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Global scale coupling of pyromes and fire regimes
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Different interpretations of the fire regime concept have limited the capacity to allocate

specific fire regimes worldwide. To solve this limitation, in this study, we present a framework

to frame contemporary fire regimes spatially on a global scale. We process historical wildfire

records between 2000 and 2018 across the six continents. We uncover 15 global pyromes

with clear differences in fire-related metrics, such as frequency and size. The pyromes were

further divided into 62 regimes based on spatial aggregation patterns. This spatial framing of

contemporary fire regimes allows for an interpretation of how a combination of driving

factors such as vegetation, climate, and demographic features can result in a specific fire

regime. To the best of our knowledge, this open source platform at unprecedented scale

expands on existing classification efforts and bridges the gaps between global and regional

fire studies.
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F ire is a global phenomenon that has existed since the
emergence of terrestrial plants1, and is currently present
across all vegetation types2. The long cohabitation of vege-

tation and fire has induced their co-evolution3, and has shaped
adaptive strategies within different plant species. Our under-
standing of fire activity and its relationship with its influencing
factors is lacking, especially at large spatial scales4, owing to the
absence of consistent long-term data5,6. Currently, satellite data is
the primary source for analyzing fire activity and studying his-
torical and contemporary fire regimes globally owing to its
comparability in time and space, despite its limited-time series
length7. Although studies characterizing fire activity at the
regional level are common8–14, the lack of long temporal series
has limited the study and assessment of global fire activity and its
potential influencing factors7,15–20.

Several researchers have utilized global forest fire data to
investigate various topics, including evaluating the impacts of fire
on vegetation and emissions, as well as the factors influencing
spatial and temporal fire activity variations4,21–26. It has been
demonstrated that changing environmental conditions and
human activities can and will continue to modify fire activity in
several parts of the world. However, these findings have been
primarily based on regional-scale studies, which do not always
reflect the global reality, and its variability in regards to either
influencing factors or societal perceptions27. The complex inter-
relations between the environment, climate, human factors, and
fire dynamics make any related study challenging on a
global scale.

The relationship between vegetation and fires in a specific
ecosystem is characterized by a fire regime3,15. A fire regime is
defined as a set of consistent and repeated wildfire conditions in a
particular region over a long time5,28. These regimes depend on a
combination of factors influencing fire occurrences and char-
acteristics, such as ignition conditions, fuel compositions and
arrangements, and weather conductive to fire29. The fire condi-
tions that define a fire regime5 have a clear impact not only on the
presence of certain vegetation types, but also on the soil and
atmospheric characteristics7. The combinations of the different
factors influencing fire activity are expected to change unevenly
across the globe, generating diverse patterns of the occurrence
and severity of fires25. The majority of terrestrial ecosystems are
familiar with fire, and in many cases, rely on its effects to
maintain their natural dynamics and health30,31. Yet, significant
changes in fire activity may lead to unwanted consequences for
human communities and ecosystem conservation practices16,32.
Moreover, although the presence of a certain fire regime depends
on a particular combination of climate, vegetation, and human
activity15, similar regimes can appear even with a different
combination of factors, making future wildfire predictions a dif-
ficult task21.

The interpretation of the concept of fire regimes has changed
over the years, and remains a matter of discussion in the present.
In one study28, the authors provided insight into the discussion
by dividing the present interpretations into (a) studies that con-
sider that a fire regime or its evolution reflects a core group of
parameters reflecting where, when, and which type of fires occur
in a certain area (e.g., chronology, seasonality, time since fire, size,
intensity); (b) studies that use the factors influencing the occur-
rence and characteristics of fires to frame fire regimes (e.g., fuel
characteristics, fire weather, ignition sources, potentially related
events); and (c) those that use the immediate impacts of fires on
ecosystems and humans to determine the consequences and
spatial context of a fire regime (e.g., ecological severity, damage to
society). These approaches are often not used independently, and
combinations between them are frequently used to provide a
more comprehensive understanding of the complex relationships

between fire activity, its driving factors, and the impacts on
ecosystems33. However, when studying fire regimes at a global
scale, there is a clear barrier, as no specific spatial frame has been
set to those regimes (i.e., it is non-trivial to delimit those specific
regions and achieve a level of homogeneity of fire characteristics,
a clear pattern of landscape vegetation, and/or a distinctive
association to other factors); nevertheless, they should combine
similar characteristics in regards to fire activity, driving factors,
and impacts on ecosystems. An attempt to overcome this lim-
itation has been to define “pyromes” and to evaluate how fre-
quently they occur within a biome7,15. Still, neither the use of
pyromes, biomes, or the cross-evaluation of pyromes within a
biome (and vice versa), provides a clear regional delimitation.
Therefore, as science has moved from the concept that a fire
regime is just a homogeneity of fire activity over a period of time
in a certain area, i.e., to accommodate new visions regarding
influencing factors and cohabitation with a vegetation type, this
evolution has also limited its capacity to clearly delineate the
extent of a fire regime.

An increased understanding of historical and contemporary
fire regimes will provide an essential tool for knowledge transfers
between regions that share a regime. As a result, any study on the
factors altering the evolution of fire activity or its impacts will be
majorly improved if implemented based on fire regimes7,15. In
addition, the knowledge gathered could provide useful insights
and improve various studies, e.g., by providing relevant infor-
mation for characterizing and assessing the impacts of con-
temporary fire regimes on ecological aspects such as vegetation
adaptability, soil degradation, carbon stocks, air quality/pollution,
and conservation of the biosphere34–37. Moreover, the potential
evolution of the regimes, their expected impacts on human
communities38–41, and measures for mitigating future threats or
for restoring desirable conditions prior to a regime change30

could be determined. Therefore, characterizing global fire regimes
—historical and contemporary—affects multiple areas of
knowledge.

Advances in generating global-scale fire data19,42,43 and in its
accessibility44 can be combined with artificial intelligence and
other processing techniques to unveil previously unseen patterns
in environmental phenomena, based on processing large and
complex data. This is the key to providing better understanding of
the current and future statuses of fire dynamics worldwide.
Despite its current limitations, some of the premises of the use of
large data45, such as large data storage management, the use of
innovative processing methods to solve multidimensional pro-
blems, and the sharing of data and information, can facilitate the
understanding of complex problems, such as identifying fire
regimes across the globe.

Here, we present a comprehensive study comprising the
understanding and characterization of contemporary global fire
regimes with an statistical framework that analyzes yearly global
wildfire events over 19 years from vectorial 500-m resolution
datasets. We consolidate these data to a resolution of 1 × 1 degree
grids covering the entire planet, so as to calculate annual statistics
on fire characteristics (see Methods). Next, we derive a global
classification of fire pyromes, areas with similar fire-related
characteristics with unsupervised machine learning. This group-
ing step distinguishes our analysis from the majority of existing
categorization methods, as we make no prior assumptions
regarding the spatial positioning of each group, similar to new
regional research studies46 using a non-spatially constrained
unsupervised learning approach. The investigation results in the
identification of pyromes with major geographical dispersions
and complexity. This leads us to exploring an extended spatial
assessment of their core areas to evaluate variations in the sea-
sonality of fire activity, and to determine the key underlying
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factors47,48 defining specific contemporary fire regimes, such as
climate, land use, and socio-economic factors (novel in this kind
of analyses). We propose a spatial delimitation of modern regimes
(i.e., with contemporary data from 2000–2018) within the pyr-
omes by defining areas with similar fire activity and selecting
underlying factors, thereby providing a basis for understanding
fire regimes or the distribution of fire across the globe (and its
underlying factors).

Results and discussion
Determining contemporary fire regimes. The proposed frame-
work is presented in Fig. 1, emphasizing the knowledge discovery
and extraction process of the study. The core operations are
performed at the third stage of the framework, where unsu-
pervised learning algorithms and techniques for processing
multidimensional data, such as self-organizing maps (Fig. 2), are
applied to determine patterns from the data and to validate the
interpretability of the obtained results (see Methods section).

First, the cells covering the world are classified into different
pyromes, based on historical fire characteristics and observed
patterns within their locations. The observed fires are character-
ized by six variables: the average frequency [fires/year]
(0.30–1175.74), size [km2] (0.28–511.61), perimeter [km]

(2.25–102.79), duration [days] (1.34–12.81), expansion [km2/
day] (0.23–18.23), and ratio between the perimeter and the area
[km−1] (0.78–8.45). Ultimately, 15 clusters are determined,
defining general fire pyromes (Fig. 3) distributed across the globe
(Fig. 4). These pyromes significantly differ in the mean
characteristics of their fires and in their spatial distribution
(e.g., ecological severity, damage to society 1–15 for details per
pyrome and regime).

These pyromes can be further condensed into six relevant
macro-groups sharing clear fire characteristics (Fig. 3): very large,
fast-spreading, and frequent wildfires (R10); large and frequent
fires (R11, R2, and R4); medium-sized, slow-spreading and
infrequent fires (R7, and R14); small, medium-to-high frequency,
and long-shaped fires (R13, R0, and R5); small and infrequent
fires (R9, R1, and R8); and small/medium and very frequent
wildfires (R12, R3, and R6).

Further analysis of the different pyromes based on their fire
sizes, frequencies, and expansion rates reveals that the R10
pyrome, mainly distributed across northern Australia and
southern parts of Africa, is defined by the largest and fastest
expansion fires, with an average fire size of 511 km2 and an
average expansion of 18 km2/day. Following the ranking of the
fire size but with medium-to-high occurrence frequencies

Fig. 1 Overall framework of the study. a Wildfire data describing individual events in terms of fire-related characteristics such as size, perimeter, duration,
and average expansion are collected from products derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations. b The
data are processed and consolidated into a raster dividing the world into a grid with a resolution of 1∘ × 1∘. Annual statistics and features are calculated for
each cell, generating numerical (e.g., average fire frequency per time period) and spatial datasets. c Statistical methods to analyze multidimensional data
are combined with unsupervised learning in order to discover similar groups of cells sharing fire-related characteristics. No explicit spatial components are
included in this step. d Climatic and socio-economic layers are introduced for each cell in the grid. e Spatial density plots are generated for each pyrome,
detecting the regions of the world with more observations, assumed to spatially frame a specific regime. The detected fire pyromes and regimes are
characterized using climatic and demographic data. An evaluation of the influencing factors is performed for the most relevant areas. A temporal analysis
to determine the trends and seasonality patterns of fire activity is also conducted. f All results and generated datasets are deployed on cloud services and a
public-access repository, along with the scripts to reproduce all steps of the study.
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(average of 172 fires per year) are the R11, R2, and R4 pyromes
with mean fire sizes of 107, 34, and 24 km2, respectively. These
four pyromes are often spatially associated with each other and
the region covered by the R10 pyrome. The R11 pyrome regions
usually surround the most fire-affected R10 areas. In some cases,
the surrounding R11 cluster is accompanied by milder R4 and R2
pyromes, even though the latter pyromes generally occur in the
Central African region, Brazil, and Kazakhstan. This spatial
pattern of the observed fire activity matches with the gradient of
the environmental conditions, a common process for several
ecological phenomena49.

Pyromes R7 and R14 have average fire sizes of 34 and 9 km2,
respectively, but have significantly lower frequencies than the
previously mentioned pyromes. The occurrences of R7 and
R14 show similar patterns, being mainly distributed across the
boreal forests of America and Asia. A heterogeneous macro-
group was created from the R13, R0, and R5 pyromes, consisting
of small-to-medium fires with sizes between 2 and 5 km2, with
medium frequencies. For R0 and R8, there are 31 and nine fires
per year, respectively. In the case of R13, there are 307 fires per
year on average. These pyromes are distributed across most of
Europe, Asia, and America, in zones warmer than those where R7
and R14 are distributed.

The R12, R6, and R3 pyromes comprise a more spatially
compact category, defined by fires with small-to-medium sizes
(2.94 to 4.7 km2) and very high frequencies (598.62 fires per year
on average), occurring almost exclusively in the tropical areas of
Africa and in South Asia. Finally, regimes R8, R1, and R9, with
average fire sizes of >2 km2 and low frequencies (lower than two
fires per year for R1 and R9, and 9.44 fires per year in the case of
R8), are widely distributed across the world; they are particularly
abundant in both cold and dry vegetated regions, as well as in wet
evergreen tropical forests. From the above-mentioned analysis, it
can be seen that the characteristics of the fires and their
distributions confirm that there are relationships between fire
activity and vegetation, climate, and socio-economic factors.
However, the distribution of the areas corresponding to the
majority of the fire pyromes is rather dispersed (Fig. 4), and no
single combination of factors seems to explain the occurrences of
individual contemporary regimes.

When comparing our pyromes distribution with the ones
delineated in previous studies, e.g., Archibald et al.15, we found
similarities even when we are using a different set of variables to
define fire characteristics. When comparing Archibald’s five
pyromes with our six macro-groups (see Fig. 4), we could clearly
identify similarities: (i) in the allocation and characteristics
between their “FIL” and our pyrome macro-group composed by
R2, R4, and R11, plus the addition of the standing alone R10
pyrome; (ii) their “ICS” pyrome behave similarly to our R0, R5,
and R13 macro-group; (iii) their “FCS” could be compared with
our R3, R6, and R12 macro-group; (iv) their “RIL” pyrome can be
related to our macro-group defined by R7 and R14 pyromes; (v)
and their “RCS” pyrome matches our R1, R8, R9 pyromes macro-
group. Although those similarities between fire characteristics and
their allocation could be expected for a subset of them, some
relevant discrepancies could also be observed. The more
important being that in many areas where we defined pyromes
with a lesser fire activity (e.g., R1), Archibald’s study did not
identify any pyrome.

Next, we explore the spatial distribution of the pyromes across
the globe, in an attempt to define contemporary fire regimes. For
this, we determine the most relevant (largest and densest) disjoint
regions belonging to each pyrome. Fire regimes are determined
by a spatial density analysis (see Methods), indicating the regions
of the world where the observations belonging to each pyrome are
mainly distributed. We denote the regimes by a combination of

Fig. 2 Discovering pyromes. Self-organizing maps are useful for
summarizing multidimensional fire data and for determining potential
groups of similar characteristics. These data are reduced to a two-
dimensional grid, and the samples are organized according to their
Euclidean distance. Observations sharing similar characteristics are easily
visualized in a topographic map (a) where warmer colors represent widely
separated samples, and cooler colors depict closely related values. Using
image processing algorithms (see Methods), we detect relevant potential
pyromes/clusters (red circles). The number of observations belonging to
each section of the map can be presented in a matrix known as a hit-map
(b). As an example, we can easily observe the group of cells without fire
activity as a large dark blue region (top) and white valley (bottom),
representing a relevant percentage of the observations.

Fig. 3 Pyromes’ hierarchy. A dendrogram summarizes the hierarchy of the
determined 15 pyromes and the similarities between them. As observed,
the pyromes can be collapsed into six macrogroups sharing fire
characteristics, consistent with our statistical results (see Supplementary
Methods), where, for example, the pyrome of observations representing
extreme and rare events (R10) is clearly independent of other clusters.
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the pyrome alias with letters (a, b, c, d, and e) associated with
their areas (decreasing order), i.e., R1-a denotes the largest regime
of pyrome R1, and R2-c denotes the third-largest regime
belonging to R2 (see Figs. 5, 6). Interestingly, although the
contemporary regimes within a pyrome share historical fire
patterns, important differences can be observed in those regimes
in terms of location, climate, and socio-economic variables
(Fig. 5), and in the proportion of dominant land cover50. Here, we
include socio-economic descriptors for the per capita gross
domestic product (GDP) [USD], population density [individuals/
km2], accessibility [minutes], and climatic conditions (historical
temperature [C∘], precipitation [m], water deficit [mm], and
Palmer drought severity index (PDSI)51) (See Supplementary
Table 16 for details). Similarly, different seasonal patterns and
trends of fire-related variables (such as frequency and average
size) are observed based on a time series analyses within the areas
of different regimes, as represented for the five largest regimes
related to pyrome R1 in Fig. 6.

When evaluating the relationships between the locations of
contemporary fire regimes within the identified pyromes and
potential driving factors (i.e., climate and socio-demographic
conditions), different patterns and trends can be observed.
However, owing to their marked variability, there is no conclusive
evidence identifying the main factors defining each pyrome.
Therefore, we analyze the regimes within each pyrome. By
applying an independent principal component analysis (PCA, see
Methods) to the climatic and socio-demographic features
characterizing each pyrome and regime, we can project them
into a two-dimensional map, to thereby identify relevant patterns.
By plotting and analyzing their demographic and climatic
components (Fig. 5), we observe the following. First, regimes
associated with low fire activity pyromes (R1, R8, and R9) show
similar dispersion and trends for their demographic and climatic
components. These regimes are commonly located in dry, cold,
and sparsely populated areas, with the exception of the regimes
associated with the R8 pyrome. These regimes often appear in
densely populated regions of the world, and under less extreme
weather conditions. In all cases, no common land use is found to
define the fire activity. No single pattern is observed, with the
land covers varying from a predominance of evergreen forest in

warmer areas, to grasslands and sparse vegetation in colder areas;
in milder and more populated areas, where it could be assumed a
more fragmented landscape52. Second, regimes experiencing large
fires (within pyromes R2, R4, R10, and R11) are often located in
balanced areas where no predominance of any of the demo-
graphic or climatic components can be observed, but are focused
on colder regions for regimes within the R4 pyrome, i.e., the
pyrome with the milder fire activity of the group. The most
common land uses within the areas of these regimes are
grasslands, savannas, and shrublands. Third, regimes belonging
to pyromes where large but slow-spread fires are present (R4 and
R7) are always framed by cold, dry, and non-populated areas, and
are covered mainly by savannas and shrublands. In this case, the
regimes and the associated pyromes share very similar climatic
and socio-economic characteristics. Fourth, regimes where small
but very frequent fires are characteristic (pyromes R3, R6, and
R12) are located in densely populated areas—likely increasing the
probability of a ignition—with warm and moist conditions, with
less than average incomes, and where the dominance of savannas
and shrublands—highly flammable land covers—is common.
However, a singularity can be observed in South Asia, where the
observed fire conditions are related to the more diverse
landscapes in which evergreen forests, savannas, and croplands
cohabitate. Fifth, regimes associated with medium-small size fires
with far less frequency than the previous types tend to be present
under a wider range of conditions, as observed in their associated
pyromes (R0, R5, and R13). These regimes can occur in areas
dominated by grasslands, croplands, and savannas, but also in
large areas covered by mixed or evergreen forests, leading to a
higher level of landscape fragmentation. In general, we note that
low population densities are common in regimes located in dry
and cold regions. In contrast, the density of the human
population increases sharply when these regimes are located in
warmer and moister regions.

Comparing our results in terms of underlying factors to previous
studies can be misleading. The comparison of the analysis of regime
areas grouped by pyromes (Fig. 5), even if delimited based on spatial
density, can provide a basis for comparison, being the most similar
approach to the one applied by the studies of Archibald et al. and
Chuvieco et al.7,15. When comparing the factors influencing the

Fig. 4 Fire pyromes. Cells covering the gridded world are classified into the six macrogroups determined in the dendrogram (different colors), as
composed by the determined pyromes based on historical averages of fire characteristics, including the average annual burning frequency, size, perimeter,
duration, daily expansion, and perimeter-to-area ratio values. The white and light brown backgrounds represent sections of the world where no fire events
were registered for the studied period.

COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00881-8 ARTICLE

COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:267 | https://doi.org/10.1038/s43247-023-00881-8 | www.nature.com/commsenv 5

www.nature.com/commsenv
www.nature.com/commsenv


Fig. 5 Contemporary regimes and driving factors. The demographic and climatic variables of the most relevant regimes per pyrome are summarized into two
independent components using a principal component analysis (PCA) to visualize the regimes' driving factors (a.i, b.i, c.i, d.i, and e.i panels). A denser
population, lower GDP, and harder accessibility characterize regimes located in higher values on the demographic component (y axis). Regimes located in
higher values on the climatic component experience higher average temperatures, higher precipitation levels, and lower PDSI values (x axis). A shaded region
connects regimes within the same pyrome, highlighting the dispersion of the regimes' potential driving factors within each pyrome. The spatial location of the
regimes (a.ii, b.ii, c.ii, d.ii, and e.ii panels, matching the colors of the regimes in the PCA plots) and the proportion of the dominant land covers per pyrome (a.iii,
b.iii, c.iii, d.iii, and e.iii panels) are included for reference, providing an overall comprehensive characterization of the most relevant contemporary regimes (62 in
total) for each pyrome. Detailed results per regime including their dominant land-covers can be found in Supplementary Tables 1–15.
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occurrence of our contemporary fire regimes, we can observe
similarities in the prevalence of grasslands and shrublands from our
corresponding pyromes and the “FIL” and “FCS” pyromes reported
in Archibald et al.15. In these areas, although we observe higher
relevance of the climatic component in both studies, in our case, the
regimes within the R2, R4, R11, and R10 pyromes are distributed
across average values of the demographic component, as opposed to
Archibald’s. Similarly, their research reports a variety of biomes
within their “ICS” pyrome, a characteristic that can also be observed
for our R0, R5, and R13 macro-group. Regarding other influencing
factors, such as climate and human-related factors, the comparison
becomes more challenging since we explored the combination of
variables through principal components in our analysis of grouped
fire regimes. Still, we observe that the results of Archibal et al., in

general, lead to a much higher level of overlapping and dispersion of
influencing factors between pyromes than our approach, translated
into less homogeneous and compact (i.e., more difficult to interpret)
results than our study.

Although an analysis of the combined driving factors based on
regimes provides a deeper understanding of the variability of the
conditions associated with these regimes, it still captures only a
portion of the full picture required to understand both historical
and contemporary fire regimes. To fully accomplish this goal, the
best approach is to independently observe each of the regimes
and their potential influencing factors. As an example, we explore
the contemporary regimes within the R1 pyrome (Fig. 6), where
the differences between regimes are especially clear between the
Amazonian regime, denoted in blue, and the two regimes located

Fig. 6 Characterizing contemporary fire regimes. The five largest spatial regimes are determined and represented with different colors for the R1 pyrome
after a kernel and contour level analysis. Despite belonging to the same pyrome, dense observation areas are spread in regions with different climatic and
demographic characteristics. In this pyrome, regimes cover parts of the western coast of Canada and Alaska (dark green), the Amazonian forest of Peru and
Brazil (blue), the North America great lakes area (green), the eastern extreme of Russia (orange), and the central Asia region (gray). Notable differences can be
observed between these regions in a location and landcover distribution; b socio-demographic and climatic attributes; and (c–e) seasonal fire characteristics
per regime including: cmonthly average fire size with 95% confidence intervals shown as shades, d yearly fire frequency, and emonthly average fire frequency.
The land covers observed in the pyrome include savannas (WDS, SAV), grasslands (GRS), conifers (ENC), evergreen broadleaf palmate (EBP), shrublands
(OSL), mixed forest (MFS), water bodies (WBS), non-vegetated (NV), croplands (CRO), and permanent wetlands (PWL).
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on the northern hemisphere, denoted by different shades of
green. In this example, we found that the largest regime (R1-a),
located in the western part of North America, shows low fire
activity (1.63 fires per year on average), as driven by the cold
temperatures and sparse vegetation on the inland parts of the area
(and likely by intense suppression in the coastal zones). The
Amazonian hotspot (R1-b) is influenced by a very high moisture
(PDSI of 75.39, 1.23 m of average yearly precipitation) owing to
rainfall and closed vegetation coverage. The hotspot located in the
area of large lakes (R1-c) is characterized by a heterogeneous
landscape of mixed forests (16.8%) and croplands (35.9%), which,
together with suppression policies, may justify its limited fire
activity. In regards to the two regimes located in Asia, the regime
on the eastern part of Siberia (R1-e, orange) is characterized by
cold weather (an average of −8.88 C∘ throughout the year), a low
population density (0.056 individuals per km2), and sparse
vegetation. Meanwhile, the area in central Asia (R1-d) is clearly
defined by a lack of water (average water deficit of 415.79 mm)
and the absence of large plants (86% of the land is covered by a
combination of grasslands and non-vegetated areas). Considering
the omission of seasonality from the metrics used to define the
pyromes, differences in this regard can be observed a posteriori
among the regions. Whereas some subgroups show a clear
tendency to aggregate the number of fires and areas burned in
summer in the Northern Hemisphere, the Amazonian regime
shows a lesser tendency to aggregate over a specific season, with
the peak fire activity between December and January, but still
occurring in the rest of the year. The eastern Siberian regime also
shows a different temporal pattern, with most of the fires in
spring, but with those of larger size occurring during summer (see
Supplementary Tables 1–15 for a comprehensive description of
all pyromes and contemporary regimes).

The results show that different combinations of climatic,
vegetation, and human factors may lead to similar fire patterns in
different regions of the world. However, changes in these factors
may induce shifts in fire activity in nearby locations53. Never-
theless, it is possible to determine clear gradients of fire activity if
one of the influencing factors, especially climate or vegetation,
changes accordingly. This spatial gradient is clear in regimes with
little fire activity, and is limited by the low temperatures and
scarce vegetation in the northernmost boreal areas. As an
example, we observe some regimes associated with pyrome
R9 shifting into regimes characterized by the fire activity of R1, as
well as fire-related conditions becoming more conducive to
regimes belonging to the R7 or R14 pyromes. Similarly, regions
with larger and fast-expanding fires (e.g., the characteristic of
R10) are surrounded by pyromes sustaining smaller but still large
fires (R11, surrounded by regimes within R4) if the climate and
vegetation gradually become less hazardous. It is also possible to
identify shifts on fire activity in nearby areas caused by non-
natural processes. For example, in the limits of the Amazonian
forest (R4-c), continuous coverage of the rain forest has been
disrupted13,54,55, leading to frequent fires of considerable size.
Other natural processes can be observed across Asia, where slight
differences in climate (and subsequently in vegetation), such as
increased rainfall (R4-a, in Kazakhstan) or higher temperatures
(R0-a), modify the recurrences and sizes of fires, following
evidence from existing literature (see Supplemental information
Table 16 for details). Despite the increased fire activity owing to
deforestation processes, and arid environment such as western
Australia (R4-e) is also able to sustain recurrent fires after
stabilization of the allochthonous vegetation56. Upon analyzing
the driving factors impacting fire patterns, we have observed that,
in general, they align with the expected effects described in
relevant literature (e.g., refer to Supplemental Information,
Table 16). It is important to note, however, that no pyrome or

contemporary regime can be solely attributed to the impact of a
particular driving factor in isolation. This observation under-
scores the inherent complexity in analyzing and understanding
fire regimes. Therefore, it can be stated that there is a clear but
complex relationship between the distribution of the driving
factors and fire activity. Studies based on the impacts of changing
factors on fire activity provide an important source of informa-
tion regarding the past and future changes of fires and their
impacts18,57,58, but only an understanding of the interactions
between the factors in an area corresponding to a fire regime and
comparisons between regimes will provide the whole picture, i.e.,
to understand why a regime is present in a certain region and not
in another. Moreover, a similar approach should be used to
predict possible shifts in regimes that, as has been shown, can
hardly be interpreted based on the change of a unique factor.

The proposed methodology can spatially frame a fire regime
(contemporary or historical, depending on available data) in a
specific area, with a high-level of fire activity homogeneity,
vegetation characteristics, and underlying vegetation factors.
Constraints owing to the different interpretations of fire
regimes28 have restrained this delimitation process on a global
scale. This point is crucial, as it is recognized that understanding
fire regimes is key to understanding present and future fire
activity and its impacts on the earth. The most limiting constraint
for delimiting fire regimes (historical or contemporary) at the
global scale is the coupling of the fire activity and the associated
vegetation. Contrary to a vast number of previous investigations,
this study did not assume that a single vegetation type must be
associated with a fire regime, as fire controls are heterogeneous
across landscapes, and the spatial configurations of vegetation
and fuels define the characteristics of a fire regime on a
landscape59,60. On a global scale, assuming that a mosaic of
vegetation groups does not influence or comprise part of a fire
regime seems to be a limiting premise. In this context, we believe
that a global mosaic of vegetation types and other land covers,
even if coarse, should also be considered as a part of what defines
a regime, and not as a constraint. Moreover, if fire regimes are to
be studied, they need to be framed spatially, and neither the
results from defining equal fire pyromes nor the use of single
vegetation groups can solve one of the most essential require-
ments for setting a fire regime: defining the specific region where
the fire characteristics are repeated over time5,28.

Conclusions
Understanding and characterizing wildfire regimes is crucial
knowledge for a better understanding of both the temporal and
spatial impacts of fire on the evolution of ecosystems61, and on the
several services that are provided by them62. This comprehensive
understanding remains an open question, subject to future research.

We present a open source framework and classification system
that help to uncover contemporary (i.e., with recent 19 years of data)
fire regimes and their most common regions in a systematic way,
without assuming that the geopolitical borders or climatic char-
acteristics of vegetation biomes are a constraint when framing their
influencing areas. It can reveal similarities and dissimilarities
between fire pyromes and their underlying factors, incorporating
novel aspects into the comprehensive analysis such as socio-
demographic variables. This method aims at helping specific studies
and adaptation measures across the globe, planned according to the
relative importance of the driving factors and their expected chan-
ges. This type of assessment, as shown in this study, requires a two-
step clustering process. One step was based on the fire characteristics
alone, and the second step focused on the spatial distribution of
those fire characteristics. Without splitting a fire pyrome into spa-
tially framed regimes, understanding the underlying factors that
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cause such specific fire characteristics becomes difficult, and may
produce inconclusive or even misleading results. Maintaining,
restoring, or mitigating fire activity depends on the understanding of
the current natural fire regimes, and their changes under future
conditions. This knowledge cannot be based on global general-
izations, and should be based on site-specific recommendations.
Site-specific considerations other than climate should be embedded
into the models. Similarly, any global study related to fire activity or
its future change should integrate the combination and interrelation
of all influencing factors, often regionally specific, without assuming
global oversimplifications on the impact of a single factor or its
changes. Yet, delimiting fire regimes in the space, studying them
individually, and comparing distant regimes with similar fire activity
and/or adjacent fire regimes with differences in fire activity may be
the key to truly understanding the complexity of fire regimes.

Our vision conflicts with some fire regime conceptual
approaches based on the direct crossing of fire syndromes with
biomes or vegetation types, as a way to study fire regimes, as it
does not reflect a combination of fire characteristics on a specific
vegetation type. However, it solves the issue of defining well-
delimited regions with a high-level of homogeneity on all fire-
associated characteristics and driving factors, that other approa-
ches do not. An additional issue that may arise from our study is
the inclusion of all types of fires. Agricultural fires, often asso-
ciated with those fires occurring in croplands, tend to be con-
sidered a source of noise when studying global fire characteristics.
This, due to limitations of MODIS satellite data to capture small
fires63 or their specific relation with human production culture,
distinct to the rest of wildfires. Still, we decided to include them in
the study based on the importance of croplands in terms of global
land coverage and the predominance of fires on croplands across
many regions of the world63,64. Another reason is the historic
importance of human behavior, including the use of agricultural
fires, to understand the evolution of fire regimes39,65,66, and
hence, the contemporary fire regimes delimited in the study.
Finally, as previously mentioned, our approach does not confine a
regime to specific vegetation types, but defines areas where dif-
ferent land uses and vegetation types coexist to define a land-
scape. Croplands, therefore, should not be excluded from the
landscape, because they are a fundamental part of it. Moreover,
agricultural fires are not always controlled and may escape to
neighboring areas covered by other vegetation types39, and even if
croplands are assumed to increase landscape fragmentation and
reduce fire propagation due to their lower fuel loads67, they can
still propagate wildfires depending on the seasonality and weather
conditions66. Therefore, the results presented in this study need
to be interpreted within this context. For example, the inclusion
of cropland fires can lead to overestimation of fire occurrence and
biased representation of fire characteristics (e.g., ignition sources,
timing, and duration). Conversely, excluding these fires can result
in underestimation of overall fire frequency and incomplete
understanding of fire severity. This bias can affect the accuracy
and reliability of the findings (e.g., not even identifying the area as
part of a relevant pyrome or contemporary regime) and may limit
their applicability to other ecosystems. In addition, the high
omission error associated with these fires can make it challenging
to accurately assess the frequency and intensity of fires in these
areas. Future directions may involve, e.g., using different methods
to estimate fire occurrence and fire characteristics in cropland
areas, or adjusting the pyromes to account for the lower repre-
sentation of these fires, among other approaches.

The temporal extension of our current harmonized dataset
should be considered enough to capture fire characteristics and
delineate either pyromes and the proposed contemporary fire
regimes. By expanding the dataset temporal dimension in future
iterations, it will be possible to identify changes in fire activity and

underlying drivers (see Methods, Data description section for
details about potential dataset additions). Even more, if data
sources other than remote sensing are contemplated39, it could be
possible to expand our knowledge on past fire activity and recon-
struct the impact of large-scale global changes on fire regimes39,65.

Methods
Data description. Two global datasets containing observations of individual
wildfires in vector formats were obtained from the Moderate Resolution Imaging
Spectroradiometer (MODIS) MCD64A1 collection 668, with an underlying reso-
lution of 500 m were used in this investigation. This collection, although a well-
known and commonly used product, remains limited. It suffers from a negative
bias when estimating the total area burned at a global scale and systematically
underestimates smaller burned areas, leading to a limitation to the dataset and to
our study. This limitation is characterized by a high proportion of commission and
omission errors (40.2% and 72.6%, respectively) compared to a Landsat 8
Operational Land Imager image at a resolution of 30 m69. The lowest errors (24%
and 27%, respectively) are observed in the boreal forest biome characterized by
large, persistent, and well-defined wildfires, whereas the highest error levels are
observed in the tropical forest, temperate forest, and Mediterranean biomes (>50
and >90%). However, both errors are found to be significantly compensated for
when evaluating the accuracy of the product at coarser resolutions69 (e.g., on the
order of km), as in the one used in our study.

The Global Fire Atlas19 from NASA (https://daac.ornl.gov/cgi-bin/dsviewer.pl?
ds_id=1642) provided us with ~13.3 million individual wildfires between 2003 and
2016. This dataset contains information regarding the timing and location of
ignitions, fire sizes, durations, daily expansions, fire line lengths, average speeds,
and dominant directions during the spread. Individual wildfire samples between
2000 and 2018 were obtained from the GlobFire44 Database (https://doi.pangaea.
de/10.1594/PANGAEA.895835). This dataset provides similar attributes to the
Global Fire Atlas set (ignition, duration, size, daily burnt areas, etc.), and the same
features can be obtained via simple calculations.

Although these two databases represent the best available datasets depicting
individual fires and their characteristics, they have limitations. A known limitation
of both datasets is the over-fragmentation of wildfire events44, where unique
wildfires are split into multiple fires, owing to the way these datasets are generated.
In the case of the Global Fire Atlas, it applies a fire event identification algorithm at
a tile level (obtained from MODIS data). This approach leads to an artificial
splitting of the fires following the pattern of the grid tiles generated by MODIS
when a fire spreads over multiple tiles. The GlobFire Database attempts to correct
this limitation by introducing an algorithm that runs independently of the grid tile
and source, allowing it to avoid splitting unique wildfires covering more than one
tile from MODIS. Despite this improvement, it still suffers from this known
limitation. Therefore, the results presented in this study are affected by this
limitation, which biases fire characteristics such as the average frequency and
average wildfire sizes (depending on the intensity of this effect in different sections
of the world). In practice, we managed with this limitation and partially mitigated it
by consolidating both datasets. We deleted duplicated wildfires and identified as
many fragmented fires as possible by comparing overlapping events between both
datasets. Then, we selected the entries with the minimum number of wildfires, to
minimize the impact of this limitation in the analysis. Finally, we generated a global
raster summarizing the yearly observations (2000-2018) and statistics for multiple
resolutions (0.05∘–1∘), focusing the study on the 1∘ product. We tested different
resolutions in this interval in addition to 1.25, and 1.5 degrees. We found that 1
degree optimized the trade-off between accuracy, quality, and stability of the results
and total computational time required to process and perform spatial operations
with the global dataset. We did not see major differences in the outputs (i.e.,
pyromes and fire regimes predicted and their characteristics) when comparing the
(0.05∘–1∘) datasets. However, decreasing the resolution (i.e., using 1.25∘ or 1.5∘) did
impact the quality of the results, leading to non-robust, non-convergent, and
method-dependent outputs.

We also note that, although MODIS-derived products are widely used and
considered accurate for global analysis70, incorporating other burned areas
databases, such as FireCCILT11, can enhance the current study by extending fire
activity records up to 1982. Recent efforts to improve AVHRR-derived products71

have addressed some of their shortcomings, making them valuable for studying fire
activity in the period between 1982 and 2000, thus expanding the study period by
18 years. Therefore, their inclusion would allow for the investigation and detection
of potential swifts in fire activity (e.g., to study the dynamics of the fire regimes/
pyromes) that are currently out of the scope of this study, leading to new research
questions. However, given the scope of our study, which mainly focuses on
providing a contemporary delineation of fire regimes and not on their temporal
evolution, and, given the exposed qualities of the dataset, we chose to base our
analysis primarily on the exposed MODIS-derived products. In this line, we also
note that combining fire products could result in problems/biases, such as
differences in spatial resolution and accuracy issues related to AVHRR-derived
products, which may lead to over-representation of fires72. By avoiding mixing
these products, we aim to provide a more accurate and focused analysis of
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contemporary fire regimes, leaving the integration of multiple products and
expansion of temporal analysis for future research.

Each wildfire and its attributes were projected onto a grid according to the
selected resolution, and we calculated the average frequency [fires/year], size [km2],
perimeter [km], duration [days], expansion [km2/day], and the ratio between the
perimeter and the area [km−1] at the cellular level. A latitudinal correction was
automatically applied (to all layers) to account for high-latitude area perturbations
by identifying the corresponding Coordinate reference system (CRS) projection. In
addition, non-flammable areas including the poles and large concentrations of
water (e.g., oceans, lakes) were filtered from the grid, to avoid bias in the analyses
and comparisons between regions.

One fire characteristic used in related research and not considered in our study
to define pyromes is known as the fire radiative power (FRP), often used as a proxy
of fire intensity15,73,74. Although there is an expected correlation between variables
like size and expansion of fires and FRP73,74, it is possible that its inclusion in our
framework may add additional refinement to the classification of pyromes, further
refining and expanding the results and conclusions of our research.

The climatic, land cover, and demographic layers were obtained from global
reanalysis projects providing gridded monthly and yearly data between 2000–2018.
The average, maximum, and minimum 2m temperature, and accumulated
precipitation at a resolution of 0.25∘ produced by the European Centre for Medium-
Range Weather Forecasts ERA 5 reanalysis (https://cds.climate.copernicus.eu/
cdsapp#!/dataset/reanalysis-era5-single-levels) were summarized as yearly data. We
used the TerraClimate dataset (http://www.climatologylab.org/terraclimate.html) to
extract the PSDI and climate water deficit, with a resolution of 2.5 arc-min. Annual
land cover data with a resolution of 500m was obtained from the MODIS/Terra +
Aqua Land Cover Type Yearly L3 Global 500-m grid (MCD12Q1) Version 6 data
product (https://lpdaac.usgs.gov/products/mcd12q1v006/), which provides annual
global land cover types. The world was classified into 17 different land covers
including: water bodies, evergreen needleleaf forests, evergreen broadleaf forests,
deciduous needleleaf forests, deciduous broadleaf forests, mixed forests, closed
shrublands, open shrublands, woody savannas, savannas, grasslands, permanent
wetlands, croplands, urban and built-up lands, cropland/natural vegetation mosaics,
non-vegetated lands, and sparsely vegetated areas.

The estimated population densities (number of people per square kilometer) for
the years 2000, 2005, 2010, 2015, and 2020 (used as a proxy for 2018) were
extracted from the Gridded Population of World Version 4 (GPWv4), Revision 11
dataset (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4) at a resolution
of 30 arc-s grid cells, and were summarized for the period under study. The
accessibility to cities, measured as the land-based travel time (minutes) to the
nearest densely populated area with 1500 or more inhabitants per square kilometer,
was obtained from the Malaria Atlas Project (https://malariaatlas.org/research-
project/accessibility_to_cities/) with a resolution of a 30 s-arc for 2015. In addition,
we used the gridded global datasets of the gross domestic product (GDP) and
“Human Development Index” between 2000 and 2015 (https://datadryad.org/stash/
dataset/doi:10.5061/dryad.dk1j0) to extract and calculate the zonal statistics for
each regime determined in our research in regards to the average GDP per capita in
a given administrative area at a 5 arc-min resolution NetCDF file. For 2016–2018,
we used 2015 data, simple extrapolations, and data projections75, obtaining similar
results. All features extracted from the different datasets were consolidated into
global GeoTif files with a common resolution, and the perturbations of high-
latitude regions were corrected using a geographic information system.

Clustering analysis. We apply a series of statistical clustering methods to unveil
relevant and interpretable pyromes from our consolidated fire dataset. We test
multiple preprocessing and dimensionality reduction techniques to identify
meaningful clusters, not depending on a particular method or data transformation.
For this, a numerical database derived from the global wildfire data between 2000
and 2018 was generated. We only included cells within the land (no water/ocean).
The features (columns) corresponded to the yearly fire-related variables. Clusters
were defined using the normalized yearly average values of the entire data of the
frequency (number of fires per year), size (area in square kilometers covered by the
fire), perimeter (km), duration (days until the fire was suppressed), daily expansion
(area evolution per day), and ratio perimeter/area of the observations, classifying
each pixel of the grid as a part of a unique fire regime.

Multiple clustering and unsupervised machine learning algorithms were tested and
compared, including density-based spatial clustering of applications with noise
(DBSCAN), ordering points to determine the clustering structure (OPTICS), K-Means,
self-organizing maps, and dimensionality reduction techniques (i.e., a principal
component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE)).
Quantitative and qualitative comparisons were performed using various performance
metrics, such as the intra/inter distance between groups, silhouette value76, and elbow
method (comparing the sum of the squared distances from each point to its assigned
center, see Supporting Information Table 17 for details). The final number of groups
was obtained by performing a statistical analysis of all possible classifications, i.e., by
comparing multiple subsets of features, numbers of clusters, algorithms, and expert
assessments. Similar results were obtained across the different clustering algorithms
even when modifying the preprocessing/dimensionality reduction methods applied to
the original features before clustering the observations. In all our experiments, we
observed a common convergence towards the identified 15 clusters. Furthermore, the

identified clusters present a high-level of interpretability and provide us with an effective
balance between computational complexity and robustness of the results. Selecting less
clusters led the experiments to more variability and oscillation of the outputs/statistical
analysis, potentially leading to less accurate representations of the data. Increasing their
number led us towards too granular solutions, losing the global scope/view of the study.

The PCA77 algorithm was implemented to quickly visualize the
multidimensional data into a two-dimensional map by selecting independent
components that retained the maximum percentage of the dataset variance. In our
study, we implemented it as a preprocessing step before applying the clustering
algorithms, which was useful for testing the robustness of the classification, and for
evaluating and visualizing the incidence of the climatic and demographic
components of each pyrome and fire regime. For this step, we performed an
independent PCA for each set of attributes, that is, climatic and demographic, by
selecting a unique component to summarize each dimension. By applying this
method, we obtained unique components explaining 51% and 59% of the variance
of the features, respectively. These components provided us with potential
explanations regarding the driving factors behind each fire regime, as characterized
by the following weights: βPDSI = −0.135, βAVGTemp = 0.694, βTotalPrecipitation =
0.707, βGDP = −0.590, βPopD = 0.556, and βAccess = −0.584.

The t-SNE algorithm78 is a nonlinear dimensionality reduction technique used
for the visualization of high-dimensional datasets. It computes a probability
distribution for pairs i and j of multidimensional observations, such that similar
objects lead to higher probability values (see (1), where σi is the bandwidth of a
Gaussian kernel). Then, a second probability distribution is defined over all of the
observations in a low-dimensional map, thereby minimizing the Kullback-Leibler
divergence79 between the two calculated distributions.

PðjjiÞ ¼ eð�kxi�xjk2=2σ2i Þ

∑k≠ie
�kxi�xkk2=2σ2ið Þ ð1Þ

We applied this algorithm to visualize the centroids of the regimes into a two-
dimensional map, providing an effective tool for evaluating the similarities/
differences between clusters and for interpreting the fire regimes obtained from the
multiple clustering algorithms. This analysis was supplemented by dendrograms
providing a hierarchical structure of the centroids of the clusters
(see Supplementary Methods).

K-means80 was used as the main unsupervised learning algorithm to classify the
observations into k clusters. It seeks to minimize the within-cluster variance. We
applied it to our multidimensional dataset using different preprocessing techniques
(e.g., normalization, standardization, and dimensionality reduction methods).
K-means models were fitted for all k∈ [2, 35]. Performance metrics and all
centroid statistics were recorded, and a series of plots were generated to visualize
the core characteristics of each fire regime. From the experiments, a convergence in
the performance metrics was observed with k∈ [10, 20], and notable improvements
were observed until k= 10. We determined the configurations that best balanced
the trade-offs between complexity, interpretability, and reproducibility. Once a cell
was classified, a label feature was generated in a GeoTif band, capable of remapping
the cells into the world grid for visualization purposes and expert assessment. A
Gaussian kernel was applied to smooth the results.

The self-organizing maps81 corresponded to the artificial neural network
models applied in the context of the nonlinear dimensionality reduction of the
high-dimensional data. Following an unsupervised learning approach, the models
were trained using competitive learning, where the nodes of the network were
activated (competed) to represent certain characteristics of the data. Training
samples were fed into the network, and their Euclidean distance was calculated
with respect to the weight vectors of the nodes, as initialized by sampling from the
subspace generated by the two largest principal component eigenvectors. The
weights of the neuron(s) with the closest distance (best matching units) were
updated using (2) where Wu(t) is the weight of neuron u at time step t, θ(v, u, t) is
the distance function between neurons v and u at step t, η(t) is the learning rate,
and D(i) is the input vector of the i-th training sample.

Wuðt þ 1Þ ¼ WuðtÞ þ ηðtÞθðv; u; tÞðDðiÞ �WuðtÞÞ ð2Þ
This process was repeated for each input vector for a number of training epochs

or until convergence within a small δ > 0 threshold was achieved. Once the map
was obtained, the components of the U-Matrix were calculated as the average
distance between the vectors of the nodes’ weights and their closest neighbors
(eight nodes in a rectangular grid), thus representing the high-dimensional data as
a two-dimensional matrix. By applying a color gradient (e.g., blue to red), the
U-matrix could be used to determine potential clusters of data where cooler
sections (compact regions) were considered as clusters, and warmer areas
represented the boundaries (larger distances) between these groups.

This representation could help for visualizing the clusters in high-dimensional
spaces, or for recognizing them automatically using relatively simple image processing
techniques. We processed the resulting U-matrix with a Laplacian of Gaussian
(LoG)82 kernel, one of the most widely used and effective blob detection methods,
aimed at detecting homogeneous areas within an image that are significantly different
(e.g., color and brightness) from their neighborhoods. Belonging to the family of
differential methods, and based on derivatives of the function with respect to the
position, it consists of a sequential application of a Gaussian kernel (to smooth the
image and attenuate its noise) and the Laplacian filter, emphasizing regions with rapid
intensity changes. Thus, the LoG operator (3), used to convolve with the U-matrix, is
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obtained to determine the potential fire regime classifications.

LoGðx; yÞ ¼ � 1
πσ4

1� x2 þ y2

2σ2

� �
e�

x2þy2

2σ2 ð3Þ

Spatial and temporal analyses. To spatially delineate pyromes, identify their main
hot-spots (regimes) based on the density of their observations, and characterize them
with temporal-dependent variables, we applied the following spatial density and
temporal analysis. Gaussian kernels using a radius of 5∘ and bandwidth h for mini-
mizing the mean integrated squared error ((4), which measures the difference
between the original function f(x) and its kernel density estimator f̂ hðxÞ) were applied
for the spatial characterization of the regimes. We determined the regions of the
world with the most fire observations, based on the density of the cells in a particular
regime. Contour lines were calculated for each local region (regime), accounting for
10%, 30%, 50%, 70%, and 90% of the local observations, respectively, to determine the
areas of the world where the fire regimes were focused. The regions with at least 30%
of the local observations were then ordered by area (largest to smallest), thereby
characterizing the top five or maximum numbers with identifiable areas in terms of
demographic, climatic, and soil features. Once the regions were determined, historical
time series were generated for each regime for all relevant features, focusing on the
inter-annual and monthly aggregated fire frequency and average fire size, so as to
determine the regional seasonality and trends.

MISEðhÞ ¼ E
Z

ðf̂ hðxÞ � f ðxÞÞ2dx
� �

ð4Þ

Data availability
The data that supports the findings of this study are openly available at https://doi.org/10.
5067/MODIS/MCD64A1.006(MODIS MCD64A1 collection 6); https://doi.org/10.3334/
ORNLDAAC/1642 (Global Fire Atlas); https://doi.pangaea.de/10.1594/PANGAEA.
895835(GlobFire); https://doi.org/10.24381/cds.adbb2d47 (European Centre for
Medium-Range Weather Forecasts ERA 5 reanalysis); https://doi.org/10.7923/G43J3B0R
(TerraClimate); https://doi.org/10.5067/MODIS/MCD12Q1.006 (MODIS/Terra + Aqua
Land Cover Type Yearly L3 Global 500-m grid, MCD12Q1); https://doi.org/10.7927/
H49C6VHW (Gridded Population of World Version 4 (GPWv4), Revision 11); https://
doi.org/10.1038/nature25181 (Accessibility); https://doi.org/10.5061/dryad.dk1j0
(Gridded global datasets for Gross Domestic Product and Human Development Index
over 1990-2015).

Code availability
The code for reproducing every step of our research is available as a series of Python
scripts and Jupyter notebooks for visualization convenience. All codes are available at
http://www.github.com/humnetlab/Vulcano.
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