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Supplementary Sections

1 List of variables and notations

Rg Radius of gyration, defined as Rg =
√∑n

i=1
1
n
(li − lh)2, where n is the total

number of visited locations for an individual during a given day, li are the

coordinates in position i, lh are the coordinates of her home, li − lh denotes

the distance of the location li away from home, as illustrated in Fig. 2A in the

main text. Note that the repeatedly visited locations are kept in the calculation

of Rg. To present the distribution of Rg in space before the COVID-19 pan-

demic, as shown in Figs. 1B-D, Supplementary Figs. 3 and 5, we first exclude

the days on which Rg = 0 and then average individual’s daily Rg over the

various data availability periods ranging from one month to 6 months. The

unit of Rg is kilometers.

r Radius of the ring centering at CBD. The internal radius of the concentric

rings from the CBD with width ∆r = 3 km. That is, the first ring covers the

circular region in 3 km distance to the CBD; the second one covers the circular

region between 3 km and 6 km from the CBD, as illustrated in Fig. 2C. The

unit of r is kilometers.

KS(r̂|r0) Kolmogorov–Smirnov (KS) distance between Rg values of the population

residing in the ring at the relative distance r̂ to the CBD and Rg values of the

population in the circle of CBD, as illustrated in Fig. 2C and 2D in the main

text. KS(·) denotes the KS distance that quantifies the statistical divergence

between two groups of data with their cumulative distributions. For a given

city, the relative distance r̂ is defined as the ratio between the radius of the
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ring r and the maximum radius rmax of the city, r̂ = r/rmax. Fig. 3C in the

main text shows the KS(r̂|r0) during typical period with no occurrence of

large-scale emergencies for each city.

∆KS Mobility centrality index, defined as the gradient of KS statistic between Rg

in rings and Rg in the CBD circle, ∆KS(r̂) = ∂KS(r̂)
∂r̂

. ∆KS is simply

calculated as the slope of linear fitting between KS(r̂) and r̂, as shown in

Fig. 2E in the main text. ∆KS is introduced to quantify the influence of city

centers on the mobility scale of the population.

KSHBT Measurement of the extent of home-based-travel for the residents, defined as

the Kolmogorov–Smirnov statistic between the distribution of the observed

Rg of the population and the distribution of Rg if all population would be

staying at home, as illustrated in Fig. 2F. We assume Rg as a random value

between 0 and a given threshold rshelter, if an individual is staying at home.

A lower KSHBT indicates more people are staying at or near home.

rshelter Mobility radius of people following the travel restriction order. For the selec-

tion of the distance threshold rshelter, we show the change of median Rg dur-

ing the eight months from the outbreak of COVID-19 pandemic in the Spanish

cities in Supplementary Fig. 16. We can see that, during the lockdown, the

medianRg of the population is near 0.5 km on weekdays in all cities. We also

show the median Rg and the 25%-75% confidence interval for typical large

cities (Madrid and Barcelona) and small cities (Malaga and Alicante). The

median Rg in these typical cities is clearly around 0.5 km during lockdown.

In addition, the spatial resolution of pinpointing users with the locations of

antennas in CDR data could be 300 meters in rural areas. Therefore, we need
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to select a distance threshold over 300 meters. From these perspectives, as we

can consider that more than half the population was following the shelter-at-

home order during the lockdown, the median value of Rg (0.5 km) can be a

reasonable threshold to identify the extent of home-based-travel.

Rgtyp Typical Rg, defined as the average Rg during typical period with no occur-

rence of large-scale emergencies. For the studied Spanish cities, the typical

period means the time before the outbreak of the COVID-19 pandemic, when

there are no travel restrictions executed. Specifically, we calculate Rgtyp by

averaging the daily Rgs of population during October 2019 in Spain. For

other cities, Rgtyp is calculated on the data periods we have. The unit of

Rgtyp is in kilometers.

∆KStyp Typical mobility centrality index ∆KS, calculated during a typical period

with no occurrence of large-scale emergencies, same as Rgtyp.

Rg
7d

. Average value of the daily Rg in the seven days before the dth day, Rg7d =∑d
d−6Rg

d/7, as illustrated in Supplementary Fig. 18.

∆KS7d Average value of the daily ∆KS in the seven days before the dth day. ∆KS7d =∑d
d−6 ∆KSd/7, as illustrated in Supplementary Fig. 18.

KS7d
HBT Average value of the dailyKSHBT in the seven days before the d day. KS7d

HBT =∑d
d−6 ∆KSdHBT/7, where ∆KSd refers to the observed ∆KS on the d day,

as illustrated in Supplementary Fig. 18.

Rt Daily effective reproduction number of COVID-19, calculated on the daily

reported cases in a sliding 7-day window, as illustrated in Supplementary Fig.

15. The estimation is implemented with the EpiEstim R package for each
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selected province in Spain (1) and the results are presented in Supplementary

Fig. 19.

2 Urban mobility retrieved from CDRs

For the studied cities with CDRs data, the users’ visited locations are not completely recorded

when they are not using cell phones. Therefore, we use an urban mobility model, TimeGeo,

to retrieve the daily travel behavior of users in Boston, San Francisco Bay Area, Los Angeles,

Bogotá, Lisbon, and Porto. TimeGeo is a fine-scale mobility model that replies on the long-

term records of trajectory data to infer the user’s visited locations every 10 minutes in a typical

week (2).

To this end, we first detect the stay locations by clustering the footprints in one user’s con-

secutive trajectory. The threshold in spatial clustering is set as 500m. The centroid of a cluster

of points is regarded as a stay location if the timespan in the cluster exceeds 10 minutes, suggest-

ing that the user has stayed in this location at least for 10 minutes. Other footprints are labeled

as pass-by and neglected in our further analysis. Second, among all stay locations for each user,

we identify the home location by finding the most frequently visited place on weekends and

during the nights of weekdays. Users are removed if there is no dominant place during these

periods, meaning that they are probably visitors to the city as there is no home location found.

Similarly, we identify the user’s work location by finding the dominantly visited place during

the daytime (10:00 - 17:00) on weekdays. Consequently, all stay locations of users are labeled

as home, work, or other. Users are labeled as commuters if their workplaces are available, and

others are labeled as non-commuters.

The TimeGeo modeling framework adopts three parameters to define the temporal choices

of travel activity through a time-inhomogeneous Markov chain model for each user. The param-

eters are individual-specific, including weekly home-based tour number (nw), dwell rate (β1),
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and burst rate (β2). Also, the global travel circadian rhythm of the population in an average

week, P (t), is introduced to guarantee that the modeling of individual users’ travel behavior

can follow the collective mobility behavior at the urban scale. For the spatial choices of users’

destinations, TimeGeo uses a rank-based exploration and preferential return (r-EPR) model

to choose destinations for every non-commuting trip by ranking their visited frequencies and

distances to the origins. More details about the TimeGeo model can be found in (2). After

running TimeGeo model on each active mobile phone user, we expand these users to the en-

tire population with the two expansion factors in each census tract. For each census tract, we

define commuter (non-commuter) expansion factor as the ratio between the actual number of

commuters (non-commuters) from census data and the number of active phone users, who are

labeled as commuters (non-commuters) and settling in the same census tract. As TimeGeo is a

probability model, even though users share the same set of parameters after expansion, they per-

form different travel behavior in the simulation. TimeGeo model has been validated in Boston,

SF Bay Area, Los Angeles, and Bogotá, using the travel survey data and can successfully re-

construct the mobility behavior at both individual and collective levels compared with the travel

surveys (2–4).

3 Dynamic racial and economic segregation

Since isolation entails which neighborhoods individuals visit, we leverage our mobility data to

assess the extent of social segregation within the city. To do so, we first use the information

theory index H (5, 6), to create a segregation profile over 24 hours. Defining the proportion

of population πjr of each race r ∈ R within a spatial unit j, then the entropy Ej is written as

follows:

Ej = −
∑
r∈R

πjr lnπjr , (1)
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and the H index is defined as:

H =
E −

∑
j∈J

pj
P
Ej

E
, (2)

where E is the entropy of the racial composition of the entire city, Ej is the entropy of the racial

composition in spatial unit j, J is the set of all spatial units considered within the area, P is the

total population, and finally, pj is the population in the spatial unit j. Interpreting entropy as

a measure of diversity, the segregation index H is the population-weighted difference between

the diversity of each spatial unit and the diversity of the whole city. H index varies from 1 to 0.

It is equal to 1 if there is maximum segregation, meaning that every spatial unit is populated by

only one race. On the contrary, if each race is distributed uniformly throughout the total region,

there is no segregation and the H index equals 0. After reviewing E and H for the two United

States cities, we find that Los Angeles is both more diverse and more segregated than Boston.

We then measure the H index throughout the day. The resulting temporal evolution is

shown in Supplementary Fig. 4A. In line with some previous studies (7–9), we find that spatial

segregation is significantly higher during the night (from 20:00 to 5:00) than during the day

(between 9:00 and 16:00). When comparing maximum and minimum values, the H index is

found to decrease by 50% in Boston and LA, and 70% in Bogotá. The mixing occurs in the

employment subcenters but we cannot see any difference among mono/polycentric cities.

Despite mobility dynamics tend to promote mixing between demographic groups, consid-

erable spatial separation remains. That is, all cities are imperfectly mixed (H 6= 0). Two main

factors can explain this result. The first factor is the strong residential segregation patterns,

which coupled with limited travel radii avoids the perfect mixing. The second is the hypothet-

ical existence of homophily in daily mobility; individuals could tend to visit neighborhoods

with similar race composition to their home neighborhood during their leisure time. We then

further explore these factors by calculating the racial composition of visitors of each tract. This

measure allows us to quantify how the attractiveness of a given location depends on its racial
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composition. In Supplementary Fig. 4B, we show the difference between the non-commuting

visitors and global proportion of each socio-economic group in Bogotá. In Supplementary Figs.

4C and 4D, for each racial group, we plot the average share of non-commuting visitors with race

rj for a location depending on the share of the population of its primary race ri in Boston and

LA, respectively. In this analysis, we have focused only on trips related to non-work activities

(leisure time).

Since the surrounding areas of a neighborhood with a majority race ri are less diverse than

the entire city, we can expect a higher representation of the race ri among its visitors. Overall,

we observe that for all races in both Boston and LA, see Supplementary Figs. 4C and 4D. Thus,

we can interpret the first point in those curves as an effect of the residential segregation patterns.

However, in some cases, the higher the share of residents with race r is, the higher the share

of visitors of the same race. We interpret this behavior as homophily. Interestingly, Hispanics

show homophily in both cities, regardless of whether, in one case, they are the majority group

(LA) and, in the other, a minority group (Boston). Whites, in turn, show homophily in Boston,

but in Los Angeles seem to be indifferent to the actual share of whites in the recipient tract.

Finally, Blacks show an imperceptible homophily behavior in both cities. Regarding pairwise

relationships of different racial groups to each other, it is worth noting that, in Boston, the

representation of Hispanic visitors in Black neighborhoods is higher than the global Hispanic

share. In other words, in that city, Hispanics have a certain affinity for neighborhoods with Black

majority. Being a minority in both cities, Black residents show an imperceptible homophily.

4 Comparison of varying measures for mobility centrality

4.1 Cumulative measure of people’s mobility behavior

In Fig. 2C, we group the population in one city with a series of concentric rings. There is no

overlapping population among these rings. Such concentric rings are meant to capture the in-
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fluence of the distance from the CBD on people’s mobility behavior. Here, we also attempt a

cumulative measure to represent the statistical change in people’s mobility behavior in a city.

Specifically, we define a series of circles centering at CBD with increasing radii, as shown

in Supplementary Fig. 10A. Then we compare the statistical divergence between people re-

siding in these circles. The outer circles cover the population in the inner circles. The Kol-

mogorov–Smirnov (KS) distance between the Rg values of the population residing in the outer

circles and the CBD circle is presented in Supplementary Fig. 10B. As expected, the change of

KS is much more smooth than our original measure based on rings. The relation between KS

distance and the radii is more like a power-law function than a linear function. Therefore, we

fitted the curves in 21 cities with a power-law function, Y ∼ α ·Xβ . From Supplementary Fig.

10B, we can observe a sublinear relation for most cities (β < 1). We thus regard the exponent

β, as the mobility centrality indicator to describe the urban spatial structure. The results are

given in Supplementary Fig. 10C. From this figure, we observe that the urban spatial structure

of Boston (a typical monocentric city) falls between two polycentric cities (Los Angeles and

Barcelona), suggesting the infeasibility of this cumulative measure.

Another weakness of cumulative measure is that, the population distribution heavily impacts

the KS distance between two circles, because the outer circle covers the population in the inner

circle. In our work, we desire to decouple the distribution of population and urban dynamics

into a two-dimensional space. Even if fewer inhabitants are residing in the area away from the

CBD, we still want to measure their mobility behavior. Therefore, the rings without population

overlapping are a better measure.
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4.2 Measuring urban structure with varying statistical metrics and dif-
ferent fitting functions

In Fig. 2D, we measure the statistical divergence of the Rg values of two groups of population

with the Kolmogorov–Smirnov (KS) distance. Here, we empirically compare KS distance

with three other statistical distances. Namely: (i) the relative change of Rg (Rgrelative); (ii)

the Jensen–Shannon divergence (JSD), and (iii) the Kullback–Leibler divergence (KL). Each

statistical distance was used to measure the divergence between Rg values of the population

in the CBD circle and outer rings. Note that KS distance is calculated based on CDFs of two

sets of data, such that it can measure the statistical distance between two sets with different

lengths. In contrast, the other two commonly used metrics, JSD, and KL distances require

the same length for two inputs. Therefore, when we apply JSD and KL distances, we first

calculate the discrete probability distributions (histograms) of the two datasets for comparison

to scale them to the same length. Then we compare the divergence between the two histograms

with JSD or KL. Besides, KL distance is also an asymmetric metric, which means that

KL(A,B) 6= KL(B,A), in most cases. Such an asymmetric metric is inappropriate to measure

divergence between two groups of the population.

In addition, for a more comprehensive comparison, we fit the relation between KS and the

distances to CBD with both linear and power-law functions, as illustrated in Fig. 3C. Regarding

the power-law function Y ∼ α ·Xβ , we use the fitted exponent β as urban mobility centrality, to

describe the urban spatial structure. We can imagine that a larger β indicates a more monocen-

tric urban structure, as people’s trip lengths increase more strongly with their distance to CBD.

While for the linear function, we use the slope of the fitting as the urban structure indicator.

In summary, we comprehensively compared eight combinations of “statistical distance + fitting

function” to describe urban spatial structure. The corresponding urban dynamic metric and the

r-square of the fitting are presented in Supplementary Figs. 11A and 11B.
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From Supplementary Fig. 11A, we observe that the indicators of most combinations can be

over 1, except for “JSD + Linear” and “KS + Linear”. We prefer our centrality indicator to

be a value from 0 to 1. From this perspective, only “JSD + Linear” and “KS + Linear” are

kept for future consideration. Secondly, we expect all cities to have acceptable goodness-of-fit

in the linear fitting. Results are shown in Supplementary Fig. 11B. For “JSD + Linear”, we

can see that San Francisco Bay Area is an outlier, with a very low r2 = 0.1713. While for “KS

+ Linear”, despite a relatively lower r2 for San Francisco Bay Area in comparison with other

cities, its value reaches 0.4774 and is still much better than “JSD + Linear”. In summary, the

“KS + Linear” is a better indicator to describe people’s mobility centrality with respect to the

CBD.

In Supplementary Fig. 11C, we also present the comparison between the power-law ex-

ponent and the slope of linear fitting for the KS statistics. We see that the exponent of the

power-law fit and the slope of linear fit generally have a positive correlation, with a clear excep-

tion for Barcelona. Intuitively, a larger exponent means the change of Rg is faster as a function

of the distance to the CBD, indicating a monocentric urban structure. But for Barcelona, a

typical polycentric city, the exponent is the largest among the 21 cities. Another exception is

Zaragoza, whose population is compact in the CBD. But its exponent of power-law fitting is

very close to Shenzhen, a polycentric city. In contrast, ∆KS based on linear fitting behaves

as we expect. That is, the slope of the linear fit is a more feasible indicator of urban spatial

structure in comparison with the power-law exponent. For the power law fitting, we would need

a more sophisticated design to reach a reasonable metric.

5 Estimate of time-varying Rt from daily reported cases

In this work, we use the EpiEstim R package to estimate the effective reproduction number of

COVID-19 pandemic in the selected Spanish cities (10). EpiEstim is an open-source R package
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to estimate the time-varying reproduction number Rt of an epidemic from the incidence time

series and has been adopted to estimate the transmission intensity of Ebola virus, Zika virus,

and SARS-CoV-2 in various countries (11–15).

In EpiEstim, the time-varying reproduction number Rt and its statistic uncertainty is esti-

mated based on the number of suspected COVID-19 cases every day. EpiEstim first defines a

probability distribution ωs to represent the probability of individuals showing an infectivity pro-

file once he or she is infected. ωs is then approximated by the distribution of a serial interval,

which is defined as the time difference between the onset of the symptoms of a primary case

and her corresponding secondary cases. Therefore, ωs depends on the duration time since the

infection of the case, s days, but is independent of the time she gets infected. Here, we follow

the observation from (16), assuming the serial interval distribution as a discrete Gamma distri-

bution, with a mean of 3.6 days and a standard deviation of 4.9 days. Then, the expectation of

the newly infected population is updated by,

E[It] = Rt

t∑
s=1

It−sωs (3)

where It and It−s denote the number of newly infected population on the time step t and t− s,

respectively; E[X] denotes the expectation of a sequence of random variables X . Then we can

estimate Rt with

Rt =
It∑t

s=1 It−sωs
(4)

By assuming the prior distribution of Rt is a Gamma-distribution, the Bayesian inference based

on this transmission model leads to a simple analytical expression of the posterior distribution

of Rt.

As the newly reported number of cases deviates from the actual number due to the delayed

and limit accuracy of testing, the estimate Rt can be highly variable. Given this, EpiEstim

provides a way to measure Rt over a time period, Rt,τ , where τ is the size of the window in
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which the Rt is calculated. One can expect that Rt,τ would be less variable and more precise

as the window size τ increases. Following the parameters used by Abbott et al. (13), we used a

Gamma distribution with mean of 2.6 and a standard deviation of 2.0, as the prior distribution

of Rt. The time slot in our case of COVID-19 is one day, indicating we fit the model with the

daily reported number of cases. We used a seven-day time window (τ = 7 days) before the day

t to calculate the reproduction number for each province in Spain, written as Rt. More details

about the implementation of EpiEstim can be found in (10).

We obtained the daily reported cases of COVID-19 in Spain at the province level, collected

by montera34.com, original from the ministry of health of each province 1. Note that as the daily

reported cases at the city level are not publicly available, we assume that the city has the sameRt

as its province. The proportion of the population of the province that resides in the city is shown

in Supplementary Table 2. In Supplementary Fig. 15, we illustrate the daily reported cases of

COVID-19 and the 7-day average values in the 11 provinces before September 30th, 2020. The

estimated Rt and the 95% confidence interval in each city are illustrated in Supplementary Fig.

19.

1https://github.com/montera34/escovid19data
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Supplementary Fig. 1. Urban area footprints of the twenty one cities. Cities are plotted

on the same scale and ordered in terms of area. The points represent the home locations of the

anonymized participants in the travel survey in Atlanta and Rio de Janeiro and represent the

locations of mobile phone towers in other cities. The points are colored by country.
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Supplementary Fig. 2. Population distributions in the twenty one cities. Cities are sorted

in the same order as Supplementary Fig. 1. The total population and the Gini index of the

population are presented for each city.
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Boston LA BogotaA B C

Supplementary Fig. 3. Box plot of census tracts’ distances from CBD for different income

groups in Boston, LA, and Bogotá. Each dot in the box plot represents a census tract, and

the tracts are split into different groups by household annual income. In the box plot, centre

presents the median value of distance to CBD for each income group; the bounds of box present

the 25th and 75th percentile; whiskers present the interquartile range (IQR). In Boston and LA,

population with higher income resides further from CBD than a population with lower income.

In Bogotá, although there is noticeable income segregation, the relation between income levels

and distance to the CBD is not as clear as in the two U.S. cities, as presented in Fig. 1A. In

Boston (A), there are 782 tracts with income information, and the number of tracts in each

income group is 30, 200, 339, 146, and 67. In LA (B), there are 1,700 tracts with income

information, and the number of tracts in each income group is 179, 874, 395, 154, and 98. In

Bogotá (C), there are 703 tracts with income information, and the number of tracts in each

income group is 56, 213, 282, 82, 34, and 36.
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Supplementary Fig. 4. Mobility behavior of users in different racial and economic groups.

(A) Evolution of the H index in three metropolitan regions during the day. (B) Difference

between the visitors and global proportion of each socio-economic group in Bogotá. (C) The

average share of non-commuting visitors of each racial group in Boston. This measure quantify

how, for each race, the attractiveness of given location depends on its own racial composition.

We focus on neighborhoods where there is a majority racial group (> 50%). In that way, in each

column (departing tract), we are considering disjoint subgroups of tracts. The rectangle marker

means the mean fraction of each race in visitors’ destination tracts, and the error bar means the

standard deviation. In the plot for Hispanic tracts, the number of non-commuting visitors depart

from each Hispanic tract from left to right are 3,243, 3,810, 2,015, 4,520, 3,836, 2,612, 1,108.

In the plot for Black tracts, the number of non-commuting visitors depart from each Black tract

from left to right are 1,138, 2,739, 4,673, 2,553, 1,428, 1,089, 3,220. In the plot for White tracts,

the number of non-commuting visitors depart from each White tract from left to right are 1,870,

2,947, 2,879, 3,631, 2,735, 3,846. (D) Average share of non-commuting visitors of each racial

group in LA. The rectangle marker means the mean fraction of each race in visitors’ destination
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tracts, and the error bar means the standard deviation. In the plot for Hispanic tracts, the number

of non-commuting visitors depart from each Hispanic tract from left to right are 2,839, 2,459,

3,741, 2,629, 2,017, 3,297, 2,918. In the plot for Black tracts, the number of non-commuting

visitors depart from each Black tract from left to right are 2,774, 2,348, 2,078, 3,258, 1,627,

3,125, 2,241. In the plot for White tracts, the number of non-commuting visitors depart from

each White tract from left to right are 2,794, 3,216, 2,129, 3,316, 2,159, 1,956, 1,736.
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Boston LA BogotaA B C

Supplementary Fig. 5. Box plot of the average Rg of census tracts for different income

groups in Boston, LA, and Bogotá. Each dot in the box plot represents a census tract, and the

tracts are divided into different groups by their household annual income. In the box plot, centre

presents the median value of distance to CBD for each income group; the bounds of box present

the 25th and 75th percentile; whiskers present the interquartile range (IQR). In Boston and LA,

the high-income population tends to take longer trips than the low-income population. While

for Bogotá, the population with lower income have a considerably larger Rg. In Boston (A),

there are 782 tracts with income information, and the number of tracts in each income group is

30, 200, 339, 146, and 67. In LA (B), there are 1,700 tracts with income information, and the

number of tracts in each income group is 179, 874, 395, 154, and 98. In Bogotá (C), there are

703 tracts with income information, and the number of tracts in each income group is 56, 213,

282, 82, 34, and 36.
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Supplementary Fig. 6. Average Rg of per census tract in Boston, LA and Bogotá. People

residing in tracts close to the CBD tend to explore regions near their home locations, while

residents in suburban areas travel longer distances. Moreover, the change of average Rg with

respect to the distance to CBD varies among these three cities. As a monocentric city, the

average Rg in Boston increases faster than the other two cities with the distance to CBD.
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Supplementary Fig. 7. Relation between the average Rg and the radii of rings. Markers in
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each panel present the average Rg in rings with varying radii (distance to CBD). Color bands

depict the 95% confidence intervals of the linear fitting. Overall, there is a noticeable increase in

Rg with increasing r, indicating that individuals living farther from the central business district

tend to take longer trips as part of their daily routines. Results indicate that, in certain cities

such as Lisbon, Boston, Madrid, and Los Angeles, there is a clear linear relationship between

the average Rg and the radius r. However, in other cities such as Malaga, Granada, La Coruna,

Sevilla, and Bilbao, this linear relationship cannot always be assumed.
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A B

Supplementary Fig. 8. Change ofRg in concentric rings at different distances to the CBD.

(A) Box plot of the average Rg in the twenty-one cities in each ring. In the box plot, centre

presents the median value of Rg for each census tract with a given distance to CBD; the bounds

of box present the 25th and 75th percentile; whiskers present the interquartile range (IQR). (B)

Box plot of the median Rg in the twenty-one cities in each ring. Only the first 7 rings are

shown for the twenty-one cities. Both the average and median values show that, in general, the

Rg values are relatively larger for the population residing further away from the CBD in the

twenty-one cities, especially from the perspective of median Rg. There are 21 data points in

each box in (A) and (B). Each point means one city.
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Distance 
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Supplementary Fig. 9. Distribution of Rg in concentric rings at different distances to the

CBD. Cities are shown in descending order of ∆KStyp. Only the first 7 rings are shown for

cities with radii over 21 km.
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Supplementary Fig. 10. Measuring urban structure via the statistical divergence of Rg

values among concentric circles. (A) Illustration of the CBD and outer circles centering at

the CBD for a given city. In contrast to the definition in Fig. 2C, here the outer circle cov-

ers the CBD circle, leading to large overlapping between their Rg values, especially for very

compact cities. (B) Relation between KS(r̂|r0) and the relative radii of the circles. As ex-

pected, KS(r̂|r0) is much more smooth than the way we calculate the change of Rg distribu-

tions in Fig. 2C. Thereby, we next utilize the power-law function to fit this relation. That is,

log(Y ) ∼ β log(X) + α, β is the exponent of the power-law fitting. Here we use β to indicate
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the urban structure. (C) Defining urban structure with Gini of population and the exponent of

power-law fitting in (B). We expect cities with larger β should be more monocentric because

people’s Rg values change faster with regard to the CBD. However, from this perspective,

Boston falls between LA and Barcelona, two typical polycentric cities.
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Supplementary Fig. 11. Comparison of different statistical distance metrics to measure

the divergence between the Rg values of the population. We compare the KS distance with

three other statistical distances. These are: (i) Rgrelative, relative change of the average Rg; (ii)

Jensen–Shannon divergence (JSD); (iii) Kullback–Leibler divergence (KL). Besides, for each

statistical distance, we test both linear and power-law functions to fit the relation between the

change of Rg and the distance to CBD, similar to the definition of ∆KS in Fig. 2E. For the

power-law function, we regard the fitted exponent as the urban structure metric. (A) Slope of

linear fitting and power-law exponent for each statistical distance. There are cities with power-

law exponents larger than 1.0 for all four metrics. For the linear fitting, only the metric with

JSD and KS are limited to 0 and 1. In the box plot, the centre presents the median value of

27



the Y-axis (slope of liner fitting or power-law exponent); the bounds of box present the 25th and

75th percentile; whiskers present the interquartile range (IQR). (B) R-square (r2) of linear and

power-law fitting for each statistical distance. There are very low r2 values for the Rgrelative,

JSD, and KL. From this perspective, our proposed ∆KS (slope of linear fitting on the KS

distance) values are between 0 and 1 for all cities and perform well in terms of r2. There are 21

data points in each box in (A) and (B). Each point means one city. In the box plot, the centre

presents the R-square value of the liner fitting or power-law fitting; the bounds of box present

the 25th and 75th percentile; whiskers present the interquartile range (IQR). (C) Comparison

between the power-law exponent and the slope of linear fitting for the KS statistic. Same as

panel A, we can see that Barcelona is an outlier if we fit the change of KS with power-law

function. Besides, if we regard the power-law exponent as an indicator of urban structure, the

structure of Boston would fall between the structures of San Francisco Bay Area and Barcelona.

Whereas, Boston is a typical monocentric city and both San Francisco Bay Area and Barcelona

are polycentric.
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Supplementary Fig. 12. Linear fitting between KS(r̂|r0) and the relative distance to CBD

r̂ for the twenty-one cities. Cities are shown in descending order of ∆KS. The color bands

present the 95% confidence intervals of the linear fitting. The r2 is over 0.5 for most cities,

except for SF Bay Area, which has an irregular spatial topology in comparison with the others.
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Supplementary Fig. 13. Relation between ∆KStyp and the population distribution in

the twenty-one cities. Cities in the legend are ranked by their ∆KStyp in descending order.

∆KStyp is found having a negative relation to the total population in cities, except for Wuhan

and Rio de Janeiro, but has a positive relation to the Gini of population. ∆KStyp has a relatively

weak relation to the average population in blocks.
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Supplementary Fig. 14. Comparison of different ring widths in the definition of urban

31



structure. (A) Slope of the linear and exponent of the power-law fit while grouping population

in cities with varying ring widths. The slope of linear fitting has a similar range for the three

widths. The exponent of the power-law function can be larger than 1. We prefer the mobility

centrality index to be a value between 0 and 1. From this perspective, the slope of linear fitting

is slightly better than the exponent of power-law fitting. In the box plot, the centre presents

the median value of the Y-axis (slope of liner fitting or power-law exponent); the bounds of

box present the 25th and 75th percentile; whiskers present the interquartile range (IQR). (B)

R-square of linear and power-law fitting for varying ring widths. Results show that the 3 km

width presents slightly better goodness-of-fit than 1 km and 2 km. There are 21 data points in

each box in (A) and (B). Each point means one city. In the box plot, the centre presents the R-

square value of the liner fitting or power-law fitting; the bounds of box present the 25th and 75th

percentile; whiskers present the interquartile range (IQR). (C-D) Comparison of ∆KS between

3 km ring width and 1 and 2 km widths, respectively. (E-G) Ranks of cities from monocentric

to polycentric structure for the definition with different ring widths. The bar height means the

value of ∆KS and the error bar means the standard (STD) error of the fitting of ∆KS. We can

notice cities are ranked in similar order. That means our ∆KS metric does not depend on the

width of the concentric rings.
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Supplementary Fig. 15. Number of newly confirmed infections on each day by province.

The bar plots depict the number of reported cases. The solid color lines depict the moving

average number in the 7-day window from d− 6 to d. A nationwide lockdown was imposed on

March 14th, 2020, indicated by the dashed vertical lines. The national lockdown took effect in

all cities in March, but the newly confirmed cases start to increase again in July 2020.
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Supplementary Fig. 16. Change of median Rg from February to September 2020 in the

eleven Spanish cities. (A) Median value of daily observed Rg in the eleven Spanish cities.

During the national lockdown, the median Rg kept around 0.5 km for all cities. (B-E) Median

Rg and the 25% − 75% confidence interval in two big cities (Madrid and Barcelona), and two

relatively small cities (Malaga and Alicante).
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Supplementary Fig. 17. Daily observations of urban structure and mobility metrics in

eleven Spanish cities (A) Daily mobility centrality index ∆KSd. (B) Daily average Rg, Rg
d
.

(C) Daily observed KSHBT , KSdHBT . The dashed vertical lines indicate Saturdays from Febru-

ary 1st to September 30th, 2020. We have missing data from August 16th to 19th, on August

30th, and on September 7th. All three mobility metrics display weekly periodicity. TheKSdHBT

is between 0 and 1 and makes it easier to compare various cities. The mobility behavior started

to recover in May. These observations help to monitor the weakening of the restriction policies

and could be an early warning sign of the resurgence of the COVID-19 infections.
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Supplementary Fig. 18. 7-day averaged urban structure and mobility metrics. The first

vertical dashed line indicates February 7, corresponding to the average value during the first

week in February 2020. The newly proposed KSHBT displays much more stable behavior

compared to the Rg in all cities.
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Supplementary Fig. 19. Estimated time-varying reproduction number per city. As the

daily confirmed COVID-19 cases are not officially released in the 11 studied cities, we use the

reproduction numbers in their provinces as proxies for the cities. To achieve a stable estimation,

theRt value on day d was fitted with the incidences during the 7-day time window from d−6 to

d using the EpiEstim R package (10). The colored buffer shows 95% confidence interval of the

estimation. The dashed vertical lines indicate the date of the national lockdown, March 14th,

2020.
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Supplementary Table 1. Goodness-of-fit of the linear fit to calculate the mobility centrality

index ∆KS. We perform t-test for the linear regression and report the p-value in the table.

City Country ∆KS r2 p-value Standard error*

Santa Cruz Spain 0.4987 0.9031 0.001 0.0731
Lisbon Portugal 0.4422 0.9770 0.0 0.0215
Wuhan China 0.4396 0.5402 0.0008 0.1047
Zaragoza Spain 0.4334 0.7678 0.0097 0.1066
Alicante Spain 0.4239 0.9477 0.0052 0.0575
Porto Portugal 0.4139 0.6039 0.0018 0.1011
Malaga Spain 0.4049 0.8669 0.0215 0.0916
Valencia Spain 0.3727 0.9312 0.0004 0.0453
Boston USA 0.3474 0.7778 0.0 0.0479
La Coruna Spain 0.3208 0.7875 0.0446 0.0962
Granada Spain 0.3002 0.9571 0.0217 0.0450
Atlanta USA 0.2886 0.5021 0.0015 0.0742
Rio de Janeiro Brazil 0.2806 0.8672 0.0 0.0284
Madrid Spain 0.2728 0.9156 0.0 0.0262
Bilbao Spain 0.2351 0.8174 0.0351 0.0642
Sevilla Spain 0.2324 0.8091 0.0377 0.0652
Barcelona Spain 0.2316 0.8911 0.0001 0.0306
Los Angeles USA 0.2122 0.8105 0.0 0.0265
Bogotá Colombia 0.2078 0.8112 0.0143 0.0501
Shenzhen China 0.1287 0.7005 0.0007 0.0266
San Francisco Bay Area USA 0.1137 0.3866 0.0077 0.037

* Standard error of the estimated slope (gradient) of linear regression, under the as-
sumption of residual normality.
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Supplementary Table 2. Fraction of population between city and province for the selected

Spanish cities.

City Population (million) Provincial Population (million) Fraction

Madrid 6.102 6.663 91.6%
Barcelona 4.205 5.665 74.2%
Valencia 1.595 2.565 62.2%
Alicante 0.429 1.859 23.1%
La Coruna 0.402 1.120 35.9%
Zaragoza 0.663 0.965 68.7%
Sevilla 1.197 1.942 61.6%
Malaga 0.728 1.662 43.8%
Bilbao 0.999 1.153 86.6%
Santa Cruz 0.521 1.033 50.4%
Granada 0.536 0.915 58.6%
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