:
Pi < Pj for all i > j, where i and j correspond to the indices
of the options in the price menu, e.g., (i, Pi).

On the other hand, the dynamic price menu does not influ-
ence the overstay fee. That is, for EVs with different menu
choices and the same delay tolerance Tdelay, they should pay
the same overstay fees. Therefore, for an EV with demand
D, delay tolerance Tdelay, and menu choice (k, Pk), its overall
cost Cmenu(D, Tdelay, k) can be calculated as follows:

Cmenu(D, Tdelay, k) = ξ−1DPk + TdelayCdelay. (4)

With such a design, we can observe that the EVs actually
have more options under the price menu. Based on the price

1The parameter H can be adjusted based on the EV’s general acceptance
of menu length.

menu, the utility of any EV is no smaller than that of the con-
ventional price scheme. Therefore, all the EVs have incentives
to accept such a price menu. Further, due to the existence of
the overstay fees, the EVs will not stay at the EVCS for too
long.

B. EV Choice Model

Suppose there are N EVs in the EVCS. Each EV i arrives
at the EVCS at time slot ti with charging demand Di,
which can be automatically obtained when the EV plugs
in the charging port. Except for these observable parame-
ters, EVs have different utilities for different departure times.
Denote the temporal utility for EV i by Ui. Specifically,
Ui = [Ui,0, Ui,1, Ui,2, . . . , Ui,H] corresponds to Tdelay =
0, 1, . . . , H. Hence, the overall utility Qi for EV i with delay
tolerance Tdelay

i when choosing service k is as follows:

Qi(Di, Tdelay
i , k) = Ui,k − Cmenu(Di, Tdelay

i , k). (5)

We make the following assumptions about the EVs:
• EVs have full knowledge of their own utility function.
• EVs are rational and will optimally choose the price

options to maximize their utilities.
Therefore, each EV i seeks to maximize its utility by

selecting the optimal k∗
i as follows:

k∗
i = arg max

k
Qi(Di, Tdelay

i , k). (6)

Such a deadline differentiated price menu can incentivize
EVs to truthfully reveal their departure time:

Theorem 1: For any deadline differentiated price menu sat-
isfying partial order relationship, each EV i will truthfully
reveal its departure time which equals the contract end time it
chooses, i.e., Tdelay

i = k∗
i ,∀i.

This theorem can be proved by the following observation:
On the one hand, any EV should not leave before the contract
end time due to the requirement of the menu contract. On the
other hand, if any EV were to depart later than the contract end
time, it could have chosen the contract with a later contract
end time for a lower charging price. This observation implies
that, EVs are incentivized to truthfully reveal their departure
times. This makes it possible for EVCSs to know the EV’s
departure time in advance, enabling us to further design the
optimal price menu.

C. EVCS Model

The EVCS provides charging services to the EVs for max-
imal revenue. EVCS’s revenue is the difference between the
total payments from the EVs and the electricity purchasing
cost, assuming that the EVCS participates in a real-time elec-
tricity market and purchases the electricity at the real-time
price. The unit electricity price at time t is denoted by ct.

During the process of serving EV i with menu choice k∗
i ,

the revenue Ri for EVCS is as follows:

Ri(k
∗
i ) = ξ−1Pk∗

i
Di − E(ti, k∗

i , ξ
−1Di), (7)

where ξ−1Pk∗
i
Di represents the service income, and

E(ti, k∗
i , ξ−1Di) denotes the energy purchase cost. Note
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that, the overstay fee is used to cover the opportunity cost for
extending the time serving EVs.2 Therefore, it is not included
in the revenue. To minimize the energy purchase cost, the
following condition holds:

E(ti, k∗
i , ξ−1Di) = min

pi

Tbase
i +k∗

i∑
u=1

cti+upti+u

s.t. 0 ≤ pi ≤ pmax, (8)
Tbase

i +k∗
i∑

u=1

pti+u = ξ−1Di.

Note that E(ti, k∗
i , ξ−1Di) is associated with the linear

programming. Hence, it satisfies the following properties [18]:
Theorem 2: E(t, k, ξ−1D) is piece-wise linear, increasing,

and convex in ξ−1D. It decreases in k.
This theorem reveals important structure of function

E(t, k, ξ−1D) in ξ−1D, which enables the fast construction of
the function. E(t, k, ξ−1D)’s decreasing in k indicates that Ri

increases in k. This is intuitive as more flexibility to purchase
energy at a lower real-time price can reduce the total purchase
cost.

Remark 1: To simplify the price menu design, we assume
that all the charging ports in the EVCS share the same maximal
charging rates. For charging ports with different charging rates,
we can deal with them separately. We also assume the real-
time price can be accurately estimated by advanced machine
learning technology. We will demonstrate in the experiment
that even with inaccurate prediction, the impact of prediction
error on the price revenue of EVCS is limited.

D. Illustrating Example

Fig. 3 provides an illustrating example to highlight the effi-
ciency of the price menu. Consider that an EV of charging
demand 50KWh wants to leave in 2 hours, and the maximal
charging rate in the EVCS is 50KW, as shown in Fig. 3 (a).
Hence, the charging demand can be satisfied in 1 hour. The
real-time electricity price is $0.3/KWh in the first hour and
$0.1/KWh in the second hour illustrated in Fig. 3 (b).

Assume that the conventional charging price offered by the
EVCS is $0.4/KWh and the overstay price is $3/h. The EV
should pay at least 0.4∗50+3∗ (2−1) = $23, and the EVCS
earns (0.4 − 0.3) ∗ 50 = $5 by serving this EV. However,
if the EVCS offers an alternative choice (the price menu in
Fig. 3 (c)) to satisfy the demand within 2 hours with a charg-
ing price of $0.3/KWh, the EV will choose this option with a
total payment of 0.3 ∗ 50 + 3 ∗ (2 − 1) = $18. The EVCS can
charge the EV in the second hour at a lower electricity price
$0.1/KWh, and its revenue becomes (0.3 − 0.1) ∗ 50 = $10,
which is illustrated in Fig. 3 (d). We can observe that the price
menu jointly improves the utility of EV and the revenue of the
EVCS.

In the subsequent sections, we will introduce how to
design the optimal price menu with complete and incomplete
information to maximize the EVCS’s revenue.

2We offer detailed justifications for this argument in Appendix D.

Fig. 3. Comparison of conventional price and price menu.

III. PRICE MENU DESIGN WITH COMPLETE INFORMATION

In this section, we first consider the case that the EVCS has
complete information on the EVs’ utility functions. We pro-
pose a constructive price menu design method and investigate
the properties of the designed optimal price menu.

A. ε-Greedy Optimal Price Menu Design

With complete utility information about the EVs, the EVCS
can customize the price menu for each EV. Since the design
of the price menu for different EVs does not affect each other,
we can focus on the price menu design for a single EV.

For EV i with utility Ui = [Ui,0, Ui,1, Ui,2, . . . , Ui,H], we
can design an ε-greedy optimal price menu via the following
process. First, we set price Pi,k with contract extend period k
satisfying the following conditions:

Ui,k − ξ−1Pi,kDi − kCdelay = Ui,0 − ξ−1P0Di,∀k. (9)

Mathematical manipulation yields that:

Pi,k = P0 − ξ(Ui,0 − Ui,k + kCdelay)

Di
,∀k. (10)

This design guarantees that EV i will get the same utility
with all menu choices. To make EV i strictly prefer option k,
the EVCS only needs to slightly decrease Pi,k as follows:

Pi,k = P0 − ξ(Ui,0 − Ui,k + kCdelay)

Di
− ε, (11)

where ε > 0 is small. The EVCS’s utility Ri(k) is as follows:

Ri(k) = Pi,kDi − E(ti, k, Di),∀k (12)

To maximize its utility, the optimal choice k∗
i satisfies:

k∗
i = arg maxk Ri(k). (13)
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Therefore, the ε-greedy optimal price menu Mi =
{(k, Pi,k),∀k} is as follows:

Pi,k =
{

P0 − ξ(Ui,0−Ui,k+kCdelay)

Di
, k �= k∗

i ,

P0 − ξ(Ui,0−Ui,k+kCdelay)

Di
− ε, k = k∗

i .
(14)

B. Property Analysis

Define any price menu which maximizes EVCS’s revenue as
the optimal price menu. We first prove the proposed ε-greedy
price menu is an optimal price menu. Then, we analyze the
common properties of optimal price menus.

Theorem 3: The ε-greedy price menu with complete
information can maximize the EVCS’s profit when ε −→ 0.

This theorem indicates that with complete information, we
can design an optimal price menu through simple construction
rather than solving complex optimization problems.

Before analyzing the impact of optimal price menus on the
EVs, we first introduce the following notion:

Definition (First-Degree Price Discrimination) [19]: The
first-degree price discrimination involves the seller charging a
different price for each unit of the good to different customers
in such a way that the price charged for each unit equals the
maximum willingness to pay for that unit.

The first-degree price discrimination emphasizes that the
seller has complete information about the customers’ willing-
ness to purchase. Based on such complete information, the
seller can always maximize its own utility [19].

For the EV charging, we can show that the optimal price
menus are, in fact, first-degree price discrimination. Formally:

Theorem 4: Any optimal price menu in terms of maximizing
social welfare causes first-degree price discrimination.

This theorem indicates that, although an optimal price
menu can maximize both EVCS’s own revenue and the
social welfare, the utility improvement of the EV is com-
pletely ignored. All the increased social welfare becomes
the EVCS’s revenue. As a result, the EV’s consumer sur-
plus is zero, and first-degree price discrimination happens.
This discourages EVs from joining the menu-based price
scheme.

IV. PRICE MENU DESIGN WITH INCOMPLETE

INFORMATION: THE BASIS

In practice, we can hardly observe the utility information of
each EV, rendering the customized price menu for each EV
impossible. However, it is possible to obtain the distribution of
utility functions across the EV population, enabling the design
of a uniform dynamic price. That is, the EVCS offers the same
price menu for all the EVs arriving at the same time. This is
also more practical and fair. In this section, we first design
an approach to estimate the distribution of EV population’s
utility and demand based on EV behavior patterns. Further, we
use the clustering algorithm to efficiently construct the price
menu.

A. EV Information Estimation

We use EV population P’s behavior data 3 to estimate
their utility functions. First, we assume EV i’s utility function
Ui(t) is concave, where t denotes the time since the minimal
charging end time.

One commonly used form is the quadratic func-
tion [15], [20], e.g., Ui(t) = αit(βi − t). In this form, the factor
αi can capture the EV’s urgency to charge and its unit time
value, while βi can reflect temporal preference. We use this
quadratic form to better illustrate our subsequent information
estimation. However, we want to emphasize that our analysis
can be extended to general concave utility function Ui(t).

For each EV i, we seek to estimate the corresponding tuple
Gi = {ti, αi, βi, Di}. The arrival time ti and charging demand
Di can be directly obtained from charging session data. To
estimate αi, which is related to EV’s unit time value, we jointly
utilize EV’s static time value and dynamic time value. The
static time value reflects EV’s average time value and is linear
to EV driver’s income. Intuitively, this assumption indicates
that higher income yields less sensitivity to the charging cost.
When estimating the dynamic time value, we assume that an
EV driver with a more complex daily trajectory has a higher
dynamic time value. We use the spatial-temporal trajectory
entropy [21] to evaluate the complexity of the trajectory. Thus,
αi can be estimated as follows:

αi = Ii + STi, (15)

where Ii is the average time value, and STi is the spatial-
temporal trajectory entropy which is the weighted sum
of spatial trajectory entropy STS

i and temporal trajectory
entropy STT

i :

STS
i = −

Wi∑
j=1

(
Di,j · Ti,j∑Wi

j=1 Ti,j
log2

(
Ti,j∑Wi
j=1 Ti,j

))
, (16)

STT
i = −

Wi∑
j=1

(
Ti,j · Ti,j∑Wi

j=1 Ti,j
log2

(
Ti,j∑Wi
j=1 Ti,j

))
. (17)

Note that Wi is the number of visited places of EV i. Di,j

represents the travel distance of EV i to orderly visit the next
place from jth place. Ti,j represents the duration of stay in jth

visited place of EV i.
Note that, βi is the utility maximizer for EV i. Hence, βi

2
is EV’s most desired time to depart. We use the EV’s actual
departure time from the EVCS to estimate βi

2 .

B. Information Clustering and Calculation

The information tuples for all EVs leave us with the data
of huge volume, which will significantly burden the dynamic

3The behavior data and the subsequent price menu design mainly target
to a small region, i.e., Berkeley downtown in the great San Francisco area.
Hence, we assume the EV charging demands and EV user patterns are similar
to different EVCSs in a small region. And the large volume of data on a
regional scale enable more accurate charging pattern estimation. Further, our
framework enables the customized price menu design for a single EVCS by
collecting the charging session data and EV information of the corresponding
EVCS.
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price menu design in real-time. To tackle this problem, we
separate the information tuples according to the arrival time.
For each tuple group with the same arrival time t, we can
set the number of target clusters to be Nt

c. Then we use the
K-means clustering algorithm to cluster the information data
into Nt

c groups. For each group, we use the mean of the
information data in the group to represent its patterns. We
can also obtain the proportion of each pattern. Specifically,
through the clustering process, we construct the information
set Ŝt for different t as follows:

Ŝt = ((α̂t,1, β̂t,1, D̂t,1, σ̂t,1), . . . ,

(α̂t,Nt
c
, β̂t,Nt

c
, D̂t,Nt

c
, σ̂t,Nt

c
)), (18)

where α̂t,i, β̂t,i, D̂t,i and σ̂t,i denote the estimation for the ith

EV pattern at time t after clustering.
Thus, we can calculate the utility Û t

i for each EV pattern
i arriving at time slot t according to Ŝt. Specifically, Û t

i =
[Ût

i,0, . . . , Ût
i,H].

C. Extended EV Information Estimation

The estimation method mentioned above doesn’t differ-
entiate the EV user patterns on different days in a week.
However, in practice, the aggregate EV charging demand
profile may vary greatly between different days, and so do
the EV information patterns. Without differentiating different
days in a week, it would be difficult to capture the temporal
characteristics of EV information patterns.

To address this issue, we extend the existing method and
modify the EV pattern estimation to obtain the EV user
information over different days, which further helps design the
more customized price menus. Specifically, we first propose
to design a more realistic day-differentiated price menu (i.e.,
design different price menus for Monday, Tuesday, etc.), and
then extend it to a more general demand profile-differentiated
price menu design to capture the varying demands.

1) Day-Differentiated EV Information Estimation: To facil-
itate the design, we only need to slightly change the orig-
inal estimation process. The existing method separates the
information tuples based on the arrival time, whereas the
day-differentiated price menu design requires separating
the information tuples based on both the day type and the
arrival time. For each tuple group on the same day-type w
with arrival time t, we can set the number of target clusters
to be Nw,t

c . Then we use the K-means clustering algorithm
to classify the information data into Nw,t

c groups. This gives
us the corresponding pattern for each group. Consequently,
we can obtain 7 groups of EV information patterns, and each
group contains the EV information with the same scale as the
original results in Eq. (18).

2) Demand Profile-Differentiated EV Information
Estimation: The drawback of the day-differentiated price is
that, the EV charging demand may also vary dramatically
on the same day of different weeks. This further inspires
us to design a demand profile-differentiated EV information
estimation. Specifically, we first conduct the K-means
clustering algorithm to classify different days according
to the daily demand profile. Then we assign different day

types w to the EV information tuples in different clusters.
The demand-profile differentiated patterns can be obtained
following the same routine as mentioned above.

V. PRICE MENU DESIGN WITH INCOMPLETE

INFORMATION: IMPLEMENTATION

In this section, we seek to solve the deadline differentiated
dynamic charging price menu based on the estimated EV util-
ity information. The price menu design across different time
slots can be decoupled. Hence, we only concentrate on the
design in a single time slot.

A. Bi-Level Optimization Formulation

The price menu design problem can be formulated into a
bi-level optimization. In the upper level, the EVCS designs the
price menu to maximize its revenue, while in the lower level,
EVs decide their menu choices according to the price menu.

1) Upper Level: Denote the price menu to be designed at
time t as Mt = {(0, Pt,0), (1, Pt,1), . . . , (H, Pt,H)}. The upper
level optimization (UL) is as follows:

(UL) max
Pt,k,k∗

t,i

Nc∑
i=1

σt,i

⎛
⎜⎝ξ−1Pt,k∗

t,i
D̂t,i −

Tbase
t,i +k∗

t,i∑
u=1

ct+upi,t+u

⎞
⎟⎠

s.t. 0 ≤ pi,t+u ≤ pmax,∀i, u, (19)
Tbase

t,i +k∗
t,i∑

u=1

pi,t+u = ξ−1D̂t,i,∀i, (20)

Pt,0 ≤ P0, (21)

Pt,k+1 ≤ Pt,k,∀k, (22)

where Pt,k, k∗
t,i, and pi,t+u are the decision variables. Pt,k

denotes the unit charging price with contract extend period
k for the EVs arriving at time t; k∗

t,i denotes the menu choice
of ith EV pattern arriving at time t, which is an integer random
variable, and pi,t+u denotes the charging rate of ith EV pattern
at time t + u.

The objective function denotes the total revenue of the
EVCS for serving the EVs arriving at time t. Constraint (19)
denotes the charging rate limit. Constraint (20) enforces satis-
fying the charging demand of each EV pattern. Constraint (21)
indicates that the menu-based price should be lower than the
conventional price. Constraint (22) ensures that the menu price
is decreasing in the contract extend period.

2) Lower Level: The lower level captures the coupling
between the price menu Pt,k and EVs choice k∗

t,i.

(LL) k∗
t,i = arg max

k
Ût

i,k − ξ−1D̂t,iPt,k − kCdelay,∀i. (23)

Problem LL includes integer variable k∗
t,i, and the bi-level

structure makes the whole optimization even more intractable.

B. Mixed-Integer Quadratic Programming Formulation

Next, we transform the intractable bi-level optimization into
mixed-integer quadratic programming, which can be solved
efficiently with commercial solvers, e.g., Gurobi [22].
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1) Constraints Elimination for UL Optimization: We can
observe two facts from UL: First, the constraints (19) and (20)
do not include the decision variables Pt,k and k∗

t,i, and are only
related to pi,t+u. Further, pi,t+u does not couple with Pt,k in
the objective function. Therefore, the UL optimization can be
transformed into the form free of pi,t+u:

(RUL) max
Pt,k,k∗

t,i

Nc∑
i=1

σt,i

(
ξ−1Pt,k∗

t,i
D̂t,i − B̂(t, i, k∗

t,i)
)

s.t. Constraints (21) − (22). (24)

where B̂(t, i, k) is the following function:

B̂(t, i, k) = min
pi,t+u

Tbase
t,i +k∗

t,i∑
u=1

ct+upi,t+u

s.t. 0 ≤ pi,t+u ≤ pmax,∀u, (25)
Tbase

t,i +k∗
t,i∑

u=1

pi,t+u = ξ−1D̂t,i.

Note that, problem (25) can be solved in advance for all
possible t, i, and k.

2) Reformulation of LL Optimization: The most tricky hur-
dle in the UL optimization is that, k∗

i is included in the upper
limit of the summation. To mitigate this issue, we reformulate
the LL problem into the following optimization with binary
variables:

(RLL) min
at,i,k

H∑
k=1

at,i,k(Û
t
i,k − ξ−1D̂t,iPt,k − kCdelay)

s.t.
H∑

k=1

at,i,k = 1,∀i, (26)

at,i,k ∈ {0, 1},∀i, k. (27)

Note that at,i,k is the binary indicator for whether the EV
pattern i arriving at time t chooses kth service: at,i,k = 1 only
when k∗

t,i = k.
3) Combined Optimization: Problem RUL and RLL can

be efficiently combined through the classical Big M approach
as follows:

(CO) max
Pt,k,at,i,k

Nc∑
i=1

H∑
k=1

σt,iat,i,k(Pt,kξ
−1D̂t,i − B̂(t, i, k))

s.t. Constraints (21) − (22),

Constraints (26) − (27),

Ût
i,k − 1

ξ
Pt,kD̂t,i − kCdelay +

∑
q �=k

at,i,qM

≥ Ût
i,j − 1

ξ
Pt,jD̂t,i − jCdelay,∀i, k �= j, (28)

where M is a very large positive number. Constraint (28)
guarantees EVs’ rationality to maximize their own revenue.

C. Revenue Transfer Fee Design

The proposed framework in the former sections has two
major drawbacks. It cannot guarantee the same revenue for

EVCS as that in the complete information case due to the miss-
ing EV information during clustering. Note that, even without
clustering, the revenue of EVCS may fluctuate a lot.

In this section, we propose a uniform revenue transfer
fee [23] based on the population information (instead of the
clustered information) to offset the social welfare of different
groups. Specifically, the EVCS can design a social welfare
allocation target ratio θt (0 ≤ θt ≤ 1) where only θt portion of
the increased social welfare will be dispatched to the EVCS.
Denote the desired revenue transfer fee at time t by δt. The
following conditions relate θt and δt:

UEVCS
t,conv + UEV

t,conv + SWt = UEVCS
t,menu + UEV

t,menu, (29)

UEVCS
t,conv + θtSWt = UEVCS

t,menu +
∑
i∈P

ξ−1Dt,iδt, (30)

where UEVCS
t,conv, UEVCS

t,menu denote the revenue for EVCS by serving
the EV population under conventional and menu-based pricing
scheme at time t; UEV

t,conv, UEV
t,menu denote the revenue for EV

population under conventional and menu-based pricing scheme
at time t; and SWt denotes the increased social welfare intro-
duced by EVs’ flexibility. Mathematical manipulation yields
that:

δt = (1 − θt)(UEVCS
t,conv − UEVCS

t,menu) + θt(UEV
t,menu − UEV

t,conv)∑
i∈P ξ−1Dt,i

, (31)

where each revenue term can be calculated directly as follows:

UEVCS
t,conv =

∑
i∈P

(ξ−1Dt,iP0 − B(t, i, 0)), (32)

UEVCS
t,menu =

∑
i∈P

(ξ−1Dt,iPk∗
t,i

− B(t, i, k∗
t,i)), (33)

UEV
t,conv =

∑
i∈P

(Ut
i,0 − ξ−1Dt,iP0), (34)

UEV
t,menu =

∑
i∈P

(Ut
i,k∗

t,i
− k∗

t,iCdelay − ξ−1Dt,iPk∗
t,i
), (35)

where Dt,i, B(t, i, k∗
t,i), Ui,k∗

t,i
denote the corresponding

demand, electricity purchasing cost and EV utility for the
EV i at time t in EV population (not clustered patterns). The
final derived price menu satisfies that Mt = {(k, Pk +δt),∀k}.
With the revenue transfer fee, we detail the dynamic deadline
differentiated price menu design in Algorithm 1.

D. Extension to More Customized Price Menu

In the above sections, we have introduced how to design
a time-varying dynamic price menu. With this price menu,
all EVs arriving at the same time receive exactly the same
price menus. However, we know that EV’s charging demand
is another key parameter to influence the charging process
and the price menu design. Particularly, it is an observable
parameter in contrast to EV utility. Next, we seek to design
customized price menus for EVs arriving at the same time but
with different charging demands. That is, the extended price
menu is a function of both arrival time and charging demand.

In fact, we can obtain the extended price menu by making
a few minor adjustments to the aforementioned price menu
design framework. Intuitively, the aforementioned framework
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Algorithm 1 Dynamic Price Menu Design

Input Clustered EV information Ŝt at each time t; The price
menu length H; The desired social welfare allocation tar-
get ratio θt at each time t; The price prediction window
size W;

Output Price menu Mt = {Pt,0, ..., Pt,H} for each t;
1: for t = 0, 1, ... do
2: Predict the future price Ct = {ct+1, ct+2, ..., ct+W};
3: for i = 1, 2, ..., Nt

c do
4: Calculate driver pattern i’s utility Û t

i according to EV
information Ŝt;

5: for k = 1, 2, ..., H do
6: Calculate B̂(t, i, k) via optimization (25)
7: end for
8: end for
9: Solve the optimal menu Mt according to (CO);

10: Calculate the revenue transfer fee δt;
11: return Mt = {(k, Pk + δt),∀k};
12: end for

first groups EVs according to the arrival time, and then designs
the price menu customized for each EV group. To extend to
price menus for EVs with different charging demands, we can
simply divide population P’s information data into different
groups according to both arrival time and charging demand.
Then we can straightforwardly follow our proposed price
menu design process, i.e., clustering and then optimization,
to calculate the optimal price menu for each group.

VI. NUMERICAL STUDY

In this section, we first estimate the utility and demand dis-
tribution of EV population, and then evaluate the performance
of our designed price menu in terms of revenue, computational
efficiency, grid impact and robustness. The numerical study is
conducted on a laptop with Intel i5-8265U CPU @ 1.60 GHz
and 8GB RAM, and we adopt the Gurobi solver 9.5.0 [22].

A. Data Description

We estimate EVs’ charging behaviors based on four inde-
pendent data sources: mobile phone activity data of Bay area
residents [24], charging sessions obtained from the commercial
EV supply equipment in the same region [25], surveys on the
use of conventional and electric vehicles [26], together with
census data for income information at 5-digit Zipcode resolu-
tion [27]. We adopt methodology in [28] and [29] to obtain
the spatial-temporal trajectory, energy demand at arrival, the
start charging time, the end charging time, the departure time,
and the personal income of 70, 736 Bay area EVs. The spa-
tial distribution of EVs are illustrated in Fig. 4 (a). We use
15 minute average electricity price data in 2021 offered by
California ISO illustrated in Fig. 4 (b).

Besides, we select the length of each time slot to be 15
minutes. The charging price of the EVCS is upper bounded
by $0.05/KWh (do not include service surcharges), and the
overstay price is set to be $2/h. The maximal charging rate is
13.2KW. The charging efficiency is set to be 0.95.

Fig. 4. Electricity Price.

Fig. 5. Information Clustering.

B. EV Information Estimation

We repeat the K-means clustering algorithm with different
initial points for 10 times, which leads to similar clustering
results, demonstrating the stability of our method. Fig. 5 illus-
trates the clustering result with Nc to be 2, 4, 6, 8. We can
observe that when Nc is small, the dominant dimension is EV
charging demand. And when Nc increases, α and β gradu-
ally affect the clustering results, and the clustered EV patterns
become more diverse. By trading off the impacts of clustering
performance and algorithm running time, we select Nc to be
8 in the subsequent experiments.

For more intuitions, we visualize the pattern information
with Nc = 8 in Fig. 6. The color of circles in each subfigure
represents the charging demand of EV patterns according to
the color bar. The blue lines represent EV patterns’ utility
functions considering overstay fees with respect to the contract
extend period. We find that the utilities of most EVs with small
charging demands in Fig. 6 (a), (d), (e) first increase and then
decrease, indicating that they desire a later departure time,
which corresponds to more flexibility to the EVCS. While for
EVs with large charging demands in Fig. 6 (f), (g), (h), their
utility functions drop rapidly, which indicates these EVs want
to leave as soon as possible after a long charging session,
corresponding to less flexibility.

C. Price-Menu Revenue Evaluation

Next, we evaluate the performance of our proposed dead-
line differentiated price menu. We simulate the EV charging
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Fig. 6. Typical Patterns.

process during the morning peak period (7:00 am to 10:00 am)
for 10 times, and EVs are randomly sampled from the pop-
ulation according to their arrival time. Fig. 7 illustrates its
performance compared with conventional pricing and menu-
based pricing with complete information. In Fig. 7 (a), we can
observe that our price menu under incomplete information can
achieve nearly the same revenue with complete information.
Fig. 7 (b) visualizes the proportions of social welfare of
EVCS and EVs benchmarking with the case under complete
information. We can observe that the total social welfare with
incomplete information (the green line) is always above 80%.
However, although both EVCS and EVs’ utilities are improved
compared with conventional pricing case (the line), EVCS
takes the major part of the social welfare (the red line), and the
EVs only obtain a small portion (the grey line), highlighting
the need for the revenue transfer fee.

With the introduction of the revenue transfer fee, we set the
desired EVCS revenue percentage δ to be 0.5. Fig. 8 com-
pares the proportions of social welfare that EVCS and EVs
take before and after introducing the revenue transfer fee. We
can find that before introducing the revenue transfer fee, the
EVCS dominates about 90% of the social welfare, whereas the
EVs only share 10% of the social welfare. With the revenue
transfer fee, the EVCS’s revenue share is reduced to about
50%, which conforms to the desired proportion level well.
Therefore, the EVs can also enjoy about half of the social
welfare. It shows that the revenue transfer fee can effectively
balance the distribution of social welfare.

Then we evaluate the performance of the more customized
price menus for EVs with different charging demands. We
group EVs arriving at each time into 2, 3, or 4 categories
according to charging demands in population data, ensuring
the same number of EVs in each category, and then obtain the
price menu and demand range corresponding to each category.
We simulate 5 times for each extended price menu during the

Fig. 7. Utility and Social Welfare.

Fig. 8. Power of Revenue Transfer Fee.

TABLE I
REVENUE OF HETEROGENEOUS PRICE MENU

morning peak. The average revenues of each price menu are
provided in Table I. We can observe that the more customized
price menu reduces the gap between the time-varying uniform
price menu (# groups = 1) and the price menu with complete
information (CI) by more than 30%. When the number of
categories is larger than 2, increasing the number of categories
will not significantly improve the revenue.

D. Extended Price Menu Revenue Evaluation

For the day-differentiated price menu design, the weekly
charging demand is illustrated in Fig. 9. We can observe that
the charging demands are quite different between weekdays
and weekends. The weekday charging demand is far larger
than that of the weekend since most customers for commercial
EVCSs are commuters who charge EVs during working hours.

We visualize the charging revenues of weekdays and week-
ends from 5:00 am to 9:00 pm in Fig. 10, and the shadowed
area stands for the standard deviation. Generally, the revenue
curves align with the demand curves, i.e., the weekday revenue
is about 5 times to the weekend revenue.

For the demand profile-differentiated price menu design, we
conduct the K-means clustering algorithm to classify the days
in a year into different groups according to the demand pro-
file, which is illustrated in Fig. 11, and we can observe that
the demand profiles in each group are quite similar. Then, we
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Fig. 9. Weekly Charging Demand.

Fig. 10. Weekly Charging Revenue.

Fig. 11. Demand Pattern Clustering.

follow the routine to calculate the EV information pattern and
price menus for each group. Fig. 12 illustrates the customized
price menu’s performance in terms of the changes in the total
revenue with varying number of clusters. We can observe that,
the revenue is significantly improved when the number of clus-
ters changes from 1 to 2. When the number of clusters further
increases, the revenue improves at a much slower rate.

Fig. 12. Performance with Demand Pattern Clustering.

Fig. 13. Charging Load Shifting.

Fig. 14. Peak Load Shaving.

E. Impact on Power Grid

Fig. 13 illustrates the charging load curve with the con-
ventional price scheme and the price menu in 50 different
weekdays, 4 and the solid lines characterize the average loads.
It is evident that, with the price menu, the morning charging
peak from 7:00 am to 9:00 am can be effectively postponed
to around 10:00 am. The historical maximum charging load
(marked by the yellow stars) in 50 days can be reduced by
17.3%, and the average maximum load is reduced by 15.2%.

Further, to study the impact on the power system, we con-
sider there are 5, 000 EVCSs with similar scales in California.
We obtain the baseload data of California on Apr. 26, 2022
from CAISO [30], which is illustrated as the green line in
Fig. 14. The red line and blue line show the aggregated loads
before and after the price menu. We can observe that the
aggregated load of the grid with the conventional price scheme
reaches the first peak at 8:00 am. In contrast, with the menu-
based price scheme, the gird peak load is effectively reduced,
and the load valley (caused by the integration of solar power)
is better smoothed. The fluctuations in the grid load during
the whole day are also reduced.

4We only select weekday load because the weekday load is much higher
than that of the weekend.
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Fig. 15. Computational Efficiency.

Fig. 16. Parametric Evaluation.

Fig. 17. Performance under Prediction Errors.

F. Computational Efficiency and Robustness Evaluation

To measure computational efficiency, we evaluate the impact
of cluster numbers and menu length on running time. We
run the experiments with different cluster numbers and menu
lengths 10 times each, and plot the mean computation time in
Fig. 15. It is obvious that the running time increases with the
increase of cluster number and menu length by a superlinear
speed due to the complexity of mixed-integer programming.
Nonetheless, even with 15 clusters and a menu length of
12 (indicating 3 hours of contract extend period), the price
menu can be solved within 6s, demonstrating our approach’s
efficiency.

Fig. 16 illustrates how the number of clusters and the menu
length influence EVCS’s utility: the revenue first increases and
then is stable as both parameters’ increase. The number of
clusters is more significant in terms of improving the revenue.
As for the menu length, when it is larger than 8, the revenue
doesn’t grow monotonically but fluctuates instead.

Furthermore, we evaluate the price menu’s robustness
against electricity price prediction errors. We consider three
variants of error distribution, i.e., uniform distribution,
Gaussian distribution, and Laplace distribution with mean

relative error (MRE) ranging from 3% to 9%. Fig. 17 illus-
trates the robustness of our price menu. The loss of EVCS’s
revenue is no larger than 20% even with the worst prediction
results.

VII. CONCLUSION

In this paper, we design the optimal deadline differen-
tiated dynamic price menu with complete and incomplete
information. We also propose a systematic method to esti-
mate the utility and demand information for a large population
of EVs based on EV behavior to aid the price menu design
in incomplete information. The numerical study demonstrates
our designed price menu regarding revenue, computational
efficiency and robustness.

Our work can be extended in various interesting directions.
For example, it is interesting to jointly consider the price menu
design and coupled charging control operation among differ-
ent EVs. It is also interesting to exploit other grouping criteria
to achieve a more refined price menu and provide better dif-
ferentiated services to EVs. Moreover, it is also important to
study how to improve the robustness of the price menu for
extremely large EV populations.

APPENDIX

A. Proof for Theorem 3

For any price menu M with choices (k, Pk). EV’s optimal
choice k∗ should bring it no smaller utility than choice (0, P0):

Ui,k∗ − ξ−1Pi,k∗Di − k∗Cdelay ≥ Ui,0 − ξ−1P0Di. (36)

By comparing with our constructed price menu in (10), we
can conclude that when ε −→ 0, for any menu, no matter what
the EV’s optimal choice under this menu is, the corresponding
price of our constructed menu is always more expensive. It
indicates that the revenue of our constructed menu is no less
than that of any menu, and thus the optimality holds. This
concludes our proof. �

B. Proof for Theorem 4

By Theorem 2, we know that any optimal price menu will
lead to the same EV choice as our constructed price menu.
Thus, we only need to focus on the constructed price menu.

With our price menu, the EVCS should decide the optimal
k∗ to maximize its revenue, i.e.,

k∗ = arg max
k

P0 − ξ(Ui,0 − Ui,k + kCdelay)

Di
(37)

= arg max
k

ξ(Ui,k − kCdelay) − E(ti, k, Di) (38)

= arg max
k

Qi,k + Ri(k). (39)

We can observe that the optimization objective has been
transformed into social welfare.

Further, we know that EV’s utility is linear in ε. And ε

approaching 0 leads to zero consumer surplus of EV, inducing
the first order price discrimination. �
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C. Models of the Opportunity Cost and Overstay Fee

We define the opportunity cost Copp as the marginal charg-
ing utility from a single charging port during 	t period.
Specifically:

Copp = ηpmax	t(P − c), (40)

where η denotes the busy rate of the EVCS, which is defined
to be the ratio between charging demand and charging capac-
ity during 	t period. When η −→ 0, it means that there
are very few charging demands, whereas when η −→ 1, it
means that the EVCS is very busy, i.e., nearly all of the
charging facilities are occupied. pmax denotes the maximal
charging rate of the EV (KW), 	t is the duration of a sin-
gle time slot (h), P denotes the unit charging fee ($/KWh),
and c denotes the unit electricity purchasing price from the
grid ($/KWh). Therefore, pmax	t(P − c) stands for the max-
imal utility of serving a new EV during 	t period. The
busy rate η also implies the probability that the charging
port can be occupied during 	t period. Hence, multiplying η

means the revenue can be earned with probability η. Therefore
Copp = ηpmax	t(P − c) + (1 − η) × 0 = ηpmax	t(P − c).

To see how the opportunity cost is covered, we can define
the unit overstay fee in the corresponding 	t period as follows:

Cdelay = η̂pmax	t(P − ĉ), (41)

where η̂, ĉ denote the EVCS’s estimations to the busy rate η

and electricity price c, respectively.
During the process of serving EV i with menu choice k∗

i ,
the unit revenue 	Ri during 	t period for EVCS is as follows:

	Ri = (Pk∗
i
− c)ξ−1	Di + Cdelay − Copp (42)

= (Pk∗
i
− c)ξ−1	Di + pmax	t(η̂(P − ĉ) − η(P − c)), (43)

where Pk∗
i

denotes the charging price, ξ−1 represents the
charging efficiency, 	Di denotes the charging amount for EV
i during 	t. Therefore, (Pk∗

i
−c)ξ−1	Di represents the charg-

ing service revenue from the difference between charging price
income and electricity purchasing cost, Cdelay represents the
unit overstay fee income, and Copp denotes the unit oppor-
tunity cost. We assume the EVCS can accurately predict the
future busy rate η and electricity price c based on historical
information. Therefore, when η̂ = η, ĉ = c, the designed
overstay fee can perfectly cover the opportunity cost, i.e.,

pmax	t(η̂(P − ĉ) − η(P − c)) = 0. (44)

Note that, even without the perfect prediction, as long as the
EVCS predictions are unbiased, the overstay fee can cover the
opportunity cost on expectation, i.e.,

Eη,c
(
pmax	t(η̂(P − ĉ) − η(P − c))

) = 0. (45)

�

D. Utility Function and Demand Estimation Error

Each estimated EV information pattern is represented by a
tuple with 4 elements, i.e., {α, β, σ, D}, where α and β are the
parameters to characterize this EV pattern’s quadratic temporal

Fig. 18. Estimation Evaluation of α and β.

Fig. 19. Estimation Evaluation of σ and D.

utility function. σ and D denote the population proportion and
charging demand of this EV pattern, respectively.

• Estimation accuracy for α and β: In Fig. 18(a), for a given
groundtruth utility function (illustrated by the green line),
we visualize the lower and upper bounds of the biased
utility function with 3% and 6% input parameter errors
(e.g., the income, daily travel distance) . It is clear that,
even with 6% error, the difference between the biased
utility function (illustrated by the orange lines) and the
groundtruth is not very significant. The bias can be fur-
ther reduced after the information clustering. We conduct
200 estimations with 10% input parameter errors, and the
resulting estimation errors of α and β are visualized in
Fig. 18(b). We find that the errors of α and β can be well
bounded by 0.2% and 1%, which are significantly smaller
than the original 10% input parameter error. This implies
that the clustering process contains the error propagation.

• Estimation accuracy for σ and D: Fig. 19 illustrates
the errors of the population proportions and the charg-
ing demand of different patterns. These patterns are
ordered in terms of the charging demands ascendingly.
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We find that population proportion errors of all patterns
are bounded by 5%. Further, the charging demand errors
of the first seven patterns are bounded by 1KWh, and that
of the last pattern is bounded by 4KWh. Since the charg-
ing demand of the last pattern is 77KWh, the relative error
is within 5.2%. �
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