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A B S T R A C T   

From a transport perspective, increasing active travel –and walking in particular– is crucial for the future of 
sustainable cities, as reflected in global decarbonisation policies and agendas. Further, walking is much more 
than a mere mode of transport: it provides a fundamental social function, fostering vibrant cohesive commu
nities. Arguably, walking and its associated infrastructure –sidewalks– should rank among the highest priorities 
for planning authorities. However, efficiency- and speed-driven urbanisation has gradually reallocated street 
space to private cars, leading to automobiles being the prioritised mode of transport today. Empirical research 
has generally followed suit, and a systemic understanding of walking as a phenomenon is largely missing, i.e., 
questions like how connected, resilient, accessible, or socially equitable is the pedestrian infrastructure of whole 
neighbourhoods and cities. Such relative neglect of sidewalk network research is, first and foremost, the 
consequence of a generalised lack of publicly available data on sidewalk infrastructure worldwide. A second 
reason might be its apparent lack of interest from a systemic standpoint: pedestrian mobility does not produce 
coordination challenges on the scale that cars do. In this work, we confront this perception by showing that there 
is ample research potential in the study of system-wide sidewalk networks, with both structural and dynamical 
challenges which might be critical to pursue the latest aspirations towards sustainable mobility in cities.   

1. Introduction 

Walking1 is arguably the most fundamental mode of human travel. It 
is cheap and sustainable, and provides wide-ranging transport, health, 
and environmental benefits to cities (Mueller et al., 2015; World Health 
Organization, 2022), some of which can be calculated in economic 
terms. For example, one recent cost-benefit analysis estimated that each 
kilometer walked in the European Union provides a net positive eco
nomic benefit of €0.37 to society, while each kilometer driven by car 
incurs a cost of €0.11 (Gössling, Choi, Dekker, & Metzler, 2019) due to 
pollution, traffic congestion, and health impacts, among other things. 
For these reasons and more, the promotion of pedestrian mobility, along 
with other active modes of travel like cycling, is increasingly recognized 
as a priority for sustainable urban development, and it is widely rec
ommended that cities should become more “walkable” (Lo, 2009; Speck, 

2013; Katz, Scully, & Bressi, 1994). 
However, walking is much more than a mere mode of transport. With 

its human scale, it provides a fundamental social function, fostering 
lively, cohesive communities, as well as local commerce. Already many 
decades ago, sidewalks were recognised as “uniquely vital and irre
placeable organs of city safety, public life and child rearing” (Jacobs, 
1961). Many of the positive ideas we associate with the “city” – the 
palpable energy, the diverse street scenes, the capacity to surprise – have 
their roots in the vibrant pedestrian life enabled by high-quality, walk
able urban design. 

Throughout most of human history, all cities were walking cities, and 
any discussion of the benefits of walking would have seemed unnec
essary. Since the beginning of the 20th century, however, most cities 
around the planet have gradually reallocated increasing amounts of 
public urban street space exclusively to a new, modern form of 
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1 Throughout this work, the terms “walking” and “walk” are used generally for any form of pedestrian mobility, including manual or powered wheelchair use. 
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transportation: private cars. Throughout what Peter D. Norton has called 
the “Motor Age” (Norton, 2011), most new developments have priori
tized the needs of private cars, and existing urban forms have been 
retrofitted to accommodate them, at the expense of all other modes of 
transit. This car-oriented development has led to widespread “car de
pendency” in cities throughout the world (Newman & Kenworthy, 1989; 
Saeidizand, Fransen, & Boussauw, 2022; Haustein & Nielsen, 2016), and 
has contributed to a host of social problems including wide-spread 
traffic congestion, driver and pedestrian deaths from car crashes, and 
air and noise pollution (Solé-Ribalta, Gómez, & Arenas, 2018; Gössling 
et al., 2019; Rifaat, Tay, & De Barros, 2011). 

Because of these developments, there is a growing push among 
planners, researchers, and the general public, to shift back towards a 
human-scale model of urban (re) development (Cervero & Radisch, 
1996; Resch & Szell, 2019; Nieuwenhuijsen & Khreis, 2016), reclaiming 
the city for pedestrians. As a consequence, walking has received sig
nificant attention in the transportation literature over the past few years 
in terms of localized physical design, for example Pedestrian Level of 
Service (PLOS) models (inspired by vehicular LOS models) that operate 
on a small spatial scale, e.g. at the level of intersections and mid-blocks 
(Nag, Goswami, Gupta, & Sen, 2020). On the other hand, a plethora of 
walkability indices have been developed (Vale, Saraiva, & Pereira, 
2016) that incorporate both characteristics of infrastructure quality, as 
well as proximity of daily wants and needs. 

In the case of both PLOS models and walkability indices, walkability 
is measured on a local-scale (even if averaged across larger areas such as 
neighborhoods or cities). Meanwhile, the systemic and social perspec
tive is largely missing. How connected, resilient, accessible, or socially 
equitable (Pereira, Schwanen, & Banister, 2017; Gössling, 2016) is the 
pedestrian infrastructure of whole neighborhoods or cities, and how can 
it be improved? Such large-scale understanding can be achieved well 
with the tools of network science: the large number of intersections, 
links, and connected elements in the system of sidewalks, crosswalks, 
and paths are naturally formalized as spatial networks (Barthelemy, 
2022). Indeed, for road networks many systemic questions have already 
been answered this way (Barthelemy, 2016; Batty, 2012), but active 
transportation modes –cycling, and especially walking– remain crucially 
understudied (Olmos et al., 2020; Rhoads, Solé-Ribalta, González, & 
Borge-Holthoefer, 2021; Vybornova, Cunha, Gühnemann, & Szell, 
2022). 

What factors might explain the relative neglect that sidewalk 
network research has experienced? The most evident reason is the 
generalized lack of publicly available data on sidewalk infrastructure 
worldwide. Many municipal open data portals lack clearly available 
sidewalk data entirely. When available, they are not standardised to the 
same extent as road network data. More subtly, a second reason for a 
scarce research tradition in city-wide sidewalk networks is their 
apparent lack of interest from a systemic standpoint: despite some co
ordination challenges for pedestrian mobility especially in high-density 
cities, from pavement maintenance/safety to accessibility and potential 
sidewalk congestion (Corazza, Di Mascio, & Moretti, 2016; Aghaabbasi, 
Moeinaddini, Asadi-Shekari, & Shah, 2019; Feliciani & Nishinari, 2018), 
pedestrian mobility does typically not appear to produce the pressing 
coordination challenges on the scale that private cars do, whether they 
be structural (large infrastructural investment, ecosystem fragmenta
tion, etc.) or dynamical (congestion, pollution, etc.). This imbalanced 
perception can be due to many reasons, such as marginalisation or vis
ibility differences (Colville-Andersen, 2018; Szell, 2018; Rhoads et al., 
2021), the much higher potential to congestion of vehicular traffic, or 
the more self-organising nature of pedestrian mobility (Helbing, Molnár, 
Farkas, & Bolay, 2001; Feliciani & Nishinari, 2018). 

In this work, we hope to challenge this perception by showing that 
there is ample research potential in the study of system-wide sidewalk 
networks: from understanding and predicting pedestrian flows, to esti
mating origin–destination matrices, to assessing walking-distance allo
cation of services, i.e. the “15-min city” (Moreno, Allam, Chabaud, Gall, 

& Pratlong, 2021; Xu, Olmos, Abbar, & González, 2020). To effectively 
address these issues, we make the case that sidewalk networks need to be 
able to closely approximate the structure and behavior of the physical 
pedestrian infrastructure systems they model. Researchers have called 
such close virtual analogues of physical systems “digital twins” (Ferré- 
Bigorra, Casals, & Gangolells, 2022). Achieving this means thinking of 
sidewalk networks on their own terms: not as a derivative of road net
works, but as a unique class of system, with unique properties and ap
plications. The necessity of having available and using sidewalk network 
data sets is underscored by a plethora of applications –relevant beyond 
pedestrian mobility itself– such as the last mile problem (Park, Farb, & 
Chen, 2021; Tzouras et al., 2023; Ha, Ki, Lee, & Ko, 2023), multimodal 
mobility (Alessandretti, Natera Orozco, Battiston, Saberi, & Szell, 2022), 
machine learning and network approaches to pedestrian safety (Osama 
& Sayed, 2017; Bustos et al., 2021; Ghomi & Hussein, 2023), or sidewalk 
interactions between humans and autonomous delivery robots (Jen
nings & Figliozzi, 2019; Gehrke, Phair, Russo, & Smaglik, 2023). 

Before outlining the contents of this review, let us first clarify which 
topics are not dealt with here. This work does not engage with individual 
or localized pedestrian behavior, i.e., evacuation dynamics, human 
crowd management, or micro-scale pedestrian navigation decisions. 
Such phenomena, often studied with a blend of empirical data and 
agent-based models, depend on the perception of the immediate envi
ronment (is a car coming my way? Are there obstacles that should be 
avoided?) (Seneviratne & Morrall, 1985; Brown, Werner, Amburgey, & 
Szalay, 2007; Kretz, Grünebohm, Kaufman, Mazur, & Schreckenberg, 
2006), and system-level planning is unnecessary. Instead, we are con
cerned with a broad spectrum of questions, ranging from centrality 
measures, to network robustness, to multilayer transportation networks, 
that consider the walkable city as a complete system that can be studied, 
quantified, assessed, and optimized for its purpose of facilitating and 
encouraging walking as a modal choice. 

To start with, Sections 2 and 3 provide the minimal ingredients for a 
sidewalk network to be constructed. With the relevant object at hand, 
the next step is to study its structural characteristics (Section 4) under 
the general framework of spatial networks. Section 5 provides an 
overview of some open problems in pedestrian networked dynamics. 
Opening to a broader perspective, Section 6 places the pedestrian 
network research in the context of multimodal transportation networks 
(Alessandretti et al., 2022). Finally, Section 7 unfolds some open prob
lems and future challenges that urban analytics, data science and 
transportation research may address in the near future, in the interests of 
promoting a healthier, more sustainable and inclusive mobility. 

2. Defining pedestrian networks 

Many empirical physical and social systems can be usefully repre
sented as networks. A network can be formally defined as a graph G =

(V,E) where V is a set of elements called vertices or nodes, and E is a set 
of ordered or unordered pairs of nodes, called links or edges, which 
represent relationships between those nodes. In the case of urban 
transportation networks, nodes represent discrete locations, which 
could be origins, destinations, or intermediate points on a journey, while 
edges represent navigable connections between those locations. In some 
cases, the translation from real-world system to network model can be 
intuitive and straightforward. The nodes of a subway system, for 
example, can be naturally defined as the stations or stops along the 
system’s lines, with the edges indicating the rail connections between 
one station and another. 

Sometimes, however, the mapping from empirical system to network 
model is not so immediately obvious. Consider the example of network 
representations of urban road systems. The most common approach to 
model such systems is the so-called “primal” approach (Porta, Crucitti, & 
Latora, 2006; Lin & Ban, 2013), wherein network nodes represent the 
intersections of different road segments, and each road segment between 
two intersections is considered as a link. Essentially, nodes serve as 
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decision points where a driver can choose to either continue down the 
same street, or change its direction. This matches our intuitive under
standing of how roads are used, but there is a problem: the model im
plies that drivers begin and end their journeys at intersections. 
Attempting to resolve this by, say, inverting the mapping such that road 
segments are the nodes (thus also origins and destinations), and in
tersections are the edges, has some advantages, but this “dual” approach 
(Porta, Crucitti, & Latora, 2006) (see Fig. 1A) conflicts with our un
derstanding of how these systems are actually navigated. Accordingly, 
for most use cases, the primal approach is preferred, despite the infor
mation loss it incurs by abstracting away from exact origins and desti
nations. In cases where precise point-to-point routing is needed, 
dynamic segmentation (Fischer, 2006; Dueker & Vrana, 1992) of primal 

networks can allow for the placement of temporary nodes along the 
network corresponding to actual origin and destination points, without 
overloading the size of the underlying network data structure. 

The point here is that the translation from an empirical system to a 
network model has to be done intentionally and carefully, and the 
choices made in the process should respond to the needs of the appli
cation, i.e. be fit for purpose. The network that emerges will not be a one- 
to-one reflection of reality, but instead an incomplete yet useful 
abstraction. For our purposes, this means that we need to make decisions 
as to what a pedestrian network should look like –how should the model 
be designed to best reflect reality and achieve its practical purposes? 

Up to now, the answer in the literature has most often been to use 
some variation of the well-studied and standard primal model of the 

Fig. 1. (A) The “primal” and “dual” representations 
of real urban road infrastructure are illustrated. 
Neither of these representations is more “correct”, 
and each can serve a purpose depending on context. 
“Decision” points are highlighted in the primal rep
resentation, and also “no routing decision” points 
where placing a node is not needed. Essentially, the 
condition to place a node boils down to the that node 
having more than two connections, k > 2. (B) Exam
ples of existing sidewalk data in a variety of forms: 
curb lines (Singapore), sidewalk polygons (Bogota, 
Colombia and Washington, DC), and sidewalk center 
lines (Boston). (C) The primal model of sidewalk 
networks under common urban design patterns. 
Sidewalk nodes (orange) tend to have degree k = 4, 
regardless of the configuration and degree of the un
derlying street network (blue).   
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road network as a “good enough” proxy for a pedestrian network. After 
all, most urban street space is divided between carriageways for vehi
cles, and the sidewalks that run adjacent to them (Colville-Andersen, 
2018; Szell, 2018; Rhoads et al., 2021). It follows that the structures of 
these spatially-embedded networks should be related. However, as 
explained next, there are several properties of pedestrian infrastructure 
networks that make them unique, and that call for dedicated study 
separate from other urban networks. 

2.1. Moving away from road network analogies 

For several years now in the planning literature, it has been known 
that reducing pedestrian networks to the topology of their adjacent road 
networks results in important miscalculations of network metrics rele
vant to pedestrian mobility. Chin, Van Niel, Giles-Corti, and Knuiman 
(2008) created a pedestrian network by supplementing the road network 
of a study area in Perth (Australia), with links corresponding to 
pedestrian-only paths and trails. Several of these links connected closed 
cul-de-sacs with adjacent roads, thus increasing the connectivity of the 
pedestrian network with respect to the road network. This same 
approach was taken up by Tal and Handy (2012), with similar results, in 
their study of walkability in Davis (California, US). 

Building on such work, the authors of Cambra, Gonçalves, and 
Moura (2019) developed a useful typology of links on pedestrian net
works, including those which are for exclusive pedestrian use. The au
thors distinguish between the formal and the informal parts of the 
network. The former is comprised of sidewalks and marked or legal 
crosswalks, while the latter includes paths through more amorphous 
spaces like empty lots, parking areas, green spaces, etc., as well as 
informal crossings. In the central neighborhood of Avenidas Novas (in 
Lisbon, Portugal), the share of the network taken up by informal links 
was as high as 25% (in length). While defining such informal links is 
difficult due to lack of data, it is clear that they cannot be simply dis
counted when they compose such a large part of the usable network. 

At the very least, then, a pedestrian network must incorporate links 
that are unique to it, such as trails and pedestrian streets. This most basic 
model of the pedestrian network is already available at good quality and 
on a large scale through OpenStreetMap (OpenStreetMap contributors, 
2017), and specifically through the OSMnx Python package (Boeing, 
2017). Defining the pedestrian network as an augmented road network 
in this way is useful in some cases, but still abstracts away from 
important details of the pedestrian experience. 

2.2. Sidewalk segments as fundamental units 

Networks can be enriched with data far beyond the basic intercon
nection between nodes. The most detailed and realistic road network 
models, for example, include edge metadata related to the characteris
tics of each road segment. For the common purposes of route planning 
and traffic modelling, the most useful characteristics to include are some 
proxy for road segment capacity (e.g. number of lanes) and maximum 
speed at free flow. These characteristics help to determine whether or 
not a segment is navigable under given conditions, and whether or not it 
forms part of the shortest path between any two points (i, j) in the city. 
Likewise, sidewalk networks can integrate relevant data on individual 
sidewalk characteristics to allow for more realistic walkability and 
accessibility analysis. These characteristics cannot be assigned on a 
street-by-street basis, but must be determined for individual sidewalk 
segments. It may be the case that a sidewalk on one side of a street is 
wide, or of good quality, while its counterpart is narrow, or damaged, or 
otherwise unusable by all or some pedestrians. Additionally, a pedes
trian’s specific destination will always be on one side of the street or the 
other, and conflating the two can be problematic when no legal or safe 
crossing exists between them. All in all, it is clear that the sidewalks on 
each side of the street must be considered as separate, fundamental units 
of pedestrian network navigation. 

Defining a model that accounts for this means moving towards a 
“primal” representation of sidewalk networks, adjacent but irreducible 
to the road network it shares space with. Following the decision-point 
criteria used in the construction of road networks, the nodes of a side
walk network can be placed at any point where a pedestrian has to make 
a decision, either to turn and walk down another side of the current 
block, or to cross the roadbed to another block (Rhoads et al., 2021). In 
Fig. 1A, the idea of a “necessary decision” is highlighted in the primal 
representation. Note as well that, a block corner with no crosswalk does 
not imply a routing decision, and so there is no need to define a node. In 
practice, this can be achieved in several ways. In the best case, where 
geometric data on crosswalks and other legal crossings are available (see 
Section 3 for further discussion of data availability for network con
struction), the points where these crossings intersect with the sidewalk 
can be designated as nodes. Operationally, placing a node on the 
network demands that such node has more than two connections, that is, 
k > 2. 

Under this model, sidewalks spanning each edge of each block are 
the edges of the network. This opens the door for the use of edge met
adata to “tag” edges with sidewalk properties such as length, width, 
slope, or even pavement quality. This will be further discussed in later 
sections, particularly in the context of percolation on sidewalk networks. 
It bears mentioning that pedestrian-only paths such as park trails or 
stairs can be incorporated in this model under the same principle, with 
nodes placed at decision points. Network models of this type have begun 
to be the standard for city-wide studies of pedestrian networks (Rhoads 
et al., 2021; Bolten et al., 2015; Bolten, Mukherjee, Sipeeva, Tanweer, & 
Caspi, 2017; Bolten & Caspi, 2021; Bolten, 2020; Rhoads, Solé-Ribalta, 
& Borge-Holthoefer, 2023; Hennessy & Ai, 2023). 

Having established the parameters for what a sidewalk network 
should look like, we can begin our discussion of how to use them in 
practical research. Unlike some more abstract classes of networks (e.g. 
random networks), sidewalk networks are singularly useful as repre
sentations of real world physical systems. Accordingly, constructing and 
studying sidewalk networks means starting with empirical data on 
urban pedestrian infrastructure –a topic which we will now take up. 

3. Data standards and sources 

Effective research on urban transportation networks requires reliable 
data. As of today, publicly-available sidewalk network data sets are 
nearly non-existent. As a consequence of the current lack of easily- 
available data, researchers interested in studying pedestrian networks 
as an entity structurally distinct from the road network (as described in 
the previous section), have often resorted to constructing networks by 
hand for select areas of a given study city (Chin et al., 2008; Tal & 
Handy, 2012; Cambra et al., 2019) –an approach which quickly becomes 
unfeasible with increasing scale. A more practical approach is to start 
with a pre-existing geographic data set from which network geometries 
can be extracted or inferred. 

To construct a pedestrian network in the way laid out in Section 2, 
the main input is a set of polyline geometries representing the right-of- 
way of each one of the pedestrian paths (sidewalks, crossings, trails, etc.) 
of the target area (city, neighborhood, etc.). These polylines will be the 
links of the network. Any intersections between two or more polylines is 
designated as a node, indicating that a pedestrian navigating the 
network can choose to traverse a new link, or to finish their journey. 
Once such an input dataset is available, constructing the network is a 
fairly trivial GIS exercise. As it stands, acquiring and processing that 
input data set is the principal challenge of sidewalk network 
construction. 

In the following section we will survey the various sources and types 
of sidewalk infrastructure data that are currently available, from official 
data sets to crowd-sourced alternatives, and we will discuss the potential 
for future data curation and management efforts. 
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3.1. Municipal data 

For researchers hoping to make progress in the study of pedestrian 
networks, the most obvious point of departure is municipal data sources. 
City governments are the public entities best equipped to create and 
maintain data sets of pedestrian infrastructure. Considering the current 
state of affairs laid out so far in this review, it is not surprising that 
almost no ready-to-use sidewalk network data sets are available from 
municipal sources. Instead, the best approach is to construct the net
works using available non-networked data on sidewalk and other 
pedestrian infrastructure that municipalities make publicly available. 
When available at all, data on urban sidewalks is presented in at least 3 
different forms: curb lines, sidewalk polygons, and sidewalk center lines. 
Examples of all 3 are provided in Fig. 1B. 

The lack of uniformity in data sources available from municipal 
portals may be attributable to the lack of clarity regarding the position of 
sidewalks in the division of public space. While urban streets are almost 
universally understood to be a public good to be maintained by the 
government, legal norms for sidewalk stewardship vary. In cities such as 
New York, Sao Paolo, and Brussels, property owners and residents are 
responsible for sidewalk installation and maintenance, while in Los 
Angeles, Washington DC, and London, that responsibility falls to 
municipal authorities.2 

Curb lines are one form of sidewalk-related data that is likely 
maintained by most city governments, whether or not they are made 
available publicly, since they delineate the legal right-of-way for cars in 
public roadways. However, while all curb lines coincide with the edge of 
a roadway, not all of them will have a corresponding sidewalk. Instead, 
they may abut private lawns, walls, or non-navigable patches of green 
space. Furthermore, curb line data sets provide no information on 
sidewalk characteristics such as width. 

Sidewalk polygon data overcomes these drawbacks. When available 
from municipal sources, these polygons are usually manually con
structed with the use of aerial imagery as a guide. These datasets will 
produce no false positives (indicating the presence of a sidewalk where 
none exists), and they implicitly provide some information on sidewalk 
attributes, such as area and width. However, the data is geographic. 
Transforming such data into a network requires significant processing 
which can vary depending on the particular nature of the polygon data, 
the diversity of which is illustrated by the examples of data available 
from Bogotá, Colombia and Washington, DC (Fig. 1B). 

Fewer cities offer data sets of sidewalk center line geometries. From 
the perspective of building a network, center lines are the easiest data 
type to manage, since they are similar in structure to the final network. 
While these data sets do not maintain the physical shape of the sidewalk 
in the same way that polygons do, lines can be tagged (manually or 
otherwise) with attributes like sidewalk width and area. 

Adding to the difficulties of heterogeneity, it is not rare to find 
inaccurate, incomplete, incorrect or outdated data. Fig. 2 illustrates 
some typical situations that can be encountered when closely comparing 
high-resolution aerial imagery with polygon geometries supposedly 
reporting on the presence of sidewalks and/or crosswalks. 

It is important to note that municipal data sets vary widely in their 
treatment of non-sidewalk elements of pedestrian infrastructure. Data 
sets on crosswalks may or may not be available. Where available, this 
data can come in the form of points, lines, or polygons. Likewise, formal 
non-sidewalk pedestrian facilities such as paths through parks, hiking 
trains, tunnels, etc. may or may not be available. As will be discussed 
later, future efforts to standardize sidewalk network data should aim to 
generate data sets that are as comprehensive as possible. In the mean
while, alternative data sources such as the ones described below are 
often required for non-sidewalk elements. 

3.2. Crowd-sourcing and OpenStreetMap 

OpenStreetMap (OSM) is by far the best known and most used crowd- 
sourcing platform for open geographic data. As has already been 
mentioned, much of the data available on OSM is derived from data 
produced by public authorities. However, the open nature of the plat
form does allow for the possibility of crowd-sourcing new data sets that 
do not yet exist. 

Like the EU’s INSPIRE and the US Census Bureau’s TIGER/Line data, 
OSM maintains its own data standards for the representation of different 
geographic entities. Currently, in a reflection of the broader state of the 
art, the standard for pedestrian infrastructure is uneven. In many cases, 
data on pedestrian infrastructure is limited to the road network level, 
where the field “sidewalk” on a street segment can be set to the values 
“left”, “right”, “both”, and “no”, indicating the presence or absence of 
sidewalks on either side of the street. There is also a separate “footway” 
entity that encapsulates several categories of pedestrian paths. The use 
of one or the other standard is dependent on data available in the study 
area. The OpenSidewalks3 or SharedStreets4 initiatives are examples of 
programs intending to give more uniformity to the standards around 
pedestrian infrastructure, in order to guide future contributions to OSM. 

Major changes to the prevailing public policy surrounding pedestrian 
infrastructure and network data (i.e., no policy) should be in sight. In the 
meantime, crowd-sourcing efforts do present opportunities, at least at a 
city-scale. One successful project (Saha et al., 2019) asked volunteers to 
assess street view imagery in order to enrich sidewalk data in Wash
ington DC, indicating, for example, whether or not sidewalks were 
damaged, or had accessible curb ramps –work that might otherwise be 
delegated to field workers from the city government. Similar efforts exist 
for some European cities (Bartzokas-Tsiompras, Photis, Tsagkis, & 
Panagiotopoulos, 2021). The organization of “mapathons” dedicated to 
the manual construction of pedestrian networks for upload to OSM with 
the aid of high-quality aerial imagery is another promising route 
(Tanweer et al., 2017; Gaspari et al., 2021). 

3.3. Towards abundant pedestrian infrastructure data 

Establishing a standard for the representation of pedestrian infra
structure in network form, as was done in Section 2, facilitates future 
efforts to develop the pool of available sidewalk data. Standards of this 
kind already support most research on motorized transportation net
works. Many works in the study of road networks rely on the excellent 
OSMnx Python package (Boeing, 2017) to download urban road net
works in a standardized format with a few lines of code, but it should not 
be forgotten that OSM data relies critically on government data sources, 
whether at the national or municipal level. The US Census Bureau’s 
TIGER/Line GeoData standard, often the basis for OSM line data in the 
US, presents road network data at a national scale. No standard exists for 
sidewalks, much less pedestrian networks, in the TIGER/Line data. The 
same goes for the European Union’s INSPIRE standard, which has 
specifications for air, road, and rail networks, but not for pedestrian 
networks. In the face of such a lack of consensus around data formats, 
and the limitations of crowd-sourced platforms, it seems clear that re
searchers might need to tap alternative resources which should not 
depend on institutional initiatives. 

Examples include the use of user-volunteered GPS traces to track 
pedestrian activity (Hunter et al., 2021; Mobasheri, Huang, Degrossi, & 
Zipf, 2018), or inference from mobile phone traces (Jiang et al., 2013) 
based on call detailed records (CDRs). Still, these alternatives have their 
own shortcomings. Neither GPS traces nor CDRs are generally available, 
and, when they are, data belong to very specific locations and time 
ranges. Also, it is uncertain whether a given trace belongs to a 

2 https://www.smartcitiesdive.com/ex/sustainablecitiescollective/wh 
o-owns-our-sidewalks/1070841/. 

3 https://www.opensidewalks.com/  
4 https://sharedstreets.io/ 
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pedestrian, a cyclist, or a driver, and attempts to disambiguate this are 
not straightforward. 

All in all, the most promising direction toward a pipeline that leads to 
reliable data on sidewalk infrastructure is remote sensing. In particular, 
computer vision for applications in remote sensing can support and 
resolve challenges exploiting, e.g., large satellite or aerial image data 
sets to collect and identify features in an environment with accuracy and 
speed. In the context of road transportation, there are successful appli
cations for the identification and mapping of road networks (Cheng 
et al., 2017; Máttyus, Luo, & Urtasun, 2017; Bastani et al., 2018), with a 
combination of pixel classification, image segmentation, and graph 
extraction techniques. Also, the use of street-level imagery has proved 
useful to assess different urban features (Zünd & Bettencourt, 2021; 
Bustos et al., 2021). These ideas have been put to work in the pedestrian 
infrastructure context in Li et al. (2018, 2020, 2022, 2023), and may be 
the path to solving the data scarcity problem around walking 
infrastructure. 

4. Structure of sidewalk networks 

Interestingly, the study of networks had unofficial origins in an urban 
setting. In 1736, the Swiss mathematician Leonhard Euler published his 
famous solution to the Königsberg bridge problem (that is, finding a 
round trip that crossed each of the bridges of Königsberg exactly once). 
Relevant to this section, the inaugural Königsberg bridge problem is not 
only urban in setting, but it relates directly to the structure of the 
network in question. Following the spirit of the Königsberg bridge 

problem, the next subsections review some features and measures that 
broadly characterise the topology of real sidewalk networks. The focus 
of network-level analysis is on properties of networks as a whole. These 
may reflect typical or atypical traits relative to a specific application 
domain, or similarities occurring in networks of entirely different origin. 
In this sense, the following topics aim at connecting the interests and 
potentialities of complex network researchers –for whom the network’s 
architecture is intimately coupled to its functional and dynamical as
pects, such as growth, robustness, response to external perturbations, or 
the onset of congestion from the free-flow state– to those of urban 
science. 

We are aware that, by taking this perspective, we momentarily 
overlook the fact that pedestrian dynamics take place mostly at a local 
scale, with heavy constraints on, for example, the length of a typical on- 
foot trip: pedestrian travel decays with distance, and trips beyond 2 
kilometres seldom occur. However, global features are nonetheless 
relevant: the apparent discrepancy is cleared up as soon as we under
stand that all the scales in a network (the micro and macro levels) are 
intertwined –macro emerges from micro, and micro behaves constrained 
by macro. 

4.1. Planarity and its constraints on graph descriptors 

Despite different historical, political, geographical, or financial cir
cumstances, at a coarse-grained level, infrastructure networks of very 
different cities share quantitative and structural similarities. This is the 
case because such networks are not only spatial (i.e., nodes are located in 

)C)B)A

)F)E)D

Fig. 2. Illustration of some typical errors in reported sidewalks and crosswalks polygon geometries. Top row displays the aerial imagery, bottom row the polygon 
geometries. Panels A and D show an example in Berlin (Germany) where two precarious sidewalks (grey) are reported to connect via a crosswalk (white), but the 
aerial image shows no sign of the existence of such connection. Panels B and E show an example in Los Angeles (US). There, the lower-left corner of the intersection is 
missing, such that the crosswalk (white) leading to that area becomes a dead-end. Further, the left-most portion of sidewalk does not connect to its corresponding 
crosswalk –an automatic script to build a network representation from this information would leave these two objects disconnected. Finally, panels C and F show and 
example in Paris (France) where we observe two disconnected crosswalk segments (white), and the two remaining crosswalks are simply absent in the polygon 
geometries. We also observe a large portion of missing sidewalk (grey) information nearby the river, where the image shows people gathering. 
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physical space), but often also planar or quasi-planar (Barthélemy, 
2011). Planar graphs are those that can be drawn on a 2-dimensional 
euclidean plane such that none of the edges of the graph intersect. 

Pedestrian networks are no exception: like other urban trans
portation networks, they are embedded in geographic space. Further, 
they are approximately planar, and this property alone heavily con
strains certain graph properties (Barthélemy, 2011; Barthélemy, 2018). 
For example, the degree distribution of a planar network will always be 
somewhat narrow (in contrast to some social networks, no power-law 
degree distributions exist for planar graphs), with an average degree 
no greater than 6. Underpasses, overpasses, stairs, bridges, and even 
passageways through buildings are examples of situations where 
pedestrian networks might break planarity, but these cases are the 
exception rather than the rule. 

Table 1, reproduced from Rhoads et al. (2021), reports the charac
teristics of the pedestrian networks of 3 cities, compared to their cor
responding road networks. Road network geometries were extracted 
from OpenStreetMap (OSM) using the OSMnx Python package (Boeing, 
2017), which provides a simple interface for querying OSM data. The 
package was used to extract the edges and nodes of the “Drive” network 
of each city. On the other hand, pedestrian networks were constructed 
by hand, in the sense that vector data on sidewalks were processed ad 
hoc, depending on the format in which they were offered (seeFig. 1B and 
accompanying text in the previous section). Those datasets are publicly 
available, as detailed in the main text and Supplementary Information of 
Ref. Rhoads et al. (2021). 

It is immediately clear from the Table that the pedestrian networks 
are much larger than the road networks in terms of the number of nodes 
(N) –about 3 times larger in the case of New York City, and about 4 times 
larger in the case of Paris and Boston. This can be explained by the 
nature of the primal model to build pedestrian networks, as described in 
the previous section. Likewise, the average degree (〈k〉, the number of 
edges that a node in the network is connected to) of the networks hovers 
between 3.11 (Paris) and 4.13 (Boston). The tendency to converge to
wards an average degree of 4 is unsurprising. Assuming the presence of 
all possible legal crossings and all possible sidewalks, under common 
street patterns, a node placed along a block’s sidewalk at the closest 
point to a given street intersection will tend to have a degree of 4, 
independently of the degree of the street intersection (see Fig. 1C). 
Nodes with k < 4 may be cul-de-sacs, or end-points of incomplete 
sidewalks, or else areas where a theoretically-possible legal crossing is 
unavailable. Nodes with k > 4 most of the time form part of a 
pedestrian-only thoroughfare, which replicates the primal model of road 

networks. It is also interesting to observe the differences in efficiency 
and diameter between the sidewalk and road networks. Sidewalk net
works demonstrate greater efficiency, likely due to their higher density, 
although their diameter may be larger, as seen in Paris. Remarkably, the 
statistics presented in Table 1 highlight the significance of realism in 
terms of distances, especially when it comes to representing the sidewalk 
network, as pedestrians are particularly sensitive to distances. 

4.2. Betweenness centrality 

In network science, centrality refers to the various measures used to 
gauge the importance of individual network elements (nodes and edges) 
to the network as a whole. There are dozens of centrality measures, each 
useful in different applied contexts. In the case of transportation net
works such as sidewalk networks, it can be especially useful to under
stand an individual element’s contribution to transit, or flow, across the 
network –a feature well-described by betweenness centrality. 

Initially introduced in the social sciences (Freeman, 1977), 
betweenness is a centrality measure that quantifies the importance of a 
node (or an edge) in terms of the number of paths crossing it. The 
shortest-path betweenness (Bi) considers only the least costly paths 
(typically length or traversal time in spatial networks) between locations 
and is defined, for a given node i, as 

Bi =
1

N

∑

o∕=d

σod(i)
σod

(1)  

where σod is the number of shortest paths going from origin o to desti
nation d, while σod(i) is the number of these paths crossing i. Factor N 

represents a normalisation constant which may be different 
((N − 1)(N − 2), N2, N, 1) depending on the application. Note that this 
equation can be easily adapted to the particular constraints of pedestrian 
mobility –first and foremost, limitations on the typical on-foot trip. This 
is explicitly considered in Section 5 on pedestrian dynamics. In the 
remainder of this subsection, instead, we focus on the unrestricted (i.e., 
paths from any node to any other node) centrality distribution as a case 
study to place the accent on the network as an object of study itself. 

Betweenness centrality is implicitly related to the concept of path 
which, in turn, depends on the routes that elements take while 
traversing the network. This explains why, despite its origins in sociol
ogy, betweenness stands out as one of the most prominent descriptors in 
the analysis of traffic, routing, and congestion (i.e., road networks and 
the vehicles traversing them). While congestion is not –generally– a 
problem in on-foot mobility, betweenness, and centrality measures in 
general, might constitute an insightful framework when considering the 
social dimension of sidewalk networks as a space for meeting and 
interaction, e.g. to extend the notion of “social interaction potential”, as 
discussed in Farber, Neutens, Miller, and Li (2013), to networked sys
tems where the concept of joint accessibility might be more clearly 
delineated (Zhang & Thill, 2017). Centrality measures might prove 
useful as well when determining the optimal location of public services 
(Xu et al., 2020). 

Edge betweenness has a direct relation to pedestrian dynamics, and 
is discussed in length in Section 5. Here, instead, we focus on node 
betweenness and its distribution (Kirkley, Barbosa, Barthelemy, & 
Ghoshal, 2018) on a sidewalk network. Keeping in mind the above- 
mentioned features –planarity, and a narrow degree distribution 
around a well defined average: a quasi-regular network– we can foresee 
that a sidewalk network’s betweenness will behave close to the expected 
values in a grid. Noteworthy, betweenness is a relatively costly 
descriptor to compute (Brandes, 2001), but analytical derivations are 
possible for a reduced –but relevant here– family of graphs, such as 
regular ones (Lampo, Borge-Holthoefer, Gómez, & Solé-Ribalta, 2021; 
Verbavatz & Barthelemy, 2022). 

Table 1 
This table compares the sidewalk and road networks of 3 cities according to 5 
important network characteristics: number of nodes and edges (N and E), 
average degree (〈k〉), average efficiency (〈Eff〉), and network diameter (D). From 
Rhoads et al. (2021) with permission.  

City Metric Sidewalk network Road network 

Boston N 46,547 11,133 
E 96,022 25,455 
〈k〉 4.13 2.3 
〈Eff〉 9.8× 10− 5 1.9× 10− 4 

D 23,823 m 25,769 m  

New York N 129,520 46,007 
E 253,594 116,723 
〈k〉 3.91 2.53 
〈Eff〉 5.4× 10− 5 9.3× 10− 5 

D 39,226 m 51,404 m  

Paris N 40,095 10,073 
E 62,414 19,651 
〈k〉 3.11 1.95 
〈Eff〉 1.1× 10− 4 2.2× 10− 4 

D 22,427 m 19,533 m  
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4.2.1. Betweenness derivation in regular grids 
Let us first consider a 4-regular grid with Nr number of rows and Nc 

number of columns (N = Nr × Nc), where each node can be identified by 
its coordinates in that grid. Given a node with coordinates (x, y), i.e., 
located at x horizontal and y vertical steps from lower-left node (0,0) of 
the grid, we can trivially generalise Eq. (9) in Ref. Lampo et al. (2021) 
such that the (non-normalized) node betweenness can be measured as 

B(x,y) =
∑Nc

a=1

∑Nr

b=1

∑Nc

c=1

∑Nr

d=1

π|c− x|,|d− y| π|a− x|,|b− y|

π|a− c|,|b− d|
(2)  

where (a, b) and (c, d) are origin and destination nodes, respectively, and 
at least one shortest path between those goes through (x,y). On the other 
hand, πx,y is the number of different paths in the grid involving x hori
zontal and y vertical steps: 

πx,y =

(
x + y

x

)

=
(x + y)!

x!y!
. (3) 

Fig. 3 provides a visual support for the explanation of the terms in Eq. 
(2). For this example, we aim to find out the number of shortest paths 
traversing node (x, y), such that they start at (a, b) and end at (c,d); as 
well as the total number of shortest paths between (a, b) and (c,d). To do 
so, we consider first the paths starting at (a, b) leading to (x, y) (yellow 
shade): there are 4 (see the legend on the right of the image). Then, we 
calculate the combinatorics of the paths leaving from (x, y) and leading 
to (c, d) (blue shade). Trivially then, there are 4 × 10 shortest paths 
between (a, b) and (c, d) traversing (x, y). Finally, the grey shadow cir
cumscribes all possible shortest paths between (a, b) and (c, d). The 
relation between these two quantities quantifies how central (x, y) is, 
with respect to (a, b) and (c,d). 

4.2.2. Comparison with empirical data 
Fig. 4 sheds some light on the hypothesis above. In it, the nodes of 

Barcelona’s sidewalk network are coloured according to their 
betweenness value (except for terminal nodes with betweenness 0, 
which amount to a small number). Interestingly, nodes in the periphery 
have indeed cooler colours that those in the centre. This is also true if we 
take some of its districts sub-graphs: see the insets of the figure, corre
sponding to sidewalk network nodes in the Eixample, Ciutat Vella and 
Gràcia, where again they are coloured according to their betweenness 
values. 

However, unexpected anomalies are visible to the naked eye as well. 
These deviations from the idealised betweenness distribution of a stan
dard grid reveal particularities of the sidewalk infrastructure of a given 
city as a networked system. For example, a glance at Fig. 4 reveals 
concentrations of high-betweenness nodes along several of the city’s 
large diagonal thoroughfares (e.g., Avinguda Diagonal, Avinguda Mer
idiana). These high-betweenness axes run from the centre of the city to 
the periphery, and indicate the relative efficiency of such diagonal 
“shortcuts” through an otherwise orthogonal grid structure. Likewise, 
small pockets of low betweenness nodes can be identified throughout 
the city, generally indicating areas of low connectivity, or at least lo
cations where the particular geometry of the local pedestrian infra
structure makes transit less efficient. By considering all possible 
origin–destination pairs, we can thus see how betweenness centrality 
might help to identify locations for interventions to make neighbour
hoods more physically walkable. 

4.3. Network accessibility and fragmentation 

Global aggregate measures like those reported in Table 1 provide us 
with some insights into the characteristics of a given pedestrian 
network. However, despite their descriptive power, these quantities 
tend to obscure the network’s functionality as a whole. An example of 
such obscured features is connectivity and its associated concepts. When 
thinking of pedestrians, the connectivity of the network, that is, the fact 
that an agent can travel from any node to any other node, is crucial to 
the wider concept of walkability, and to understanding whether the city 
facilitates (or hampers) active travel, social interaction, and other rele
vant features. This is directly related to the pressing issue of urban 
fragmentation: the existence of massive infrastructure that divide 
neighbourhoods otherwise connected. The presence of highways, ex
pressways, and large industrial zones enable and seek long-range con
nections, while paradoxically creating disconnection at the community 
level. A relevant question is then how different connection patterns 
affect network connectivity, and the closely related characteristics of 
robustness and accessibility. A way to study this question –how easily 
will a connected network become a set of isolated subgraphs?– is by 
applying percolation theory. Percolation is the progressive removal of 
nodes or links in a network to signal their inaccessibility, and it can be 
envisioned as a process that allows system planners to anticipate 
structural vulnerabilities (which segments on the street patterns should 

Fig. 3. Diagram of a regular grid, showing an example of how shortest paths through node (x, y) (green) are counted. In the illustration, we consider all those paths 
departing from node (a, b) and leading to node (c, d) (both in red). The centrality of the green node depends on three ingredients: the amount of shortest paths 
connecting (a, b) and (x, y) (yellow shadow); the amount of shortest paths connecting (x, y) and (c, d) (blueish shadow); and the total amount of shortest paths 
connecting (a, b) and (c, d) (grey shadow), regardless of their passing through (x, y) or not (see right legends). 
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be secured to prevent the disconnection of a large portion of the city) or 
plan optimal interventions (where should a segment be placed to 
decrease the probability of disconnection). This approach has proved 
useful in several urban settings, although predominantly so far in rela
tion to road networks (Li et al., 2015; Arcaute et al., 2016; Abbar, 
Zanouda, & Borge-Holthoefer, 2018; Serok, Levy, Havlin, & Blumenfeld- 
Lieberthal, 2019). 

The inaccessibility of a node or a link can be thought of as the 
consequence of an exogenous and unpredictable event (e.g., a natural 
disaster that might literally (physically) affect any part of the network 
Abbar et al., 2018), or by some intrinsic feature of the nodes/links that 
make them unavailable (e.g., an exceedingly narrow sidewalk for a 
wheelchair user Rhoads et al., 2023). Translated to percolation pro
cesses, the former corresponds to a “random failure” (which node/link is 
about to become inaccessible can not be known in advance), while the 
latter can be simulated as a deterministic “attack” on the network 
(narrow sidewalks become inaccessible first). We illustrate these ideas 
with examples on random percolation processes. Fig. 5 (adapted from 
Rhoads et al. (2021)) shows the results of a series of random percolation 
processes on 10 sidewalk networks from cities in Europe, and North and 
South America. A single random attack simulation proceeds by 
sequentially eliminating links from the network at random, and moni
toring the size of the two largest connected components of the network, 
the so-called giant and second giant components. The giant component 

will decrease in size monotonically as links are removed, while the 
second giant commonly peaks sharply at a point known as the critical 
threshold p = p*, where p is the percentage of network links that have 
been removed. 

Different ideal classes of graphs exhibit different characteristic crit
ical thresholds. Comparing these canonical percolation thresholds on 
abstract graph types, with the results of percolation simulations on 
empirical networks, can provide clues as to the underlying structure of 
dense systems. The results in Fig. 5 show that the percolation thresholds 
for most pedestrian networks lie somewhere between that of a triangular 
and a square lattice (thresholds p = 0.347 and p = 0.5 respectively Li 
et al., 2021). 

Moving past the commonalities, though, a city-by-city analysis can 
reveal interesting facts. For example, the results for Buenos Aires show a 
clear peak at almost exactly 0.5, in line with several studies of the city’s 
street and block configuration that identify it as exceptionally regular 
and grid-like in form (Louf & Barthelemy, 2014; Boeing, 2019). While 
the behaviour of the second giant component across 100 simulations for 
Buenos Aires, Paris, and, to some extent, Barcelona and Brussels is quite 
uniform, cities such as Denver, Bogotá, and New York present various 
paths to network breakdown from iteration to iteration, indicating lower 
redundancy and higher vulnerability. The peak of Montreal’s second 
giant component is in fact the most glaring exception to the rule, 
peaking at around p = 0.1 –a sign of deep systemic vulnerability that 

Fig. 4. Barcelona’s sidewalk network (N = 36728), in which nodes are coloured according to their betweenness (as measured from the unweighted version of the 
graph). Cold colours (blue, green) correspond to lower betweenness values, as opposed to hot colours (orange, red). Nodes in the city outskirts mostly show cooler 
colours –as one would expect from peripheral nodes in a regular grid. For the sake of visibility, three district sub-graphs are shown as insets (Eixample, Ciutat Vella 
and Gràcia), where the trend is clear as well. Note that terminal nodes (cul-de-sacs) with betweenness 0 are not represented. 
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reflects a low density of sidewalks in the southern portions of the city. 
These inter-city differences in network robustness, ranging from the 

subtle to the extreme, suggest that some systems of pedestrian infra
structure work better than others. The question of assessing network 
quality, and its variation from neighbourhood to neighbourhood and 
city to city, is addressed in the following section. 

4.4. Network completeness 

When assessing the quality of an urban transportation network, the 
most fundamental question might be: can a resident use the network to 
navigate between any two given points a and b in the city? If this 
question is posed from the perspective of car users, the answer, in 
modern cities, is almost always yes. Conversely, much like the well- 
known phenomenon of public transit deserts (Jiang et al., 2013), there 
also exist pedestrian deserts: areas of the city where pedestrian infra
structure is either of low quality or lacking entirely. This makes the basic 
assessment of network completeness more relevant and pressing in the 
context of pedestrian networks. 

Generally, incompleteness in pedestrian networks can take two 
forms: absence of sidewalks, and lack of sufficient crossing infrastruc
ture. We discuss both below. 

4.4.1. Sidewalk coverage 
Sidewalk availability has been positively associated with walking in 

a variety of contexts and across a wide range of demographics, including 
among the elderly in Taiwan (Chen, Hsueh, Rutherford, Park, & Liao, 
2019), university students and faculty in North Carolina (Rodríguez & 
Joo, 2004) and residents of Portland, Oregon (Ewing & Cervero, 2010). 
This seems logical because, on the one hand, walking in the street ex
poses pedestrians to the (sometimes extreme) risk of being hit by a car, 
and because low sidewalk availability can lead to longer, more tortuous, 
less efficient, and more cognitively costly paths (more on that later). 

The availability of sidewalks varies within and between different 
cities. One recent study (Coppola & Marshall, 2020) of four US cities 

found a wide range of sidewalk coverage levels, from 27.2% and 29.1% 
in Austin, TX and Raleigh, NC on the lower end, to 49% and 58% for 
Portland, OR and Denver, CO on the other. Even those higher numbers 
indicate a stark gap in sidewalk provision with respect to road infra
structure. Inequalities can also exist between neighbourhoods of the 
same city. A study of Cascade, a low-income, predominantly black 
neighbourhood in Atlanta (Gaither et al., 2016), gave statistical backing 
to the complaints of residents about the lack of adequate sidewalk 
provision: sidewalk acreage per square mile was half that of the city as a 
whole. Meanwhile, in Washington, DC, a crowd-sourced sidewalk 
mapping project (mentioned in previous sections) found over 40,000 
points in the city where sidewalks were either missing or discontinuous. 

The results presented in the preceding paragraph are statistical and 
treat sidewalks as individual entities rather than as a networked whole. 
One recent paper (Bolten & Caspi, 2021) moves in the direction of a 
network analysis of sidewalk coverage, systematically comparing the 
“reach” of the sidewalk and road networks for journeys beginning at a 
given point i. This measure, called normalised sidewalk reach, can be 
defined as: 

f (i) =

∑

j
lsidewalk(rij)

2
∑

j
lroad(rij)

(4)  

where j is the set of locations reachable from i with given restrictions (e. 
g., only paths of less than 400 meters, less than 800 meters, etc.), lo(rij) is 
the length of the path r from i to j. Constraints of this type are known 
variously as pedsheds, walksheds, and egohoods. The ratio of pedestrian 
to road network reach is divided by 2 under the assumption that each 
road segment will have at most 2 parallel sidewalk segments. 

One promising avenue in this regard, so far unexplored to our 
knowledge, would be to establish a baseline model for the sidewalk 
network of a given city. In terms of coverage, for example, an ideal 
scenario would consider that every possible sidewalk (on both sides of 
each street) exists and is of good quality. This would allow for a kind of 
reverse vulnerability analysis, in which the construction of new 

Fig. 5. The panels for different cities illustrate the breakdown in network connectivity for 10 empirical pedestrian networks under 100 iterations of a random 
percolation process. The green lines indicate the size of the largest connected network component as a fraction of network size N, and the purple lines show the same 
for the second largest component. Individual iterations are indicated with thin lines, while the thicker lines with points show the average behaviour. The critical 
threshold occurs when the red lines spike to their highest point, indicating system failure. With some variation, breakdown tends to occur in the area 0.347 < p < 0.5, 
between the canonical percolation thresholds for bond percolation on triangular and square lattices (Li et al., 2021). Adapted from Rhoads et al. (2021) 
with permission. 
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sidewalks in underserved areas could be prioritized. Such approach 
could further be extended to crosswalks, which we will discuss below. 

4.4.2. Crosswalk placement 
The structure of most cities, which isolate sidewalks between car 

right-of-ways, leads to a further complication in the design of sidewalk 
networks –the placement of crosswalks (a.k.a. pedestrian crossings, 
zebra crossings). Legal crosswalks may be marked or unmarked, 
depending on the regulation of the particular locality. They may or may 
not be signalled with a light requiring vehicles to stop at certain in
tervals. In many cases, what might be a useful crossing point for pe
destrians is rendered unusable because of the conditions of the 
infrastructure, together with the flow of vehicles on the roadway to be 
crossed. This inability to cross, whether structural or dynamically 
caused, translates to a link removal on the network. 

Most commonly, local laws permit pedestrians to cross from one 
block to another only at street segment intersections. Further, with very 
few exceptions (e.g., the famous Shibuya Crossing in Tokyo), pedestrians 
must only cross a single street when moving from one block to another 
–in other words, crossing diagonally through the intersection is pro
hibited. Fig. 1C provides examples of common sidewalk crossing con
figurations. It is important to note that these are transportation design 
choices, and not necessities. Pedestrians often follow desire lines and 
cross at non-designated, irregular points, according to well-studied 
preferences that take into account factors like street width, traffic 
flow, and distance to the nearest legal crossing (Cherry, Donlon, Yan, 
Moore, & Xiong, 2012; Pawar & Patil, 2016; Sisiopiku & Akin, 2003). It 
follows that the placement of designated crossing points can have an 
influence on crossing behavior and, in turn, pedestrian safety (Sisiopiku 
& Akin, 2003). This phenomenon has been explored through agent- 
based and traditional modeling approaches (Sargoni & Manley, 2020). 
However, these models tend to operate at the scale of the city block and 
do not take into account the acute or cumulative effects of the presence 
or absence of legal crossings on system performance in terms of path 
lengths or connectivity. 

5. Dynamics on sidewalk networks 

Often echoed in the literature, the central mantra of complex network 
theory is the interplay between structure and dynamics: just as the 
structure constrains how dynamics behave across the network substrate, 
dynamics can, as they unfold in time, strengthen or erode parts of the 
network. In transport engineering, this fundamental entanglement is 
most evident when studying vehicle congestion dynamics, which are 
completely driven by a structural feature –betweenness (Solé-Ribalta, 
Gómez, & Arenas, 2016; Barthelemy, 2016). More generally, we 
encounter a very rich and long tradition that deals with micro-, meso- 
and macro-scale vehicle dynamics, from car-following models, to 
congestion-driven dynamic percolation, to origin–destination matrix 
calculation. For studies at the meso- and macro-levels, a precise repre
sentation of structure is essential. 

Turning from vehicle to pedestrian mobility, a comparable wealth of 
quantitative knowledge and modelling capacity is replicated in a limited 
fashion only at the micro-scale, with agent-based modelling of pedes
trian flows at the segment or intersection levels, and the development of 
the fundamental diagram for pedestrians (Seyfried, Steffen, Klingsch, & 
Boltes, 2005). The closest we get to a system-wide account of pedestrian 
dynamics is the concept of walkability, which at least delineates the 
conditions under which such dynamics take place. 

Walkability is a multifaceted concept, depending both on subjective 
(e.g., perception of enjoyment, attractiveness, etc.) and objective fea
tures (Arellana, Saltarín, Larrañaga, Alvarez, & Henao, 2020) such as 
the physical condition of sidewalks. Presently, walkability indices either 
rely on precise measurements of sidewalks in small areas (Zhao, Sun, & 
Webster, 2021), or simply resort altogether to road network metrics. 

Therefore, when developing pedestrian dynamics models at the 

meso- and macro-scales, it is crucial to first have a dependable repre
sentation of the physical walking infrastructure, which includes the 
sidewalk network. Then, it needs to consider the particularities of 
pedestrian mobility as well, which are obviously different from those of 
drivers, cyclists, and transit riders. First and foremost, pedestrians move 
at a low and relatively uniform speed. Second, walking trips tend to be 
limited to short distances, and the probability of choosing walking as a 
transportation mode has been shown to fall exponentially with the 
distance to destination (Marquet & Miralles-Guasch, 2014). 

5.1. Crowd dynamics at the mesoscale 

The walking speed of pedestrians at free-flow follows a Gaussian 
distribution with μ = 1.34ms− 1 with σ = 0.26, which is known to 
minimise the metabolic energy (Henderson, 1971), and each pedestrian 
occupies a minimum space of 0.15m2 when standing still, an area that 
increases when they are walking. As the density of pedestrians increases, 
the available area per pedestrian is reduced and interactions between 
pedestrians take an important role, especially with regard to walking 
speed. This motivated the description of the fundamental diagram for 
pedestrians (Seyfried et al., 2005), relating explicitly sidewalk density 
and walking speed. The classical work of Weidmann (1993) models the 
fundamental diagram for uni-directional flows, as a function of the free 
flow pedestrian velocity minus an exponential decay that depends on the 
density of pedestrians 

v(D) = vf (1 − e− γ(1/D− 1/Dmax)) (5)  

where γ is a free parameter, vf stands for the velocity at the free flow 
condition, D is the current density and Dmax is the maximum density that 
allows some flow to exist. Although global parameters γvf and Dmax can 
be found for the general case (Martinez-Gil, Lozano, García-Fernández, 
& Fernández, 2017), the fundamental diagram is highly dependent of 
other factors, including the bi-directionality of the flow (Zhang, 
Klingsch, Schadschneider, & Seyfried, 2012) characteristic of sidewalk 
segments. Studies of the influence to the fundamental diagram of 
merging pedestrian flows in T-junctions are also relevant (Zhang, 
Klingsch, Schadschneider, & Seyfried, 2013). 

Road traffic analysis has shown us that the fundamental diagram is a 
basic actor to understand system-scale phenomena, such as congestion, 
traffic assignment and system optimality, etc. (Ambühl, Menendez, & 
González, 2023). From the perspective of pedestrians, these implications 
are still to be explored. Their fundamental diagram has been only 
studied, up to now, independently of the networked structure of side
walks. Clearly, pedestrian congestion does not have the same definition 
as for cars, but the concept still relates to the level of service that a 
sidewalk network can offer. Gehl Architects’ studies indicate that side
walks exceeding more than 13 pedestrians per width-meter and minute 
are not comfortable for pedestrians (Gehl et al., 2008). Discerning 
whether there is an influence of the fundamental diagram at system 
scale is central to having a complete understanding of sidewalk network 
use and their design. 

5.2. Estimation of pedestrian flows at the city scale 

As when modelling road traffic, the estimation of pedestrian flows is 
mainly based upon the consideration of two elements: origin
–destination matrices (OD-matrix) and pedestrian route choice models. 
In some situations, these two factors may be independently calculated, 
while in others there is a formal dependence between them, in the form 
of route choice assumptions, or the type of data at hand. The following 
two sections will focus on the estimation of these two components, 
emphasizing these dependencies. 

Other techniques based on time series analysis and machine learning 
models exist for pedestrian and road traffic prediction (Jiang, Ma, & Li, 
2022; Cohen & Dalyot, 2020). In general, these methods do not directly 
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consider the underlying network structure of the sidewalk or road 
network, and consequently are not considered in the following sections. 

5.2.1. Origin–destination matrices 
An origin–destination (OD) matrix T is two dimensional array of M 

rows (origins) and N columns (destination), where its elements tij encode 
travel demand between location i and destination j in whatever temporal 
resolution needed, e.g., annual average daily traffic (AADT), rate per 
minute, etc. Further, depending on the problem and on the required 
scale of analysis, pedestrian OD-matrices may depend on a non-trivial 
combination of time of day, socioeconomic status, scale (which de
pends on zone definition), and other factors such as multimodality. It is 
important to note that the common integration of walking trips into 
multimodal trips –where walking often serves as the mode of trans
portation for the critical first and last miles– means that realistic 
pedestrian OD estimation should take into account the interface be
tween pedestrian networks and other transportation networks such as 
the bus, metro, train, and even road. Such a multimodal approach to 
urban networks is discussed further in Section 6. 

Despite the presence of surveys, the collection of demand estimates 
for pedestrian transportation is considerably smaller compared to that 
for motorized transportation, with only a few scattered works available 
for pedestrian OD-matrix estimations (Buehler & Pucher, 2012; Miller, 
2006). Within those, the particularities of pedestrian mobility are 
generally overlooked, i.e., approximately constant speed, distance con
straints, specific fundamental diagram, diversion from shortest paths, 
mobility restrictions, bidirectional sidewalks, existence of crosswalks, 
etc. 

We classify the different approaches depending on the type of input 
data and the theoretical basis (and assumptions) of the algorithms. Data 
sources and methods can be quite broad, but a minimum list includes the 
following:  

• OD Surveys are the most common, intuitive, and direct method to 
obtain pedestrian OD-matrices. Although costly and time-intensive, 
surveys are valuable for traffic flow estimation and to understand 
the factors that promote pedestrian mobility. Yet, they are generally 
agnostic to the concept of sidewalk network and, consequently, they 
cannot provide information about its use.  

• A much finer detail is provided by mobility traces captured with 
passive sensing. These new methods for data collection are currently 
displacing the survey approach (Bonnel & Munizaga, 2018). Mobility 
traces are defined as a sequence of locations where an individual has 
been at a given time scale. Nowadays, traces are collected via cell- 
phone devices (Friedrich, Immisch, Jehlicka, Otterstätter, & 
Schlaich, 2010), including their apps (e.g., Cuebiq (Moro, Calacci, 
Dong, & Pentland, 2021)) and service providers (Google, Apple, 
Orange, etc.), or the use of social networks (Hawelka et al., 2014). 
Cáceres, Romero, and Benítez (2020) show that their performance to 
estimate vehicle OD matrices is similar to surveys, and advantageous 
for low-populated areas. 

Regarding the use of such data to study the use of sidewalk net
works, the main problem is to identify if a given trace actually cor
responds to a walking trip. State-of-the-art techniques (Wu et al., 
2022; Roy, Fuller, Nelson, & Kedron, 2022) apply machine learning 
algorithms to feature vectors composed of metrics provided by the 
GPS positioning (speed, turn angles, etc.), combined with descriptors 
of the geographic context of the trace. The structure and coverage of 
sidewalk network and their attributes (e.g., width) may play an 
important role in improving the accuracy of these methods. 

Other than this challenge, the estimation of origin–destination 
matrices from pedestrian traces is not difficult. Unfortunately, the 
availability of such type of data is very limited and generally sold as 
Data as a Service (DaaS). 

• Different from the previous two direct measurements of the pedes
trian OD-matrix, most remaining methods rely on partial 

information, which is often easier to obtain in terms of economic cost 
and privacy issues. This is the case of count points. We define a count 
point as a device that is able to enumerate how many individuals pass 
by a location. There exist a wide set of technologies that can be used 
to accomplish this. In public transport, data is generated from the 
counts obtained from turnstiles or gates, e.g., the Oyster Dataset (De 
Domenico, Solé-Ribalta, Gómez, & Arenas, 2014) for citizens 
entering public transport in London. Other technologies may include 
image sensors, light-interruptor sensors, Bluetooth sensor readings 
(Sarkar et al., 2017), etc. Choosing the location of the sensors to 
maximise information value is an open problem (Gentili & Mirch
andani, 2012). 

5.2.2. Pedestrian route choice 
The volume of pedestrians on a sidewalk segment is heavily depen

dent on structural and dynamic features of the surrounding environ
ment. On the other hand, for pedestrians using public space to walk 
between locations, the efficiency (in terms of space or time) of the 
sidewalk network plays an important role. The combination of both 
factors implies that pedestrian route choice considers cost, but also that 
chosen routes may differ from the shortest path (Bongiorno et al., 2021; 
Tang & Levinson, 2018). Indeed, several studies on large-scale datasets 
of GPS traces report that 20% of trips do not follow the shortest path 
(Miranda, Fan, Duarte, & Ratti, 2021) and, on average, these paths are 
20% longer than shortest route (Malleson et al., 2018). Based on these 
observations, several way-finding strategies (Bhowmick, Winter, & 
Stevenson, 2019) have been studied over the years to unveil the specific 
mechanisms guiding pedestrian mobility, putting special emphasis on 
strategies that reduce the pedestrian cognitive load such as the “longest- 
leg” strategy or the “fewest turns” strategies. 

Finally, pedestrians often prefer one route to arrive to a destination, 
and a different one to return to their origin. This has been referred to as a 
hysteresis effect in route choice (Helbing et al., 2001), or simply as 
asymmetry (Bongiorno et al., 2021). Sidewalk networks could help 
explain the underlying reasons for these deviations –which may of 
course include a myriad of other factors, including physical constraints 
of pedestrians (Bolten et al., 2017; Bolten, 2020; Rhoads et al., 2023); 
(perceived) safety and attractiveness of the urban environment 
(Miranda et al., 2021); crime, pollution and noise avoidance (Knittel, 
Miller, & Sanders, 2016; De Nadai et al., 2016); etc. Independent of the 
method to construct the pedestrian OD-matrix, or the route choice 
assumption taken, the individual flow on a sidewalk network segment 
can be measured in the following way: 

Vij =
∑

od
todpij

od (6)  

where Vij is the volume on the (i, j) segment, tod is the entry of the OD 
matrix T for origin o and destination d, and pij

od is a variable describing 
the proportion of trips from o to d that pass along link i, j, i.e., the route 
choice. Note that there is a clear parallelism between Eq. (6) and the 
non-normalised edge betweenness centrality of the sidewalk networks 
Bij, which is obtained as Bij =

∑
odpij

od. Indeed, Vij can be considered a 
weighted version of the betweenness, and it is sometimes called 
“augmented betweenness” (Puzis et al., 2013) or “effective between
ness” (Guimerà, Díaz-Guilera, Vega-Redondo, Cabrales, & Arenas, 
2002). 

In this framework, the objective is to estimate the M × N entries of 
the OD matrix, tij, that are compatible with the set of data observations 
stated by Eq. (6). The problem is under-determined and relies on as
sumptions over the particular structure of the OD-matrix, e.g., a gravity 
model, entropy maximisation, maximum likelihood, etc. For a general 
description of these models, we refer the reader to de Dios Ortúzar and 
Willumsen (2011). The specific application of these models to pedes
trian OD matrix estimation is limited to regressing (scaling) gravity 
models to fit observed counts (Sevtsuk, Basu, & Chancey, 2021). The 
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validity of alternative approaches to estimate pedestrian OD-matrices, 
such as entropy maximisation, remains to be assessed. Inherent to 
such type of algorithms, it is important to understand the tight binding 
between the method and the route choice assumptions over the sidewalk 
network structure. 

6. Pedestrian networks and multimodal urban transportation 

From door to door, we begin and end practically every journey as a 
pedestrian (Walker, 2012). As a consequence, most trips are multimodal, 
i.e. they use multiple modes of transportation (Buehler & Hamre, 2015) 
–unless they are entirely pedestrian trips to begin with. Pedestrian 
infrastructure therefore forms an integral part of the wider fabric of 
urban transportation networks. From a systems perspective, this fabric 
can be understood as a multilayer or multiplex network, where each 
layer corresponds to one mode of transport (Alessandretti et al., 2022) 
–such as a city’s sidewalk network, its rail/metro network, its bicycle 
network, or its street network for vehicular traffic, see Fig. 6. 

One central challenge is the question of how to most effectively 
connect these layers to enable trips that are both short, and that use 
sustainable modes of transport (walking, cycling, and public transit). 
From a complexity perspective, this interplay between layers is well 
described via multilayer network metrics (Aleta, Meloni, & Moreno, 
2017) which can be used to categorize cities by their interlayer 
connectedness, a measure which crucially can take the pedestrian 
network into account (Natera Orozco, Battiston, Iñiguez, & Szell, 2020). 
The efficient layer connection problem can be studied from different 
perspectives such as coupling (Morris & Barthelemy, 2012), temporality 
and time-preservation (Gallotti & Barthelemy, 2014), or navigability 
and information overload (Gallotti, Porter, & Barthelemy, 2016). Note 
that, despite the importance of the pedestrian layer, it is often simplified 
or neglected in the first step of multimodal analyses (Strano, Shai, 
Dobson, & Barthelemy, 2015; Chodrow, Al-Awwad, Jiang, & González, 
2016). 

In transportation planning, walking metrics such as the walk radius 
and the directness of the pedestrian network, are fundamental to 
deciding on the spacing of stops and stations (Walker, 2012). Similarly, 
the walk radius is useful for bicycle network planning (Szell, Mimar, 
Perlman, Ghoshal, & Sinatra, 2022). 

Related to the effective connection of transport network layers and 

the walk radius is the last mile problem (Park et al., 2021), where non- 
walking trips should end (or start) as close as possible to the destination 
(or origin) so that the last (or first) part is short enough to be walkable. 
How the last mile problem is handled has crucial implications on urban 
form and vice versa. For example, average availability of car parking 
closer than public transport stops prevents sustainable development 
(Knoflacher, 2006). Further, typical suburban cul-de-sac road network 
patterns can obstruct pedestrian or bicycle networks, and therefore need 
to be pierced with footpaths to decrease walking distance to transit stops 
(Walker, 2012). Spatial urban design and transport features also have a 
crucial impact on walkability and health (Cerin et al., 2022). In general, 
land use and transport policies should be designed to maximize acces
sibility to daily amenities and public transport via walking (Liu et al., 
2022; Moreno, Allam, Chabaud, Gall, & Pratlong, 2021; World Health 
Organization, 2022). 

7. Conclusions 

In the last years, the alignment of the urban agenda to the urgencies 
of climate change has rendered a long trail of desiderata at the European 
and world levels. In relation to transportation, increasing active travel, 
and walking particularly, has been set as crucial for the future of sus
tainable cities. This is reflected in global and EU policies: EU Green Deal, 
Flagship Mission and Strategy of the EU for “Climate Neutral and Smart 
Cities”, or the EU Urban Mobility Framework; and of course several of 
the United Nations’ Sustainable Development Goals for 2030. 

However, the car-centric developments of the 20th century have a 
lingering impact on current developments towards sustainable mobility. 
Society still tends to follow a prioritisation of mobility strategies that are 
highly skewed against walking, favoring efficiency and modal shift to 
other existing, yet more sustainable, vehicular modes of transport. This 
bias against walking is observed across various scales, ranging from the 
preference for micro-mobility vehicles for short-range trips to public 
transport for longer distances. Despite this general trend, projects to 
incentivise walking are slowly gaining social and political attention, as 
they offer broader societal benefits beyond just improving transit effi
ciency. These strategies (Claris & Scopelliti, 2016), which encompass 
social, economic, and political perspectives, are primarily formulated at 
the intracity level, e.g., pedestrian-friendly streets in downtown areas, 
city-wide speed reduction zones, and the development of 

Fig. 6. Multimodal network representation of Barcelona, Spain, with four layers of transport infrastructure (pedestrian, bicycle, road, and metro networks), with 
data from the Open Data BCN portal for the sidewalk geometries, bicycle paths and metro lines, and OpenStreetMap for the road layer (via OSMnx Boeing, 2017). 
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neighbourhoods designed to facilitate access within a 15- to 20-min 
radius. Greater challenges arise when considering longer-scale 
mobility, such as commuting to work, as pedestrians face distance and 
time constraints. Some argue that the most effective approach in these 
cases involves not only prioritising the adoption of electric vehicles to 
decarbonise mobility (Henderson, 2020) but also focusing on reducing 
and localising overall mobility (Holden, Banister, Gössling, Gilpin, & 
Linnerud, 2020). 

These trends are reflected in academic research as well. With a 
longer tradition and better-defined challenges, urban science has been 
almost exclusively motor vehicle-oriented when it comes to macro-scale, 
city-level mobility. In this paper, we have argued that the main and most 
obvious impediment to a quantitative and large-scale approach to 
walking is the lack of reliable and standardised data. Cartographic ser
vices do not consider footways as a category per se, but rather as an 
addendum to (or attribute of) the road layer. This is true for most public 
national/regional services, but also, critically, for today’s most impor
tant open digital mapping platform, OpenStreetMap. Consequently, it is 
difficult to find reliable data on sidewalk geometries and walkable 
space. For most cities, it is simply impossible. Considering these cir
cumstances, there is a lack of comprehensive academic research on 
pedestrian infrastructure at a large scale. For instance, there is a scarcity 
of studies that examine the connectivity and potential fragmentation of 
pedestrian mobility in entire neighbourhoods and even less so in whole 
cities. 

To chart a path towards resolving these challenges for the rigorous 
study of active mobility in present and future cities, we began this paper 
with a review of existing approaches to collect data and formalise it as a 
network, considering the advantages and limitations of each approach. 
Then, we have identified some challenges in which a complex systems 
perspective might be helpful for better understanding and improving 
pedestrian infrastructure in cities. We have gathered these problems 
under the umbrellas of structure, dynamics of sidewalk networks, on one 
hand, and multilayer transportation networks, on the other. In doing so, 
a comprehensive account on existing efforts has been laid out, while 
highlighting possible gaps –research opportunities– that lay ahead. 

We foresee that the changes in the nature and quality of pedestrian 
infrastructure due to social developments will also change the way sci
entists approach its modelling and analysis. While the further thinning 
of pedestrian spaces could lead to even less interest in sidewalk net
works, the opposite development is also possible: from increased 
pedestrianization (Soni & Soni, 2016), to pedestrian “superblocks” 
(Mueller et al., 2020), to car-free cities (Nieuwenhuijsen & Khreis, 
2016), the state-of-the-art approach to treating sidewalks as networks 
could evolve towards more general models of pedestrian spaces. Given 
how the latter are the most promising paths towards sustainable urban 
mobility, we believe further inquiry is warranted and a rapid growth of 
the field can be expected. 
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Gössling, S. (2016). Urban transport justice. Journal of Transport Geography, 54, 1–9. 
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