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Vehicle emissions pose a significant challenge for cities worldwide, yet a com-4

prehensive analysis of the relationship between mobility metrics and total ve-5

hicle emissions at a high resolution remains elusive. In this work, we introduce6

the Mobile Data Emission System (MODES), a pioneering framework that in-7

tegrates various sources of individual mobility data on an unprecedented scale.8

Our model is validated with direct measurements from a network of high-9

density sensors analyzed before and during the COVID-19 pandemic shelter10
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in place orders. MODES is used as a laboratory for scaling analysis. Informed11

by individual trips, we estimate the traffic CO2 emissions at a metropolitan12

scale with a combination of 3 accessible metrics: vehicle kilometers traveled13

(VKT), congestion levels, and vehicle efficiency. Given their ranges of varia-14

tion, VKT has the greatest role in amplifying vehicular emissions up to 500%,15

followed by vehicle efficiency that would range 20% to 300% of the average pas-16

senger combustion vehicle. In comparison, congestion amplifies vehicle emis-17

sions of individual travels up to 50%. We confirm that cities in the Bay Area18

with high population density are consistently characterized by low per-person19

VKT. Nevertheless, high population density comes at the expense of increased20

congestion. Since VKT is the governing factor, overall densifying of the urban21

landscape reduces transportation emissions despite its impacts in congestion.22

Transportation is a sector that is difficult to decarbonize while it represents 29% of the23

greenhouse gas (GHG) emissions in the United States (1). Policy efforts to date have focused on24

improving vehicle efficiency, alternative fuel technologies, and expanding the range of electric25

vehicle batteries. Despite the progress in supply-side solutions, per-capita vehicle kilometers26

travelled (VKT) and transportation CO2 emissions have been in the rise in many regions world-27

wide (2, 3). Curbing emissions in the transportation sector has proven to be highly challenging28

compared to the other sectors (4–6). Confinements during the COVID-19 pandemic bent the29

emission curves with estimated reductions of 12.9% in United States and 7% worldwide during30

2020, mainly due to social and travel behavior changes (7). Highway emissions are estimated31

to have decreased by 48% in the Bay Area where strict confinement policies were adopted (8).32

Even though the emissions rebounded by 2021, there are still lessons to be learned from the33

changes in this period.34

Current transportation emission inventories of cities rely on fuel sales data aggregated over35
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large regions and time frames. These methods have been shown to underestimate on-road emis-36

sions by 28.1% on average in US cities (9). Sensor-aided monitoring approaches are gaining37

importance. Among these methods, highway sensors (10,11) are used to get vehicle count esti-38

mates on roads. Networks of high-density sensors together with Bayesian inversion methods are39

reported to attribute emissions to the source activities (i.e. transportation, home heating, indus-40

try) (12, 13). While monitoring methods are crucial in constructing and validating data-driven41

emission inventories, there are two shortcomings that call for individual mobility estimates.42

First, sensors are expensive to deploy and maintain over large regions to directly inform city43

inventories. Second, sensor based estimates are not capable of attributing emissions to the ori-44

gin and destinations associated with the travel activity. The later is particularly important for45

transportation planning authorities for measuring carbon emissions by source activity at urban46

scale to achieve decarbonization goals (14).47

With the increasing data availability, quantification methods combining various data sources48

on travel demand and road network conditions are gaining importance. These methods can be49

further divided into three groups based on the mobility data being used: a) local traffic volumes50

(?, 15, 16), b) aggregated origin-destination (OD) flows (17), and c) individual mobility data51

(18–20). To understand the difference between these three approaches, we need to differentiate52

the outputs of these models as local emission estimates and emission production estimates.53

Local emission estimates quantify emission within a region, route or road segment. Methods54

using local traffic volumes estimate the emissions in the place where they occur. While these55

models provide accurate estimates locally, they lack information regarding the traveler, source56

and destination of the trip. This information holds significant importance for policy-making and57

demographic analysis. Emission production estimates quantify CO2 emitted across the travel58

network by the origin of the individual travelers and link them to their locations of residence.59

This type of quantification is possible with individual mobility data or OD flows.60
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As vehicle emissions depend on the interplay between the urban structure, travel demand,61

vehicle efficiency, and road conditions, the task at hand is to leverage mobility science to62

inform climate change mitigation strategies. Mobility science approaches utilize large scale63

data sources that are passively collected from information and communication technologies.64

These data sources are used to compare and understand differences among cities (21, 22). To65

that end, they model urban or mobility phenomena as aggregated properties that are functions66

of a system’s variables. For example, studies on multiple cites have uncovered scaling laws67

relating population to distribution of facilities and socioeconomic activities at macroscopic68

scale (21, 23–27). These studies have reported that the more populated the cities are, the more69

efficient they are in their per capita energy consumption (23, 24), or that professional diversity70

and the productivity of cities can be modeled as social networks embedded in space (28). In the71

mobility front, universal laws govern the collapse of traffic networks (29) or traffic management72

strategies via smart phone applications (22).73

This work utilizes mobility science methods in the analysis of vehicle emission estimates.74

With this in mind, we present MODES, a portable framework to estimate vehicle emissions75

using various individual data sources. To that end, we integrate, at unprecedented scale, call76

detail records (CDR’s) for the Bay Area (30), aggregated Location Based Service data from77

SafeGraph (31) and Uber Movement Speeds data (32).78

To validate our model, we utilize data from both before and after the COVID-19 shelter-in-79

place (SIP) orders in the San Francisco Bay Area. SIP orders significantly altered individuals’80

travel behavior, making it an ideal opportunity to assess our model’s performance under differ-81

ent conditions. Therefore we performed estimates for these two periods separately. We estimate82

the travel behavior and the road congestion for six weeks before and after the SIP orders, im-83

plemented on March 16th 2020. We combine the traffic estimates with the StreetSmart fuel84

consumption model (33, 34) and convert these values to tail-pipe CO2 emissions. We compare85
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our estimates with direct CO2 sensor measurements and a hybrid model of highway vehicle86

counts and emission factors.87

To our knowledge, this is the first study that utilizes individual mobility extracted from88

mobile phones in data-driven emissions estimates. This allows us to link CO2 emissions to89

the home locations of travelers. We investigate the interplay of population density and road90

network structure on individual travel demand and their associated emissions. We find that91

cities with high population density are characterized by low per-person VKT, low per-person92

CO2 emissions, and high congestion levels.93

Analyzing individual trips at varying percentages of congestion, we uncover a bottom-up94

law that incorporates VKT, congestion, and vehicle efficiency to estimate emissions from mil-95

lions of individual trips. The parameters we utilize are not specific to a particular study region,96

allowing our results to be applicable to trips in any city. For a given fleet of vehicles, VKT97

emerges as the primary contributor to amplify emissions. Current scaling laws depend on top98

down estimates of the form tCO2 ∼ Nβ , where N is the population size and its emission99

production ins tons (tCO2) (35). Our approach is an advancement over the existing laws by100

incorporating parameters directly effecting the vehicular emissions while maintaining the gen-101

eralizability of the findings.102

A critical step is the validation of our estimates. Existing data-driven emission estimation103

frameworks are validated with other data-driven emission inventories. These inventories often104

have similar underlying assumptions. In contrast, to validate and test the robustness of MODES,105

we used completely independent measurements from the Berkeley Air Quality and CO2 Net-106

work (BEACO2N ). We performed a comprehensive validation and calculated statistics in107

regions with different characteristics (ie. highway length, residential road length) and resolu-108

tions (ie. from 1 to 25 km2 spatial resolution, averaging from 1 to 5 measurement days). We109

validated the results from before and COVID-19 separately ensuring accuracy under different110
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demand levels. We found that at a spatial resolution of 9 km2 and 5 days of measurement, the111

median difference between MODES and BEACO2N is 32 %.112

The main contributions of our work include:113

(1) We establish a scaling law that quantifies the relationship between emissions, VKT, con-114

gestion, and vehicle efficiency, utilizing easily available metrics in numerous cities world-115

wide. This approach greatly simplifies the estimation of emissions.116

(2) Scaling analysis, highlights the VKT as the main parameter influencing emissions. Build-117

ing upon this universal finding, we quantify the interplay between emissions VKT, con-118

gestion, and vehicle efficiency. This advancement enhances our understanding of the119

complex dynamics influencing emissions in transportation systems.120

(3) MODES represents a significant advancement over local emission estimates by quantify-121

ing emissions at the individual traveler level. This capability allows MODES to directly122

inform policy decisions regarding vehicle electrification, equity in air pollution exposure,123

and land use planning.124

(4) Unlike other models that lack validation or are validated across large metropolitan re-125

gions, MODES stands out by being validated through direct measurements of CO2 emis-126

sions at various spatial resolutions. This validation process ensures the accuracy and127

precision necessary to meet the requirements of individual policy-making use cases.128

(5) MODES is the first study utilizing state-of-art travel models informed by passively col-129

lected mobile phone activity data in emissions estimates.130
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Figure 1: Travel demand and congestion levels before and during shelter-in-place orders.
Congestion level is defined as percentage change in travel time compared to the free-flow travel
time. Congestion levels are calculated using hourly average speeds for each road segment in the
network. (A) Weekday travel demand extracted from CDR and LBS data, aggregated hourly.
(B) Travel demand between i (origin) and j (destination) grouped by Haversine distance. Con-
gestion level in the road network on Monday 5PM before shelter-in-place orders (C) and during
shelter-in-place orders (D).

Results131

Congestion estimates and travel behavior132

We characterize the typical weekday travel behavior before and during the shelter in place (SIP)133

orders in the Bay Area road network. All Bay Area counties imposed SIP orders starting on134

March 16th, 2020. We defined the before SIP period as six weeks until this date and during SIP135

period as six weeks following this date. The primary purpose of utilizing the post-COVID-19136

period is to conduct a comprehensive validation process.137

The travel demand used in this work is based on the urban mobility model TimeGeo, a138

simulation of individual mobility using CDRs (36). The individual mobility patterns of the139

simulated users align well with the 2010–2012 California Household Travel Survey (CHTS)140

and the 2009 National Household Travel Survey (NHTS) (30). Travel surveys, while valid,141

are costly methods of data collection that only capture a limited portion of the population and142
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may not encompass all individual trips undertaken. Hence TimeGeo presents a comprehensive143

and valid estimate of the individual travel demand. This model represents the typical weekday144

travel behavior for the before SIP period. To extend this model to each day of the week for145

before and during SIP periods, we used SafeGraph data. We multiply the hourly travel demand146

between each origin and destination pair with a scaling coefficient retrieved from SafeGraph147

(see Supplementary Notes S2). To use the resulting travel demand for vehicles, the standard148

is to estimate vehicle trips from the total trips by scaling total trips with the vehicle usage rate149

of the home census tract (see Supplementary Notes S3). The resulting vehicle demand is 9.6150

million vehicle trips out of 13 million passenger trips within the Bay Area for a typical weekday.151

The hourly and weekly distribution of the weekday trips for before and during SIP is shown in152

Fig 1A. We find that due to the SIP orders the total number of trips decreased by 52% and153

59% during the morning peak. In Fig 1B, we show the number of trips between each origin154

and destination pair grouped by the distance. The variations in number of trips are due to the155

differences in travel demand during different times of the day. Interestingly, while the number156

of trips decreased in total, there was an increase in the share of trips above 150km. The total157

vehicle kilometers travelled (VKT) decreased by 44% from 234M km/day to 131M km/day.158

The comparison of these findings are consistent with the report of the Bureau of Transportation159

statistics COVID-19 travel behavior changes (37).160

We perform road network analysis within a bounding box formed by the locations of mo-161

bile phone users. We modeled the San Francisco Bay Area road network as a weighted, directed162

graph where edges represent the road segments and the edge weights are the speeds, travel times163

and road lengths. Road geometries are retrieved from Open Street Map (OSM) and correspond-164

ing hourly speeds are provided by the Uber Movement Speeds API. Travel time on each edge is165

calculated using the road geometries and hourly speed values. We identified the free-flow speed166

as the 85th percentile of all speed values observed on a road segment during a week. Then the167
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congestion level in a region is defined as the percentage change in the travel time in comparison168

with the free-flow travel time. Most of network-wide congestion occurs at 5 PM before the169

SIP orders and ranges between 30 and 37% depending on the day of the week. During the SIP170

orders, the 5PM’s network-wide congestion dropped to 14 to 19%. The study region and the171

congestion level per road segment is illustrated in Figures 1 C and D.172
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Figure 2: Vehicle Fuel Consumption Model (A) Validation of the StreetSmart fuel efficiency
estimates with Autonomie vehicle fuel consumption simulations. The fuel economy estimations
use EPA’s FTP-75 (urban) and HWFET (highway) standard speed profiles. (B) Variations in on-
road fuel economy by manufacturers reported fuel economy in the same analysis period. The
differences between the actual fuel economy and the manufacturers’ value can be as high as
70%, as shown in the distributions, illustrating the impact of the road network traffic. Due to a
decrease in congestion, before SIP’s order trips have a 6-7% lower median fuel efficiency than
the during SIP order

Vehicle efficiency variations in traffic173

In this work, we employed the StreetSmart (33) model to estimate each trip’s fuel consump-174

tion. This model requires the speed profiles on the road segments and accounts for the vehicle175

efficiency variations under different speed and acceleration levels. The model requires four176

variables as shown in Equation 1.177

FCgal = k1Tidle + k2Tmove + k3

∫
x

|a|dx+ k4L (1)
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The first term accounts for the idling energy consumption; the second term accounts for the178

energy depending on the time of the movement; the third term accounts for the acceleration and179

deceleration over a given distance, and the final term accounts for the energy use for the distance180

traveled. The k’s in the model are vehicle efficiency-specific multipliers. The model has over181

96% accuracy in tests performed with vehicles GPS coordinates and output fuel consumption182

values read from on board diagnostics (OBD-II) devices. To use this model for any vehicle183

in the Bay Area fleet, we calibrated the vehicle efficiency constants and further validated the184

calibrated model. For calibration of the constants ks, we used fuel efficiency values provided185

by the Environmental Protection Agency’s (EPA) 2021 report (38) and FTP-75 speed profiles186

used in EPAs urban fuel economy testing procedure (39). (see Supplementary Notes S4 for a187

list of calibrated coefficients). We validate our calibration by comparing them with the results188

of the software Autonomie, a fuel consumption simulator developed by the Argonne National189

Laboratory (40). We tested the model for five vehicles in the software under EPA’s FTP-75 and190

HTP-75 drive cycles (see Supplementary Note S4). We recorded the mean absolute error of all191

tests, obtaining 5% on average, as shown in Fig. 2A.192

To use this model to estimate city-wide fuel consumption, we assigned each vehicle trip a193

route on the network, based on the edges with the shortest travel time. Each trip’s travel time,194

speed, and distance is calculated from the edge weights. The idling time is imputed only if a195

stop sign, traffic light, or crossing is present at the nodes traversed. The acceleration variable196

in the model is approximated since we do not have high-resolution speeds along the edges. We197

use constant speeds along the roads as extracted from the Uber Movement Speeds. We then198

included the acceleration/deceleration if a stop or a speed change between edges is present (for199

details see Supplementary Notes S5). For example, on an average Monday, we have 9.6 million200

daily trips before SIP orders and 4.2 million distinct origin and destination pairs. We assigned201

5.3 million distinct routes and recorded associated speed profiles.202
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The fuel consumption of all the routes are calculated for different manufacturer-reported fuel203

economies with the calibrated StreetSmart model. Due to traffic conditions, the average of our204

estimated fuel efficiency of the vehicles varies from the manufacturer-reported fuel economy205

by 17%, and the differences in the actual fuel economy of the same car can be as high as 70%206

as it is shown in the distributions of Figure 2B. These variations illustrate the impact of the road207

network traffic on the actual vehicle efficiency. We observe that trips before the SIP orders have208

a 6-7% lower median fuel efficiency than the trips during the SIP orders. The difference arises209

from the less congested states of the roads.210

Emissions comparisons with sensor-based estimates211

In urban areas, disagreement between on-road emission inventories can be as large as 50-250%212

(41). The uncertainty arises from the model assumptions and differences in underlying data213

sources such as vehicle efficiency, emission factors, magnitude and spatial distribution of VKT,214

and travel speeds. In MODES, emissions are calculated only for the personal vehicles for an215

average Bay Area vehicle with 25 mpg efficiency (42). Trucks fuel consumption is not included216

due to a lack of data on heavy-duty vehicles’ temporal and spatial distribution. In order to217

get emissions, fuel consumption estimates for the personal vehicles are then converted to CO2218

emissions assuming 8,887 [g CO2] is emitted per gallon of fuel burned (43) (See Supplementary219

Notes S8).220

We compared our resulting emission estimates with the direct measurement of the Berke-221

ley Air Quality and CO2 Network (BEACO2N ) and also with the Emissions Factor model222

(EMFAC2017) of the California Air Resources Board (CARB) (44) applied to vehicle flows223

acquired from CalTrans Performance Measurement System (PeMS) (45). After COVID-19 SIP224

estimates are mainly used for validation purposes, making the results robust to different travel225

demand levels within the network.226
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Figure 3: On-road vehicle emissions validation. Comparison of PEMS + EMFAC estimates
and MODES on I-80 highway for (A) an average weekday before the SIP order and (B) for an
average weekday during the SIP period. (C) Percentage of total emission estimates for each road
class before and after SIP estimated by MODES. Highways have the largest share of emissions
both before and after SIP. (D) Comparison of hourly PEMS + EMFAC and MODES emission
estimates on 4 highway segments before SIP. The best-fit line y = 0.8x (blue) and y = x (gray)
are shown. (E) Comparison of hourly PEMS + EMFAC and MODES emission estimates on 4
highway segments after SIP. The best-fit line y = 0.7x (blue) and y = x (gray) are shown. (F)
Highway segments used in part D.

The EMFAC2017 model provides emissions factors for each vehicle class and speed level.227

However, getting the aggregate emissions for road segments requires further knowledge of ve-228

hicle counts and speeds. We followed the method presented in Fitzmaurice et al. (42) and229

combined the emissions factors with the vehicle count, truck percentage, and speed data ob-230

tained from PeMS. The PeMS data is only available for highways. Therefore, we first validated231

our results only on highways which account for 73% and 76% of all vehicle emissions before232
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and during the SIP. Selected highway segments; I580 I80, I880 and I980 are presented in Figure233

3. These segments were selected due to the differences in length and average truck percentages.234

We observe that our estimates are within 35% of the PeMS-EMFAC2017 model for daytime235

emissions between 7 am and 9 pm. Before and during SIP emission comparisons for a typical236

weekday for a 5 km stretch of the I80 are presented in Figures 3 A-B. Emissions comparisons237

for the rest of the highways are provided in the Supplementary Figure S9.238

Figure 4: Comparison of MODES CO2 emissions estimates with BeaCO2N measurements.
(A) Comparison under different spatial aggregation units. (B) Comparison under different tem-
poral aggregation units. The difference between BeaCO2N minus MODES is calculated for
9 km2 grids. (C) Comparison in cells with different highway lengths. As the highway span
increases, our estimates overpredict. (D-G) Local emission estimates within the BEACO2N
domain (Gray line indicates the region that contains the largest 40% of the total network influ-
ence). Emissions are spatially aggregated into 9 km2 cells and temporally aggregated within the
6 weeks before and after the SIP analysis period. Quantile breaks are adopted to demonstrate
the spatial distribution of emission hot spots.
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To evaluate the performance of MODES in non-highway emissions, we compared the results239

with the BEACO2N estimates. Comparison of data-driven models with the direct emissions240

estimates are expected to have differences as there are uncertainties involved in both processes.241

The CO2 concentration measurements are recorded by a BEACO2N ’s dense network of sen-242

sors and attributed to a source using a Bayesian inversion method (8). We performed analysis243

on transportation emissions in the 40% CO2 influence region (42), shown in Figure 4 (D-F).244

Percentage difference is calculated as (CO
BeaCO2N
2 −COMODES

2 )

CO
BeaCO2N
2

.245

Hourly airflow models at high spatial resolution can vary significantly due to uncertainty246

in wind speed and direction (46). In order to find a good validation resolution, we tested the247

difference between BEACO2N and MODES estimates at varying aggregation levels and high-248

way lengths. Results are shown in Figure 4. We first aggregated the transportation emissions249

zones from 1 to 25 km2 areas to account for the possible errors in the airflow direction model.250

Spatial aggregation significantly decreased the range and median of the difference between the251

two models up to 9 km2. We further aggregated the results temporally for 9 km2 cells. We take252

the average of the weekdays available for each measurement hour based on the sensor measure-253

ments. Temporal aggregation further reduced the range and median of the difference. Finally,254

we found that MODES underpredict regions with fewer highways.255

The spatial variation of the emissions for the average 3 PM travel behavior before and after256

the SIP is illustrated in Figure 4 D-G. The results shown are for 9 km2 cells and aggregated tem-257

porally as described above. The cells are colored based on the quantile breaks of each model258

and measurement period. When we compare Figure 4 D and E, MODES and BEACO2N have259

a similar spatial distribution of the emissions. MODES generally underpredict. The under-260

prediction of MODES is expected since we do not have heavy-duty vehicles (HDV). Our high261

prediction in highways could be due to the high flow values assigned to the highways in the262

vehicle assignment method. When we compare Figs. 4 D and F, and Figs. E and G, we observe263

14



that the model captured the decrease in emissions during the SIP order.264
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Figure 5: Scaling of on-road vehicle emissions (A-B) Cities in the analysis region are clustered
into four groups (different colors) based on population density and per-person VKT within the
travel network. In cluster 2, we can observe that low VKT / person uniquely characterizes
high population density. (C) The power-law relationship between the local population and the
network-level vehicle emissions produced in the Bay Area. A super-linear scaling with βeff =
1.12 ± 0.13 is found. (D) The linear relationship between the total VKT by the city residents
and total emissions produced by them. The inline plot shows the distribution of the slope
(gCO2/km) per city, and the median is at 209 gCO2/km. (E) Emissions of trips at the different
congestion levels, keeping everything else (stop time, acceleration, distance) constant. Each line
is Eq. 3 (F) Emissions per trip by the law presented in Eq. 4 with a vehicle efficiency of 25
mpg (10.6 km/l ). The region within the dotted lines is the one standard deviation confidence
interval.

Scaling of vehicular emissions265

This section investigates the relationship between vehicular emissions and urban metrics. We

analyze the role of urban form and travel patterns. Scaling laws in urban systems have been
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studied widely in various domains. Response of the quantity Y to a change in the independent

variable, X, is represented in the form of a power law:

Y = αXβ (2)

Data from cities present scalings of the form of Eq. 2 where X is population and Y various266

socio-economic indicators (23, 24, 28). In the urban domain, scaling of emissions over a region267

with its population size has attracted significant attention (47, 48). Yet no consensus has been268

reached on the relationship. The value of the exponent β differs for the same data set with dif-269

ferent urban borders (35,49,50). The presence of noise and lack of enough orders of magnitude270

on axes can pose a problem in establishing a significant scaling relationship (51).271

Street length, congestion, and VKT are other scaling relationships explored (48, 52). Yet272

these existing studies lack reliable emission estimates or the resolution of the data is too low to273

establish a relationship with trips over the road networks.274

We investigate scaling relationships between the daily emissions (gCO2/day) production275

within the network in relation to vehicle kilometers traveled (VKT) and population. The daily276

emissions are calculated based on the home locations and the trips extracted from the TimeGeo277

model (30). CO2 emission production by travelers across the Bay Area are aggregated into the278

home cities as defined by the US Census Bureau. The CO2 emission production calculations279

were made based on an average vehicle efficiency of 25 mpg in the Bay Area.280

To calculate the local scaling exponent, we generated scaling tomography plots suggested281

by Barthelemy et al. for noisy data (51) (see Supplementary Figure 5A). This method allows us282

to identify threshold effects and multiple scaling exponents that are not detectable by classical283

least squares fitting. A super-linear scaling with βeff = 1.12 ± 0.13 is found between the city284

population and the CO2 emissions produced by them as shown in Fig 5 C.285

As shown in Fig. 5D, we find a linear relationship between the total vehicle kilometers286
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traveled (VKT) and the total CO2 emissions produced by the city residents. We observe a clear287

linear relationship and no threshold effect in the tomography plots (see Supplementary Figure288

5B). The slope of the best-fit line is the emission efficiency (gCO2/km) of a trip and it varies289

among different cities. We find 209 gCO2/km as the mean emission efficiency of the cities in290

our domain and the value can range between 175 to 225 gCO2/km. The difference between291

the cities arises from the different congestion levels experienced and the stop and go traffic.292

We also analyze the population density as a function of V KT/person.Cities cluster into293

four groups within the Bay Area travel network in the analysis region, as shown in Fig. 5 A-B.294

K-means clustering is used to generate the clustering. We observe that high population density295

is associated with low VKT per person, but in low population density zones, VKT per person296

varies. Also, high population density results in high congestion levels experienced by their297

residents (see Supplementary Figure 6).298

To quantify the impact of congestion and VKT, we further check emissions at the trip level

for the same route at varying congestion levels. Figure 5E illustrates 1, 500 trips where each dot

represents the trip’s emissions for a given congestion level. The best fit of gCO2 emissions (Yi)

of trip i is

Yi = αi exp (βcX) (3)

with βc = 0.004±0.001 for all trips. At the same congestion level, emissions for a trip can vary299

significantly due to the VKT. The route difference presents itself in the intercept αi, of each300

trip’s emissions best-fit line. The αi is, in turn, a function of the VKT and the fuel economy301

(FE). For trips with a 25 mpg vehicle, αi = γV KTi, and γ = 190.6± 33.3[gCO2/km]302

Figure 5F shows Eq. 3 divided by V KTi, where 89.7% of the trips lie within the confidence303

interval. The trips outside this region are short in distance and have much longer idling times304

per VKT. Supplementary Figure 8 illustrates the distribution of VKT, idle time per VKT, and305

acceleration per VKT for the trips outside and inside the confidence interval. We show that the306
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trips outside the confidence interval have a mean idling time per VKT of 60 seconds, whereas307

this value is 18 seconds for the rest of the trips.308

This relationship can be generalized to any fuel economy when we write αi as a function309

of the manufacturer’s reported fuel economy of the vehicle. Supplementary Figure 9 illustrates310

that the best fit for this relation is γ = 2006.53 ± 314.32[gCO2/l]/FE where FE stands for311

the fuel economy in [km/l]. We get the general expression per trip emissions:312

Yi =
2006.53[gCO2/l]

FE[km/l]
V KTi exp

βcX (4)

The median vehicle travel distance in the Bay Area is 15 km, and 95% of the trips are313

below 70 kms. This means VKT can vary emissions by 10% to 500%. Vehicle efficiency314

approximately ranges between 10 mpg to 119 mpge (mpg equivalent for electric vehicles), that315

would change the estimates of Eq. 4 from 20% to 300% of the mean efficiency for a passenger316

combustion vehicle. Varying the congestion level from free-flow to 100% can increase the317

emissions by 1.5 times or 50%. However, 100% congestion is rarely experienced, 95% of the318

trips in the Bay Area experience congestion levels below 62% which corresponds up to 28%319

enhancement of vehicular emissions.320

Equation 4 is derived at the individual trip level, independent of specific city characteristics.321

While the above analysis is conducted for the Bay Area travel network, the equation can be322

universally applied to any city. The availability of VKT, congestion, and efficiency parame-323

ters enables this equation to provide a robust and straightforward estimation of transportation324

emissions with high spatial and temporal granularity.325

Moreover, the MODES framework can be replicated to conduct in-depth analyses and reveal326

location-specific emission trends. The mobile phone activity data used in MODES is readily327

available in modern cities, and average road speeds are obtained through the Uber Movement328

Speeds API. While we utilize average speed data, which is more widely accessible compared to329
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Figure 6: Spatial analysis of the CO2 emissions in the Bay Area. (A) Comparison of total
emissions produced by the county subdivision residents before SIP and the local emissions
within the county subdivisions. The 10 regions with the most daily total emissions produced
before shelter in place are shown (dark-yellow bar). (B) Per person emissions produced and
its spatial variation by county subdivision. (C) Change in local emissions before and after SIP
decisions and its spatial variation. (D) Total CO2 emissions by trip distance in the periods of
analysis. The 20-80 km range is where the majority of emissions occur. An important reduction
of emissions is observed in this distance range. The SIP decisions did not affect the emissions
of the long-distance trips.

instantaneous speed values, our validation process ensures the reliability and robustness of the330

obtained results.331

Spatial analysis of on-road emissions and air quality disparities332

Estimated emissions can vary noticeably for the same region depending on the calculation333

method. Transportation emissions can be either attributed to the regions where they are emitted334

(Scope-I) or to the region that the transportation activity started (Scope-II). The former is well335

quantified by regional monitoring of emissions and it is useful in understanding exposure. From336

an emission mitigation perspective, the latter is crucial to make policies directly targeting high337
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emission-producing driver groups, their routes, and activities.338

We compared the Bay Area county subdivisions in term of the daily CO2 emissions (tCO2/day)339

emitted locally in the region and the daily CO2 emissions produced (tCO2/day) by the resi-340

dents anywhere within the network. Vehicular emissions increase the formation of smog and341

gasses harmful to respiratory health. Therefore, we introduce an equity perspective to the anal-342

ysis by demonstrating the disparities between local emission exposure and emissions produced.343

San Jose has the majority of emission production. Its emission production is about 2000344

tones higher than the local emissions in the region. On the other hand, Oakland, San Fran-345

cisco, and San Mateo have more local emissions exposure than the emissions produced by their346

residents. Particularly in Oakland, local emissions are about twice its emission production.347

In Figure 6B, we show the spatial distribution of the emission production per capita. San348

Francisco, Oakland, Berkeley, Alameda, San Rafael, and Novato have the lowest emission pro-349

duction. Lower emission production of the mentioned regions can be attributed to the proximity350

of San Francisco, where most employment and leisure activities are present. As the distance to351

the activity center increases, the emission production per capita increases.352

SIP orders decreased local emissions significantly. However, the spatial distribution of this353

change is not uniform as shown in In Figure 6C. The rural areas did not benefit from the emis-354

sion reduction of remote work as much as employment centers like San Francisco and Sunny-355

vale. Interestingly East Bay county subdivisions Oakland, Hayward, and Fremont, experienced356

less reduction than Marin County subdivisions of San Rafael and Novato.357

When we analyze the emissions over trip distances, we find that a 44% decrease in the VKT358

resulted in a 47% decrease in the transportation emissions in the Bay Area. Comparing the359

trips with different travel distances in Figure 6D, we observe that trips between 20km to 80km360

are responsible for most of the emissions across the travel network. Electrification of the trips361

at this range can decrease tail-pipe emissions significantly. An average electric vehicle battery362
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with 135km range can provide enough energy for a round trip for this distance bin.363

Discussion364

This work presents MODES, a data-driven framework for estimating vehicle emissions from365

mobile phone data validated by direct CO2 measurements of the Berkeley Air quality and CO2366

Network (BEACO2N). While both estimates have various sources of uncertainties, they have367

comparable results for 9 km2 spatial aggregation and 5 days of temporal aggregation. MODES368

estimates are lower than the (BEACO2N) estimates, mostly because of our use of average369

passanger vehicles with 25 mpg efficiency and lack of trucks (on average 7 mpg efficiency in370

the Bay Area) in our model.371

Our mobility science informed emissions model is further evaluated against a hybrid model372

developed with highway vehicle counts, highway speeds and truck percentages acquired from373

PeMS highway sensors and emissions factors acquired from the CARB’s EMFAC2017 model.374

Different than the validation with (BEACO2N) data, we used PEMS heavy duty vehicle per-375

centage estimates in MODES. We assigned a percentage of the mobile phone travelers as trucks376

and assumed a 7 mpg efficiency for them. Comparisons of the hourly emission estimates on dif-377

ferent highway segments showed that results of the two model’s are within 35% of each other378

before and during the SIP orders.379

The use of before and after COVID-19 SIP data is crucial for our validation. We show that380

the framework successfully captures the changes in mobility and associated emissions in the381

San Francisco Bay Area six weeks before and during the shelter-in-place order due to COVID-382

19. In our analysis, we show that the work-from-home behavior decreased the total number of383

weekday trips. However, the share of long-distance trips increased. Remote working improved384

the road conditions by lowering daily average network-wide congestion from 28% to 15%. The385

impact of the lowered congestion on vehicle efficiency is captured by the proposed framework.386
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During the SIP, the median fuel efficiency of the trips increased by 6-7% per vehicle type due387

to decreased congestion. Furthermore, we showed that on-road vehicle efficiency can vary by388

70% from the manufacturer fuel economy depending on the vehicle speeds and stops.389

We quantify the relationship between vehicular emissions, congestion, and VKT with Equa-390

tion 4. The importance of the equation lies in the accessibility of the used metrics. TomTom391

Traffic Index (53) provides live and historical congestion values. VKT can be approximated by392

vehicle sensor counts, fuel sales, or surveys and vehicle registrations provides insights on the393

manufacturing fuel economy of the vehicles used in a city. Using Equation 4, we found VKT394

as the main factor affecting emission production for a fleet of vehicles, compared to the effects395

of the VKT.396

Using individual mobility data allows us to relate emissions produced across the network397

to the home locations of travelers. This provides valuable insights into sustainable urban forms398

that local emission measurements can not provide. We observe that cities with high population399

density have lower VKT and CO2 emission production per person. Nevertheless, the congestion400

levels are higher for high population density regions. Considering the relationship obtained in401

Eq. 3, high population density is desirable from a climate change mitigation perspective.402

Another advantage of the use of individual mobility data in the emissions estimates is the403

ability to quantify the disparities between the CO2 exposure vs. its production by different lo-404

cation sources. The ability to capture origin and destination pairs with highest emissions have405

the potential to enrich policy interventions. From an emission reduction perspective, the resi-406

dents of San Jose have the highest total emissions. Therefore, this region should be prioritized407

in mobility decarbonization efforts. From an equity perspective, MODES allows to identify408

the trips responsible for the emissions in a region and guides necessary actions for air quality409

improvements.410

There are various avenues in which this work can be extended. Lack of truck data in our411
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model causes underestimation of the local emissions. For policy evaluation, vehicle efficien-412

cies, flow values, and road network variables (stops, congestion etc.) can be altered to perform413

scenario analysis. For example, it is possible to illustrate local and network-level emission re-414

duction benefits of electric vehicle adoption per driver source. Also, adding trip purposes on415

the current results can reveal patterns of emission intensity from work and leisure trips. Our416

framework does not incorporate the measurement of instantaneous acceleration along the roads417

due to the unavailability of such data. Consequently, there is a possibility of underestimating418

some trip emissions. However, our results still provide valuable insights for comparing trips419

among different individuals. While the inclusion of acceleration data would enhance the frame-420

work, our main contribution lies in the development of an alternative function that relies on421

three macroscopic trip variables: VKT, congestion, and fuel efficiency. This feature enables422

our model to estimate emissions without relying on detailed speed profiles. Despite the ab-423

sence of acceleration data, our validation results demonstrate good comparability with direct424

measurements from (BEACO2N) and EMFAC estimates.425

Methods426

Individual Mobility Model427

Mobile phone activity data and call detail records (CDR’s) have been widely adopted in mobility428

modeling studies. In this work we utilized two datasets developed by mobile phone activity429

analysis: (1) TimeGeo urban mobility model (2) SafeGraph mobility data (31).430

TimeGeo model in the San Francisco Bay Area built and validated against NHTS and CHTS431

(30) for a typical weekday. We adopted the trips in this model as the base scenario for the travel432

behavior before the shelter in place decisions. Each trip is associated with a user ID, home433

census tract for the user, trip purpose, timestamp and origin-destination coordinates.434

To extend this model to the each day of the week for before and after shelter in place de-435
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cisions we followed a simple scaling process using the SafeGraph data. We first extended the436

average weekday behavior before SIP to 5 days of the week. Then a daily-hourly flow change437

as a percentage between each OD is calculated.438

SafeGraph, a data company that aggregates anonymized location data from numerous ap-

plications in order to provide insights about physical places, via the SafeGraph Community.

To enhance privacy, SafeGraph excludes census block group information if fewer than five de-

vices visited an establishment in a month from a given census block group (31). Due to the

aggregation steps towards meeting privacy requirements hourly origin destination (OD) flows

are not provided in any of the SafeGraph data products. We retrieved data from Neighbor-

hood Patterns and Social Distancing Metrics between Jan 1-May 31, 2020. We inferred the

hourly OD flows for each day of the week before and after shelter in place decisions combining

these two datasets. Neighborhood Patterns data is one of the main products of the company

which provides monthly analysis of census block group and point of interest visits. We used

the stops by each hour variable reporting the number of stops starting at each hour through-

out the month for a CBG. Social Distancing Metrics product has been released following the

COVID-19 confinements. For each origin CBG, destination CBG counts aggregated over a day

is provided. We created the hourly OD matrix M as using the daily hourly origin destination

matrix D and the total hourly stops matrix S for each destination as following:

Mi,j,t,d = Di,j,dSj,t,d (5)

Where i’s are origin CBGs, j’s are destination CBGs, t is the hour of the day and d is the439

day of the month. The inferred daily hourly OD flows between CBGs are separated as before440

and after shelter in place flows. The OD flows then averaged for each weekday and hour pair to441

infer a representative behavior.442
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Road Network and Speeds443

We obtain the San Francisco Bay Area road network as a directed graph where each edge is the444

road and each node is an intersection. Road and intersection geometry is acquired from Open445

Street Map (OSM). OSM provides road type, maximum speed and number of lanes associated446

with each road. For the intersections we retrieved traffic signals, stops, crossings, and junctions447

to model the stop and go traffic. To retain this information no simplification is performed on the448

final graph.449

The hourly speed values are retrieved from the Uber Movement Speeds API which provides450

hourly mean speed values of the street segments in several metropolitan areas starting from451

2018. In this project, the data between 06/2019 and 4/2020 is retrieved. Its important to note452

that, Uber Movement API stopped reporting data after 4/2020. Due to Uber’s data collection453

and reporting protocol, we don’t have hourly speed values on all of the streets. Only the road454

segments that attracted enough traffic in each hour are included to protect customer privacy.455

Therefore to get the missing speed values, we applied a K-nearest neighbors (KNN) data impu-456

tation method to have a network with complete information. (see Supplementary Notes S1)457

Fuel Consumption and Vehicle Emissions Model458

Fuel consumption of the trips is estimated with the regression based model StreetSmart. This459

model is developed using the OBD-II and GPS data collected from 600 miles of driving. Au-460

thors included 4 variables in the final model after testing a range of parameters. The final model461

with a mean accuracy of 96% in the tested scenarios is presented in Equation 1.462

The model predicts the fuel consumption in US gallons. Tidle is the stopping time, Tmove463

is the moving time in seconds, a is acceleration in m
s2

integrated over the distance and L is464

the distance driven in km. The k’s in the model are vehicle efficiency specific constants and465

they are calibrated for different vehicle efficiency bins. The model presented is detailed enough466
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to capture the efficiency changes due to the speed variations and stop-and-go traffic. We fur-467

ther validated this model with Autonomie simulations and EPA speed profiles. The results are468

presented in Figure.469

We converted the gallons of fuel consumption to CO2 emissions in grams using the CO2470

intensity of the fuel. We take the fuel density as 0.75 g
ml

and carbon intensity of the fuel by471

weight as 0.86 gC
gFuel

. Carbon is converted into carbon dioxide in the combustion process with a472

weight ratio of 12 to 44.473

CO2 Sensor Measurements474

We use hourly CO2 observations from the Berkeley Air quality and CO2 Network (BEACO2N).475

The CO2 observations are converted to hourly emissions with Stochastic-Time Inverted La-476

grangian Transport (STILT) model, coupled with a Bayesian inversion. (8)477

The inversion process requires meteorology data and prior emission estimates from different478

sources. Prior emissions sources included in the BEACO2N − STILT inversion are home479

heating data distributed spatially according to population density, fuel sales data distributed480

spatially according to vehicle counts (10) and biogenic inventory derived using Solar Induced481

Fluorescence (SIF) satellite data (54). The resulting posterior emissions are stored in 1km2
482

grid cells. Transportation emissions are estimated by subtracting the non-transportation priori483

sources from posterior emissions. BEACO2N − STILT inversion is estimated to be precise484

to at least 30% for a line source (55).485

The influence region of the sensors are the regions that the emissions are likely to be orig-486

inated from. In this work we followed Fitzmaurce et. al. (42) and included the 40% influence487

region in the analysis.488
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