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SCIENCE FOR SOCIETY The electrification of transportation stands as a promising avenue for emissions
reduction. To promote the widespread adoption of electric vehicles (EVs), we need to plan strategically their
future charging infrastructure. To that end, we must account for diverse charging habits, mobility patterns,
and effective grid management. Our research presents an approach to assess personalized recommenda-
tions that adapt charging schedules to alleviate the strain on the grid during its busiest evening hours.
Based on data-informed activity patterns, we deploy public charging stations to support this shifted de-
mand. The proposed framework offers strategies to cater to the needs of urban areas facing escalating de-
mands of charging while taking into account the varying levels of EV adoption. Our findings reveal the po-
tential for flexible EV charging scheduling without compromising driver mobility while highlighting the
pivotal role of public charging in harnessing this newfound flexibility.
SUMMARY
With the widespread adoption of electric vehicles (EVs), it is crucial to plan for charging in a way that con-
siders both EV driver behavior and the electricity grid’s demand. Here, we integrate detailed mobility data
with empirical charging preferences to estimate charging demand and demonstrate the power of personal-
ized shifting recommendations to move individual EV drivers’ demand on the grid out of peak hours. We find
an unbalanced geographical distribution of charging demand in the San Francisco Bay Area, with temporal
peaks in both grid off-peak hours in themorning and on-peak hours in the evening. Aligningwithmobility pat-
terns, our strategy effectively shifts demand to off-peak times. With the 2050 target of 90% EVs, this shifting
reduces total on-peak charging demand by 61%, which could require over �18,000 additional level 3 char-
gers. We recommend building more charging stations and implementing shifting recommendations for EV
grid integration.
INTRODUCTION

The transportation sector is a major contributor to global carbon

emissions. In 2021, the energy consumed by transportation ac-

tivities accounted for 38% of the total energy consumption

worldwide, with a majority derived from fossil fuels.1 The electri-

fication of transportation is an essential part of global plans to

reduce emissions,2,3 and many countries have introduced pol-
This is an open access article under the CC BY-N
icies to promote electric vehicle (EV) adoption.4–6 The California

Air Resources Board’s recent roadmap sets the goal that 100%

of new cars sold in California will be zero-emission vehicles by

2035,7 demonstrating the state’s increasing momentum and

dedication toward the widespread adoption of EVs. Similarly,

the Bay Area Air Quality Management District has set a target

that 90% of vehicles, not just sales, will be zero emissions by

2050.8 Rapid growth in the EV market will need to continue for
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that state to reach these goals, increasing from 19% of sales in

2022.9

However, the increasing number of EVs brings challenges

to the electricity system. For one, the current charging infrastruc-

ture is insufficient to support the increasing charging demand.10

The electricity grid’s generation capacity must be considered in

planning for future charging infrastructure.11,12 With the increase

in the number of EVs, peak demand on the grid will also increase.

This can cause damage to grid infrastructure.13 Moreover, when

high peak demand coincides with periods of low renewable gen-

eration, as in the evening in California, adding demand can in-

crease emissions.14

The strategy for planning future charging infrastructure consid-

ering its impacts on the grid focuses on the following two key

elements: (1) estimating EV charging demand and (2) developing

and testing a plan to manage this demand to protect the grid.

To estimate charging demand, we need to understand the

mobility and charging patterns of EV adopters.15 Previous

research on mobility behaviors has primarily analyzed adopters

based onGlobal Positioning System (GPS) travel histories of small

numbers of drivers,16,17 various surveys where drivers recount

their recent trips,18,19 or origin/destination matrix data of the terri-

tory.20 This line of research is limited by the size and resolution of

the data and does not capture the full variation observed in

large-scale, real, individual-level mobility behavior. Other studies

are focused on charging patterns, using statistical representa-

tions,21,22 clustering of charging sessions,23 or agent-based

modeling,24 tocharacterize individuals’chargingpatterns.Existing

research on mobility and charging patterns finds that potential

changes in plug-in behavior could most impact demand in urban

areas25 and that clustering effects in vehicle adoption at the local

level could lead to areas with high plug-in electric vehicle (PEV)

concentrations even before we see widespread adoption.26

However, none of these connect the rich, heterogeneous

charging patterns and drivers’ mobility patterns that can be ob-

tained from empirical data. To bridge the gap between mobility-

based studies and charging-based studies, we propose a frame-

work that outputs individual spatial and temporal profiles of

charging demand. Compared with previous research, the frame-

work captures true and individual behavior patterns based on

unique charging and mobility data sources. Combining charging

andmobility patterns also enables the exploration of geographical

patterns in charging demand, which is understudied in previous

research.

Moreover, beyond understanding today’s charging, studying

future charging demand under widespread EV adoption presents

significant challenges,27,28 as it requires models that consider the

different situations,29 mobility diversity,30 and charging patterns31

among future adopters. As a result, few models of deep adoption

scenarios try to capture the differences between today’s drivers

and future drivers. In this work, we incorporate data on income,

housing type, charging access, mobility patterns, and charging

patterns to capture the evolution of charging demand and infra-

structure use in the Bay Area from 2019 to 2050.

After estimating the spatiotemporal charging demand of

EVs, planners can leverage its flexibility for different objec-

tives.32,33 One approach widely used to mitigate the impact

of EVs on the electricity grid is to treat them as centrally
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controlled, dispatchable assets, used for example to help

manage peak demand,34,35 reduce operation costs,36–38

reduce the need for battery storage,39,40 or integrate renew-

ables.41,42 Estimates of the value of such control in California

range from $5.6 per driver in 201830 to as much as $87 per

driver in 2s45.43 This area of research has largely focused on

aggregate-level analysis due to data limitations and associ-

ated modeling challenges.44,45 Based on the individual varia-

tions observed in data, however, such aggregated approaches

likely misrepresent charging demand.46 Moreover, this

approach almost always uses direct automated control that

assumes the deployment of costly communications infrastruc-

ture and ignores social and regulatory barriers related to pri-

vacy concerns or loss of control.47

Recentdevelopmentshavehighlighted thepowerofother forms

of control. Instead of relying on expensive communication infra-

structure dedicated to centralized charging control, they suggest

utilizingexistingcommunication infrastructureand thedeployment

of different charging infrastructure to encourage drivers to shift

home charging toward daytime charging12 or to delay home

charging and add workplace charging.48 These two strategies

both relieved pressure on the grid by avoiding peak evening hours

and making better use of renewable generation. This strategy is

complementary to the centralized control approach: Zhang et al.

found that California needs more public and workplace charging

stations to realize the full flexibility potential of California EV de-

mand,49 and Kara et al. found higher demand flexibility with fewer

sessions per charging station.50 Another stream of research looks

at the benefits of charging flexibility under different electricity price

designs. In a study of California in 2025, Szinai et al. found that

controlled charging could reducegrid costs byup to 10%and rec-

ommended the use of daytime time-of-use pricing periods.42

Focusing onSanDiego, Li and Jenn found that time-of-use pricing

with low overnight periods could decrease costs but increase

emissions by as much as 20.2%.51

This focus on shifting within sessions and within a single day,

however, misses an opportunity to leverage drivers’ flexibility

across plug-in events and across days. In a 2021 demonstration

involving over 400 drivers from the California Bay Area, Spencer

et al. found that 15%–30% of charging demand could be shifted

into or out of a given hour, and drivers could plug in up to 46%

more often, using just simple signals and small monetary incen-

tives.52 In the demonstration, participants received notifications,

provided information, and opted in or out of control through a

cellphone app.

Though many control studies have called for more public

charging stations to increase EV demand flexibility, a few have

quantified the increase needed. Most literature on public

charging infrastructure focuses on its role in supporting EV

adoption: Ledna et al. found that investments in public charging

could be more cost-effective than purchase subsidies to boost

EV adoption in California;28 Levinson and West found that a na-

tional network of public charging could increase electrified

mileage by 8%, although little of the infrastructure cost should

be passed on to the drivers;53 andGreene et al. foundwillingness

to pay for a public charger in California in 2017 could range from

$1,500 to $6,500.54 In comparison with other leading markets,

the United States has a low ratio of EVs to public charging
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Figure 1. Overview of the proposed framework for understanding and planning future EV charging needs

(A) We analyze the current charging demand by extracting residents’ travel behavior and individual features, including visiting places and time, energy con-

sumption, income, house type, and charging access, to sample potential EV adopters and assign them a charging behavior group. Based on that, we simulate all

EV adopters’ charging behavior in a week, this includes charging location, session start and end time, energy, and power level. We propose personalized shifting

recommendations to mitigate the impact of EV charging on grid peak hours. For example, EV adopters may shift their charging sessions from day 1 peak hour to

day 2 off-peak hour when feasible.

(B) Supply-side management means planning for infrastructure capacity at the ZIP code level, considering demand both before and after the proposed

personalized shifting recommendations.

(C) Future scenarios capture the evolution of EV adopters’ demographic features, charging demand, and the public charging station supply for increasing

adoption rates.
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points55 and a high dependence on home charging,56 but this is

expected to change with increasing adoption by residents of

apartments or multi-unit dwellings (MUDs).57 The latest Califor-

nia Energy Commission planning projects a need for nearly 1.2

million public and shared private chargers by the year 2030,

just to support the adoption targets.58

It is critical that we better understand the connection between

demand flexibility, individual mobility and charging patterns, and

the build-out of public charging networks. To address this gap

in this paper, we propose an approach of personalized shifting

recommendations for EV adopters based on their original

charging patterns and travel needs, which can reduce the burden

on the grid during peak hours. The personalized shifting recom-

mendations advise drivers to shift charging sessions rather than

conducting automated control of the load profiles. As a type of

control to move demand away from peak hours, the personalized

shifting recommendations make use of charging demand flexi-

bility that is quite unique to EVs in a way that is lower cost and

more practical than automated control. It can also have higher

possible benefits as it considers flexibility across multiple parking

events or multiple days, whereas automated control works within

a single session. We deep-dive into the implications for charging

infrastructure and the number of new public chargers needed to

enable this type of control.

In this work, we seek to couple planning for future public

charging station supply with managing EV charging needs, aim-

ing to prevent extreme charging demand from occurring during

grid peak hours. First, we create a model to analyze the charging

and mobility requirements of current EV drivers in the San Fran-

cisco Bay Area, California. Then, to prevent EV charging load
from contributing to increased power grid demand during peak

periods, we implement personalized shifting recommendations

to shift charging demand to off-peak periods. Based on person-

alized recommendations, we quantify how valuable charging de-

mand flexibility could be for reducing peaks and provide insights

into the public charging infrastructure planning for 2050 through

a model of future adoption.

Figure 1 depicts a summary of the proposed framework. Fea-

tures of the existing residents are used to sample potential EV

adopters, extract their daily mobility motifs, and estimate their

charging behavior groups. The motifs provide the travel de-

mand. Each charging behavior group is characterized by a spe-

cific charging pattern. Combining the travel demands and

charging behavior groups, we can simulate the charging

behavior of an EV adopter for a given week. To mitigate the

impact that EV charging has on grid on-peak hours, we propose

personalized shifting recommendations. The EVs’ shifting is

constrained by their motifs and charging patterns as we do

not assume any change to their travel. We estimate the effects

of these personalized shifting recommendations on grid peak

(5–8 p.m. on weekdays) and off-peak hours (before 5 p.m. and

after 8 p.m. on weekdays and all hours on weekends), as

defined by the local utility,59 at the Zone Improvement Plan

(ZIP) code level. To support the changes in charging time, we

also provide supply-side planning for charging stations by esti-

mating the infrastructure charging demand and comparing it

with the current infrastructure assessment. Finally, we extend

our analysis of charging demand vs. public charging station

supply analysis to future years, projecting EV adoption rates

from 20% to 100% in future scenarios.
Cell Reports Sustainability 1, 100006, January 26, 2024 3
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RESULTS

EV charging behavior simulation
First, we must understand EV charging demand. In this section,

we estimate the demand across charging segments and loca-

tions by combining the following two detailed, data-driven

models: one for mobility and one for charging behavior groups

(presented in full in the experimental procedures section).

We extend the TimeGeo model proposed by Jiang et al.60 to

simulate mobility patterns. The model outputs the trajectories

of approximately 6 million residents in the California Bay Area,

using datasets of mobile phone activity from 1.39 million Bay

Area residents as an input.30,60 First, we simulate the weekly

charging profile for all estimated �129,000 EV adopters in the

Bay Area in 2019.61 In this research, we model all as battery

EVs and not plug-in hybrid EVs. To estimate each driver’s energy

demand from their travel trajectories, we use a drivetrain model.

Second, we assign a home location to each EV driver and sam-

ple their demographic information (household income and hous-

ing type) based on US Census and American Community Survey

data from the year 2019.62 We use this to estimate the charging

access of each EV adopter based on data from a recent Califor-

nia Home Charging Access Survey.63 Finally, we extend the

Scalable Probabilistic Estimates of Electric Vehicle Charging

(SPEECh) model presented by Powell et al.12 to simulate EV

charging patterns. The model clusters 136 charging behavior

groups and parameterizes these behavior groups on drivers’

charging access, battery capacity, and energy needs. Each

group represents a specific type of charging pattern including

when, where, how, and how much drivers in the group typically

charge. This dependence on charging access and energy needs

as intermediate factors to assign the EV adopters’ charging

group lets us simulate the charging behavior of the modeled

EV adopters in the Bay Area in 2019 and at future levels of

adoption.

Figure 2 summarizes the results of the charging behavior sim-

ulations. We present the distribution of charging groups in each

ZIP code. We classified the 136 charging behavior groups into

four distinct charging group types based on their charging

habits: primarily charging at home (home), primarily charging at

work (work), primarily charging at public stations (public), and

charging at two or more locations (mixed) on a regular basis.

Currently, the number of adopters belonging to the work

charging group is smaller than those belonging to public

charging as less than 50% of the drivers have work charging ac-

cess.64 However, if workplace charging access increases, the

number of adopters choosing work charging may increase too.

Based on present-day charging infrastructure availability, Fig-

ure 2A shows that on average, 58% of the adopters fall in the

home charging group, followed by 24% who fall in the Public

charging group, 10% who fall in the mixed charging group,

and 7% who fall in the workplace charging group.

We simulate when, where, how, and how much each adopter

charges their car during a week by connecting the charging

behavior group with the charging patterns. In order to validate

our method, we sample 6% of the drivers and compare their

charging load with a same-size sample of drivers from the orig-

inal charging data (see experimental procedures). We sample
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drivers according to the charging group distribution of the

data. Figure 2B shows the aggregated charging load profile of

the data and our simulation, divided by charging location. The to-

tal charging load and work charging load match well, whereas

the public charging load and home charging load have similar

magnitudes but different timing of peak demand. Compared

with the charging group distribution for all EV drivers shown in

Figure 2A, the validation dataset contains more users belonging

to Work charging groups and fewer drivers belonging to the

home charging groups. As a result, home charging demand is

lower than work charging demand in the validation test.

Figure 2C shows the weekly charging demand of all EV

adopters in the Bay Area from 2019, separated by charging loca-

tion. Home charging has a relatively high charging load during

grid on-peak hours of 5–8 p.m. on weekdays. Work charging

happens 8–10 a.m. on weekdays during grid off-peak hours.

Charging happening in public places shows a more uniform

charging load during the day. The combined charging load of

the home, work, and public charging creates two peaks, one in

off-peak hours and the other in on-peak hours on weekdays.

The average maximum is 0.3 molecular weight (MW) both in

on-peak and off-peak hours. The range between the 25th and

75th percentiles shown in the shaded areas reveals that for

most ZIP codes, the home charging load is relatively flat, but

for a few ZIP codes, the home charging load is very high.

Figure 2D depicts the weekly energy needs distributed around

the Bay Area. It reveals substantial variation among ZIP codes. In

the Bay Area, the average population per ZIP code is around

29;930.62 We find that the weekly charging needs on the ZIP

code level have a mean value of 21 MWh. Home charging needs

are much higher than the work charging needs and the public

charging needs. The highest home charging needs for a single

ZIP code reach 111 MWh, whereas the highest work and public

charging needs are 18 and 34 MWh, respectively. The charging

energy demand is higher in Santa Clara, San Mateo, and

Alameda counties, three adjacent counties located in the San

Francisco Bay Area. Santa Clara County is known for its high-

tech industry, as it is the location for the headquarters of many

large technology companies.

Charging infrastructure planning after personalized
shifting recommendations to mitigate peak charging
demand based on individual charging and travel
behaviors
The EV charging behavior simulation reveals that EVs will cause

an additional charging demand peak during grid on-peak hours.

To ensure stability and avoid the need for costly peaking plants,

we propose a strategy that can reduce EV charging during grid

on-peak hours. To achieve this, we consider the individual travel

and charging patterns of adopters and customize personalized

shifting recommendations for each driver (see experimental pro-

cedures). These recommendations identify the feasibility for

drivers to move their original charging sessions from peak hours

to other stops during off-peak hours by checking several rules.

Namely, for a given session planned during grid peak hours, (1)

does the driver have a stay at another location during grid off-

peak hours within a short time window? And (2) would a shift

to that stay be feasible given their individual travel plan? If a
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Figure 2. Analysis of EV charging demand
(A) Distribution of the four charging group types in each ZIP code. Each point represents the percentage of adopters belonging to a certain charging group type in

one ZIP code.

(B) Comparison between our charging demand simulations and real data. The solid line shows the median of selected EV adopters’ charging load, aggregated by

ZIP code and charging location. The range from the 5th to the 95th percentile is represented by error bars, highlighting the variance among ZIP codes.

(C) Weekly charging load of �129,000 simulated EVs; the full Bay Area fleet from 2019. The solid line, dotted line, and dash-dotted line show the 50th, 25th, and

75th percentiles, respectively, of home, work, public, and total charging loads, aggregated by ZIP code.

(D) Geographical distribution of charging needs aggregated by the ZIP codes where the charging sessions occur. We see total charging demand in 2019 is

dominated by home charging.
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feasible alternative is found, we recommend the drivers to shift

their sessions accordingly.

These recommendations can be sent to drivers using existing

communication infrastructure through either the vehicle interface

or app, reducing a separate and expensive communication infra-

structure dedicated to charging control. Most of the new EVs are

already equipped with cellular connectivity, enabling them to

communicate with backend systems for various services like

remote monitoring, software updates, and vehicle diagnostics.

We assume that the drivers will fully follow the recommenda-

tions. The amount of information shared and compliance with

the recommendations would vary in different applications based

on privacy regulations and user acceptance. Here, we analyze

the best-case impact of the personalized shifting recommenda-
tions and estimate the charging infrastructure needed to support

it (sensitivity analysis is in Note S1).

Figure 3A illustrates how our personalized shifting recommen-

dations reshape charging load profiles. We observe a total

charging peak load reduction of 36 MW during grid on-peak

hours and an increase of 39 MW during grid off-peak hours.

Home charging accounts for 57% of the total charging peak

load reduction in grid peak hours, as it contributes the majority

of charging load in peak hours, the hours that are targeted for

shifting. Workplace charging comprises 11% of the total

charging peak load increase in grid off-peak hours; this fraction

is low as workplace charging access is low, and not many ses-

sions can be moved to workplaces. Public charging accounts

for 39% of the total charging peak load reduction for grid peak
Cell Reports Sustainability 1, 100006, January 26, 2024 5
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Figure 3. Impact of personalized shifting recommendations on charging demand

(A) Bay Area total charging load profile before and after implementing personalized shifting recommendations. The gray solid line displays the charging load

before implementing personalized shifting recommendations, whereas the dotted line shows the charging load after the implementation of our personalized

shifting recommendations.

(B) Charging locations before and after implementing personalized shifting recommendations. Blocks on the left side and the right side represent locations, where

charging sessions take place before and after implementing the personalized shifting recommendations. If a block on the left side is connected to a block on the

right side by a thick gray flow, it means that a number of charging sessions have shifted from the former location to the latter due to the recommendations.

(C) ZIP code level impact of personalized shifting recommendations. The points below the diagonal line show ZIP codeswith a drop in peak demand after session

shifting while points above the diagonal line indicate an increase in peak demand after session shifting.
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hours and 89% of the total charging peak load increase for grid

off-peak hours. We assume public charging access is open to

everyone, thus providing more flexibility for moving sessions.

Figure 3B presents the impact of personalized shifting recom-

mendations on the distribution of charging sessions across

various locations. We only depict the shifted demand; some ses-

sions were not shifted after implementing the recommendations

if they occurred outside peak hours or if they could not bemoved

due to drivers’ travel constraints. According to our observations,

a significant majority of 77% of the charging sessions previously

taking place at home are now shifted to public places, whereas

16% are redirected to workplaces and 7% are shifted to other
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homestays. Additionally, we found that 53% of workplace

charging sessions are now shifted to public places and 29%

are redirected to home places. Notably, most public charging

sessions are still conducted in public places, albeit at different

times, with a small percentage 6% being relocated to the work-

place or home. The results indicate that to reduce the strain EVs

put on grid peak hours, we need more public charging capacity.

Figure 3C shows ZIP code level peak charging needs before

and after our personalized shifting recommendations. Overall,

the personalized shifting recommendations result in a 0.1 MW

reduction per ZIP code on average during grid on-peak hours

and a 0.2 MW increase per ZIP code on average during grid
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Figure 4. Impact of personalized shifting recommendations on

charging infrastructure

(A) ZIP code level map showing the geographical distribution of existing public

chargers. The pie plot indicates the percentage split of L1, L2, and L3 chargers

in the Bay Area.

(B) Comparison between public charging station supply and peak public

charging needs at the ZIP code level. Each pair of points represents the

before- and after-shifting peak demand for one ZIP code. Points below the

diagonal line indicate that the public charging station supply is insufficient,

whereas points above the diagonal line indicate that there is a surplus in the

public charging station supply.
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off-peak hours. These results imply that EV charging peak load

will decrease during grid on-peak hours at the cost of increasing

charging peak load during grid off-peak hours. We note that high

electricity demand during off-peak hours is acceptable in this

case from the generation perspective as it aligns with peak solar

generation; net grid demand, i.e., grid load deducts renewables,

is the main concern. This increase in charging peak load, howev-

er, requires extra charging capacity to be supplied.

Figure 4A shows the geographical distribution of current pub-

lic chargers. There are 36 chargers on average for each ZIP

code. One ZIP code in Santa Clara shows the highest number

of chargers at 454. Level 2 (L2) chargers comprise 81%of the to-

tal public chargers, whereas level 1 (L1) and level 3 (L3) comprise

2% and 17%, respectively.
We use data from Open Charge Map65 to assess the public

charging station supply vs. our estimated public charging de-

mand, where the public charging station supply is the sum of

the maximum charging rate for all chargers in the ZIP code. Fig-

ure 4B shows the current public charging demand during on-

peak and off-peak hours per ZIP code compared with the public

charging station supply. Blue points below the diagonal dashed

line show ZIP codes with insufficient charging capacity. Namely,

62 ZIP codes during grid off-peak hours and 61 ZIP codes during

grid on-peak hours. This indicates that for the current Bay Area, a

number of ZIP codes are not able to support adopters’ intrinsic

public charging demand. However, overall, with the current pub-

lic charging station supply in Bay Area, there is 125 MW more

public charging capacity than needed before personalized shift-

ing recommendations; this reflects that public charging demand

is concentrated in fewer ZIP codes than public charging infra-

structure. After implementing the personalized shifting recom-

mendations, we found that 31 ZIP codes have insufficient public

charging station supply during grid on-peak hours, and 112 ZIP

codes have insufficient public charging station supply during

grid off-peak hours.

Projection of deep EV adoption
In this section, we examine the period beyond 2019. To simulate

future EV charging demand, we probabilistically sample EV

drivers from the full pool of 6 million residents in the Bay Area

for scenarios featuring EV adoption rates of 20%, 40%, 60%,

80%, and 100% of the total residents. By adoption, we refer to

stock, not sales: at an EV adoption rate of 20%, 20% of all per-

sonal vehicles are EVs. To accomplish this, we first sample

vehicular adopters from all residents using census tract-level

vehicle usage rates. Next, we utilize household income and daily

route distance to estimate the likelihood that each vehicle is an

EV (see experimental procedures): the higher the probability,

the earlier we assume they adopt an EV. The results presented

in Figure 5 show how charging demand will evolve and how

our personalized shifting recommendations will change demand

at each level of adoption to protect the grid from any additional

charging loads.

Figure 5A displays the daily travel distance, and Figure 5B pre-

sents the household income of the set of EV adopters at each

stage of adoption. At an adoption rate of 20%, the median daily

travel distance is 26 miles with a standard deviation of 16,

whereas themedian household income is $197;299, with a stan-

dard deviation of $74;452. On the other hand, at an adoption rate

of 100%, themedian daily travel distance is 27miles, with a stan-

dard deviation of 19 miles, whereas the median household in-

come is $130;037, with a standard deviation of $63; 509. Our

analysis indicates that individuals with higher daily travel dis-

tances and those with lower incomes tend to be later adopters

of EVs. Recent research based on customer surveys has found

that this reflects issues including range anxiety and high upfront

costs.66

The increasing adoption of EVs leads to changes in the

charging demand profile in the Bay Area, necessitating the use

of personalized shifting recommendations to mitigate the nega-

tive impact of increasing EV charging loads during grid peak

hours. As depicted in Figure 5C, the geographical distribution
Cell Reports Sustainability 1, 100006, January 26, 2024 7
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Figure 5. Results under future EV adoption
(A and B) The distribution of EV adopters’ daily travel distance and household income when the adoption rate is increased. The box shows the interquartile range

of all EV adopters, and the line that divides the box into two parts marks the median of EV adopters.

(C) Maps of EV peak charging need differences between after and before our personalized shifting recommendations, highlighting the geographic impact at

adoption rates of 20% and 100%. Positive values indicate a decrease in peak charging needs, whereas negative values indicate an increase.

(D and E) Impact of personalized shifting recommendations on EV peak needs with increasing adoption rates, with points indicating the mean of peak needs

among ZIP codes.

(F and G) Comparison between public charging station supply and peak charging needs with increasing adoption rates, showing the current public charging

station supply minus EV peak charging needs under different adoption rates. Negative values indicate insufficient public charging station supply, whereas

positive values indicate sufficient charging infrastructure.
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of peak shaving results is more concentrated in the South Bay

Area when the adoption rate is 20%, but it extends to include

hot spots in the North Bay Area, East Bay Area, and San Fran-

cisco when the adoption rate reaches 100%. During grid peak

hours, implementing the personalized shifting recommendations

reduces peak-hour charging loads by at least 30% in 177 ZIP co-

des with 20% adoption and in 179 ZIP codes with 100% adop-

tion. However, the decrease in peak charging load during on-

peak hours results in higher charging peak demand during grid

off-peak hours. The personalized shifting recommendations

can increase peak charging loads during off-peak hours by at

least 30% in 136 to 143 of the ZIP codes.
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In addition to analyzing EV charging demand in the Bay Area,

we also investigated the charging needs at the ZIP code level.

As the adoption rates increase, different ZIP codes exhibit

different patterns in charging demand evolution (Note S2). Fig-

ure 5D illustrates the EV charging peak loads for each ZIP code

during grid on-peak hours before and after implementing the

personalized shifting recommendations. When the adoption

rate is 20%, our personalized shifting recommendations result

in an average reduction of 59% in ZIP code level charging

peak loads, whereas with 100% adoption, the average reduc-

tion is around 56%. The average reduction is approximately

1.5 MW at 20% adoption rate and around 7.3 MW at 100%
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adoption rate for each ZIP code. Next, we examine the

charging demand during grid off-peak hours. As shown in Fig-

ure 5E, when the adoption rate is 20%, the personalized shift-

ing recommendations can lead to an average increase of 57%

in the charging peak loads of the ZIP codes in off-peak hours,

whereas with 100% adoption rate, the average increase is

around 39% of charging peak loads. The lower increase in

the 100% case may be a sign of lower flexibility or higher off-

peak demand among later adopters. In absolute terms, the

average increase per ZIP code is approximately 1.6 MW at

20% adoption and 6.3 MW at 100% adoption.

To support the growing adoption of EVs, it is necessary to in-

crease the number of public charging stations asmore people in-

crease the demand for charging. Figure 5F illustrates the gap be-

tween public charging station supply today and public charging

demand with increasing adoption rates during grid on-peak

hours. Before personalized shifting recommendations, when

the adoption rate is 20%, 71% of the ZIP codes experience

insufficient public charging station supply, with an average insuf-

ficiency of 0.4 MW and a standard deviation of 1.2 MW. At an

adoption rate of 100%, this number increases to 94% of the

ZIP codes, with an average insufficiency of 6.3 MW and a stan-

dard deviation of 4.9 MW. After personalized shifting recommen-

dations, when the adoption rate is 20%, 61% of the ZIP codes

experience insufficient public charging station supply. On

average, the surplus per ZIP code is 0.3 MW and a standard de-

viation of 1.2 MW. At an adoption rate of 100%, 88% of the ZIP

codes experience insufficient public charging station supply,

with an average insufficiency of 2.2MWand a standard deviation

of 2.0 MW.

Meanwhile, during off-peak hours, more public charging ca-

pacity is needed than before personalized shifting recommenda-

tions were implemented. Figure 5G shows that before personal-

ized shifting recommendations, at an adoption rate of 20%, 70%

of the ZIP codes experienced insufficient public charging station

supply, with an average insufficiency of 0.2 MW and a standard

deviation of 1.2 MW. This number increases to 94% of the ZIP

codes at an adoption rate of 100%, with an average insufficiency

of 5.5 MW and a standard deviation of 4.2 MW. After personal-

ized shifting recommendations, at an adoption rate of 20%,

86% of the ZIP codes experience insufficient public charging

station supply, with an average insufficiency being 1.7 MW and

a standard deviation of 1.8 MW. This number increases to 94%

of the ZIP codes at an adoption rate of 100%, with an average

insufficiency of 10.6 MW and a standard deviation of 7.8 MW.

Therefore, although personalized shifting recommendations

are effective in reducing peak charging needs during grid on-

peak hours, they lead to a net increase in the need for public

charging stations. That is, although fewer public charging sta-

tions are needed in on-peak hours after the shifting, that is out-

weighed by the many more public charging that must be added

in off-peak hours. In all cases, we find more charging capacity is

needed to meet the increased public charging demand resulting

from the higher adoption rates of EVs. The average increase in

public charging station insufficiency caused by applying the

personalized shifting recommendations is 27 L3 chargers with

50 kW (or 198 L2 chargers with 6.6 kW) at an adoption rate of

20% and 83 L3 chargers with 50 kW (or 628 L2 chargers with
6.6 kW) at an adoption rate of 100% at the ZIP code level. This

insufficiency could also be met by a mix of L2 and L3 chargers,

as in the simulation results.

To achieve the Bay Area Air Quality Management District’s

2050 objective of having 90% of the personal vehicle fleet

consist of EVs, it is necessary to meet the interim goals of 1.5

million EVs by 2030 and 5 million EVs by 2050. According to

our model, at the 2030 target, there would be a reduction of

414 MW in charging needs during on-peak hours from following

the personalized shifting recommendations. However, this

would also result in an increase of 437 MW in charging needs

during off-peak hours, necessitating new infrastructure in over

90%of the ZIP codes. Once the 2050 objective is met, ourmodel

estimates that the EV charging demand could reach 2 GWduring

grid peak hours in 2050. In this case, the Bay Area is missing

�19,000 L3 chargers (or �141,000 L2 chargers with 6.6 kW) to

support the demand in 2050. If we assume adopters follow the

personalized shifting recommendations, there will be a 61%

decrease in total charging demand during on-peak hours, but

the number of missing L3 chargers will be around �34,000

(or �256,000 L2 chargers with 6.6 kW) in 2050.

DISCUSSION

In this work, we first combined mobility patterns with charging

behavior group features to model the charging behavior of EV

adopters in the San Francisco Bay Area. Then, we provided

personalized shifting recommendations to users based on their

intrinsic charging behavior and mobility constraints to reduce

the charging peak load during grid peak hours. Finally, we simu-

lated future scenarios to see how the charging demand and

required public charging station supply evolve with increasing

adoption rates under our recommendations.

For the charging demand simulation, the results show that the

daily charging load shapes are similar with two peaks for most

ZIP codes. One peak occurs during off-peak hours and mainly

consists of work charging and public charging, whereas the

other peak occurs during on-peak hours consisting of home

charging and public charging. Themagnitude of weekly charging

needs in the Bay Area varies greatly at the ZIP code level, with

the highest charging demand in the ZIP codes of the South

Bay and the lowest charging demand in the North Bay in 2019.

Home charging demand is the largest share in 2019, whereas

work charging is the smallest.

We propose personalized shifting recommendations to miti-

gate charging load during peak hours on the grid. We find that

these result in a considerable reduction of the peak by shifting

home and public charging sessions from peak to off-peak hours

at other stops. Demand is largely shifted to daytime parking ses-

sions, adding to the peak in off-peak hours. In this study, we

assumed fixed access to workplace charging and found that

public charging at non-workplace and non-home locations was

used to serve the shifted demand. However, workplace charging

occurs at similar off-peak times, and if more workplace charging

were available, it could similarly serve the shifted demand. Our

results can be best interpreted as a shift from evening to daytime

parking events. Therefore, we recommend increases in daytime

charging options including public and workplace stations, where
Cell Reports Sustainability 1, 100006, January 26, 2024 9



Figure 6. Methodology overview

Dashed frames represent models; blue frames represent the data sources, gray frames represent the intermediate output, and yellow frames represent ultimate

output, i.e., original charging demand, charging demand after personalized shifting recommendations, and the probability of each driver being an EV adopter.
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possible, to facilitate more flexibility in EV charging. To imple-

ment and fully leverage the benefits of our proposed personal-

ized shifting recommendations, it will be necessary to increase

daytime charging capacity in most ZIP codes, which will involve

the installation of new charging infrastructure.

As EV adoption rates increase, the profile of EV adopters will

change, with a larger proportion of low-income residents and

those with higher daily travel distances owning EVs. We showed

that implementing personalized shifting recommendations to

shift charging sessions away from on-peak hours was effective

at all levels of EV adoption. As adoption, demand, and its grid im-

pacts increase, the benefits of this approach will become more

widespread. However, to support this strategy for managing

the increase in demand, additional charging infrastructure will

be necessary.

There are several important avenues for expanding upon this

work. Future research could explore changes in population and

travel behavior in the future. We assume all drivers follow the

personalized shifting recommendations in this work. In practice,

adopters may not follow the personalized shifting recommenda-

tions for personal reasons, e.g., drivers are not willing to accept

charging recommendations to shift to public charging due to

more cost and less convenience.47 In this case, future research

should evaluate how uncertainty in human behavior could influ-

ence the efficacy of personalized shifting recommendations and

how to customize the recommendation based on drivers’ prefer-

ences. To further promote the adoption of recommendations, we

can explore the design of incentive reward programs that can

provide discounts, priority access, or loyalty benefits for utilizing

specific charging stations or charging during off-peak hours.

Also, to address concerns and misconceptions about public L3

charging, personalized recommendations can be accompanied

by educational materials and resources. The whole setup de-
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pends on receiving some information about drivers’ travel pat-

terns and responses to the recommendations; future research

could explore how the optimization could still be conducted under

limited information scenarios. Finally, although we targeted eve-

ning on-peak hours based on constraints at the generation level,

we recognize that EV charging can also impact the distribution

grid. Both the increased use of fast public charging and the

new morning off-peak peak in demand caused by our personal-

ized shifting recommendations could pose localized challenges

to distribution grid infrastructure. These impacts could be miti-

gated by the installation of new collocated sources of renewable

energy or batteries and should be the focus of future work.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, Marta C. Gonzalez.

(martag@berkeley.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

The code used for the analysis presented in this paper is available at https://

zenodo.org/badge/latestdoi/624661479.

Overview

The methodology includes four parts. We first use TimeGeo and a drivetrain

model to estimate the travel behavior and energy consumption of each vehicle

in the sample. Second, we connect the travel behavior and SPEECh model by

energy consumption and charging access to obtain the original charging

behavior of EV adopters. Third, we identify the feasibility of driversmoving their

original sessions from peak hours to off-peak hours by checking several rules.

Last, we use a Bayesianmodel to estimate the probability of each driver adopt-

ing an EV based on their income and travel distance. Figure 6 depicts the

connection between the data source and models.
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Datasets

We use four different datasets in this study: call detail records (CDRs),

charging session records, charging infrastructure data, and survey data

such as US Census Bureau American Community Survey, the California

Plug-in Electric Vehicle Adopter Survey, the California Home Charging Access

Survey, and the Clean Vehicle Rebate Project (CVRP) data.

The CDRs, mobile phone activity data, play a crucial role in mobility

modeling.67 We use CDRs for the Bay Area, including data from around 1.39

million users and over 200 million calls made during a period of 6 weeks.

Each record contains the anonymized user identification (ID), timestamp, dura-

tion, and geographic location of the associated cell tower. We discretize the

spatial resolution to the service areas of 892 distinct cell towers. With this in-

formation we develop the TimeGeo60 mobility model for all 6 million residents

in the Bay Area, giving detailed travel patterns for a typical week.

The charging session records contain over 2.8 million charging sessions

from 27,700 EV adopters, recorded by a large charging station provider in

the California San Francisco Bay Area in 2019.12,68 Each session is associated

with a unique adopter ID and includes the start time, end time, energy,

charging rate, and location category for each session. The sessions cover

five segments: workplace L2 charging, public L2 charging, public L3 charging,

single family home (SFH) residential L2 charging, and multi-family home (MFH)

or MUD residential L2 charging. L2 charging occurs at 6.6 kW and L3 occurs at

50 kW. For detailed statistics and illustrations of the data we refer the reader to

Powell et al.12

The charging station data collected from Open Charge Map65 contain infor-

mation on the location of each station, the number of charging piles, and

charger types in each charging station. The location is represented by longi-

tude and latitude, while the charger type covers L1, L2, and L3. We collect

data on the number of each charger type.

We use multiple surveys to compile information on Bay Area residents’ de-

mographics, EV charging access, and EV adoption behavior. We obtain data

on the number of passenger vehicles at the census tract level, the distributions

of housing types, and household incomes from the US Census Bureau Amer-

ican Community Survey.62 The California Plug-in Electric Vehicle Adopter Sur-

vey69 provides the income and daily travel distance distributions of EV

adopters. We model access to residential charging based on the California

Home Charging Access Survey,63 which surveys the relationship between

home charging access and demographics, i.e., household income and house

type. The annual household income has three bins: up to $60; 000, between

$60; 000 and $100; 000, and greater than $100; 000. The house type has two

bins: SFH andMFH. For each combination of household income bin and house

type bin, the California Home Charging Access Survey provides the corre-

sponding home charging access rate. To model EV adoption, we use CVRP

data on over 400;000 purchases of EVs in California between 2013 and

2019.61 This dataset provides EV adopters’ home ZIP code, the purchasing

date, and the purchasing model type.

Estimating travel behavior of EV adopters

Using the CDRs data, we extract information on the visited places and times

for each user. The TimeGeo models and integrates the flexible temporal and

spatial mobility choices of the individuals.60 The model divides each day of

the week into 1,008 discrete intervals, resulting in 10-min intervals. For each

interval, the individual decides whether to stay or move, and if she chooses

to move, where to go next.

To represent the movement mechanisms, TimeGeo introduces a time-inho-

mogeneousMarkov chainmodel with three individual-specificmobility param-

eters: a weekly home-based tour number (nw), a dwell rate (bd ), and a burst rate

(bb), as well as a global travel circadian rhythm of the population in an average

week (pðtÞ) that differs for commuters and non-commuters.

For the temporal movement choices, TimeGeo initializes the individual’s

probability to move as nwpðtÞ if she makes a trip originating from home in a

time-interval t of a week, and bdnwpðtÞ for a trip not originating from home. If

the individual decides to move, she goes to public places with probability

bbnwpðtÞ and returns home with probability 1 � bbnwpðtÞ.
For the spatial movement choices, TimeGeo uses a rank-based exploration

and preferential return to determine the individual’s next destination. When the

individual chooses to move to another place, she can either return to a visited
place or explore a new location. The model assumes that the individual ex-

plores a new place with probability Pn = rS�g, where S represents the num-

ber of previously visited locations, and r and g control the user’s tendency to

explore a new location based on empirical data. If the individual decides to re-

turn, the return location is selected from the visited locations according to her

visiting frequency. If she decides to explore a new location, the alternative des-

tinations are selected based on the distance to her origin with probability

PðkÞk�a, where k represents the rank of alternative destinations.

To validate the simulation of individual mobility in the Bay Area, Xu et al.30

compared the aggregate performance of TimeGeo with that of the National

Household Travel Survey (NHTS)70 and the California Household Travel Survey

(CHTS).71

Using the mobility model, we estimate energy consumption by utilizing a

drivetrain model. A drivetrain model establishes the relationship between en-

ergy consumption and two aggregate properties of the trip, namely, average

travel speed and route distance. We estimate these properties using the Appli-

cation Programming Interfaces (APIs) of Uber Movement72 and OSMnx,73

respectively. Our analysis focuses on two popular EV models in the Bay

Area: the Tesla Model 3 and Nissan Leaf. Note S3 provides the number of

adopters of each EV model.

The drivetrain model for the Nissan Leaf can be represented as:

ENissan
trip = fðVtripÞDtrip; (Equation 1)

where Vtrip andDtrip represent the average speed and route distance of the trip,

respectively. The function fðVtripÞ indicates the consumed power per mile

(kWh/mile) when the EV is traveling at speed Vtrip (mile/h). The value of

fðVtripÞ varies among different EVmodels. To estimate the energy consumption

of the two EV models in our study, we first use a piecewise linear function

based on data observed from the Nissan Leaf.11 Then we scale the consump-

tion of the Nissan Leaf in the same trip by 0.83 to estimate the energy con-

sumption of the Tesla Model 3, as the Tesla Model 3 consumes, on average,

17% less energy than the Nissan Leaf.74 That is:

ETesla
trip = 0:83fðVtripÞDtrip: (Equation 2)

The details of the simulated mobility pattern and energy consumption are in

Note S4.

EV charging behavior simulation

SPEECh is a probabilistic framework for simulating large-scale EV charging

loads that are grounded in real charging data.12,23

This version of the SPEEChmodel clusters drivers into 136 charging behavior

groups, based on real charging data from a large charging station provider in the

Bay Area. Each group of drivers has unique characteristics in multiple charging

segments with different frequencies and patterns of behavior (see Note S5).

SPEEChmodels the probability with which an adopter belonging to charging

behavior groupGwill charge in segment z on a given day by sampling from the

charging frequencies of all drivers in that group in the historical data:

PðzjGÞi = Nz
G;i

.
NG;i ; (Equation 3)

where NG;i denotes the number of sessions by driver i in group G, and Nz
G;i de-

notes the number of sessions in segment z by driver i in group G.

The distribution of energies for a session in each segment, for a driver in

each group, charging on a weekday or weekend, is modeled using the histor-

ical charging session data of all drivers in that group. For each group G and

charging segment z, SPEECh models the joint distribution of charging energy

in a session c using a Gaussian mixture model, as follows:

PðcjG; zÞ =
XK
k = 1

PðcjkÞPðkÞ;PðcjkÞ= N ðcjmk ; skÞ; (Equation 4)

where each component k in the mixture model is a Gaussian distribution with

weight PðkÞ, representing a pattern of charging energy that occurs in the
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sessions observed in segment z for adopters in group G. The mean and stan-

dard deviation of component k are denoted by mk and sk , respectively.

We use SPEECh to estimate the charging segment and per-session charged

energy of each driver. To achieve that, the first step is to estimate adopters’

charging behavior group (G) based on their charging access (A) and annual en-

ergy consumption (E). Then we simulate the charging segment (z) and session

charged energy (c) of adopters based on the charging behavior group and

SPEECh model, i.e., PðzjGÞ and PðcjG; zÞ. This step allows us to represent

future adopters based only on today’s data, by assuming that future adopters

with the same energy consumption and access to charging will follow the same

distribution of charging patterns.

We divide adopters’ charging accessA into four bins: no home or workplace

charging access, home charging access only, workplace charging access

only, and both home and workplace charging access. Home charging access

includes SFH L1 charging, SFH L2 charging, and MFH L2 charging, while

workplace charging access includes only workplace L2 charging. We model

home charging access based on household income and housing type. Income

is a random variable that follows a standard normal distribution centered at the

median income of the residential tract. The median income information at the

tract scale is from census data.62 Each house type in a census tract has a cor-

responding probability, and we assign the house type according to the prob-

ability in the census data.62 The California Home Charging Survey63 provides

the distribution of home charging access given household income and housing

type (details are in Note S6). The survey does not distinguish between L1 and

L2 charging; we assume the split between L1 and L2 is 0:38 : 0:45 based on.75

Wemodel the workplace charging access rate for those who have aworkplace

as 50% based on.64 Combining the home charging access and workplace

charging access gives us overall charging access, A.

Annual energy consumption E is equally divided between 19 bins from 0 to

4; 750 kWh. We calculate energy consumption in a typical week using a drive-

train model described in estimating travel behavior of EV adopters. Multiplying

weekly energy consumption by 52 (the number of weeks in a year) gives the

annual energy consumption E.

The probability of an adopter belonging to groupG, given charging accessA

and energy consumption E, is estimated directly from the charging groups of

adopters in the historical data:

PðGjA;EÞ = NG
A;E

.
NA;E ; (Equation 5)

Here,NA;E denotes the number of adopters with accessA and annual energy

consumption E, and NG denotes the number of adopters in group G. NA;E and

NG are calculated directly from the charging data.68 Based on charging access

A and energy consumption E, we assign the adopter to a charging behavior

group with PðGjA;EÞ.
Using the estimated charging group G and SPEECh model, i.e., PðzjGÞ and

PðcjG;zÞ, we simulate the charging behavior of all EV adopters by the Monte

Carlo method (see Note S7).

To ensure that the simulation results adhere to the capacity constraints of

the vehicles, we need to consider two factors: (1) the charged energy should

be enough to support the travel needs, and (2) the charged energy should

not exceed the capacity of the vehicle’s battery. To achieve this, we first simu-

late the initial state of charge (SoC) of all the vehicles. However, due to limited

information from charging session data, we are unable to infer the initial SoC of

each vehicle from the data. To address this issue we make an assumption that

all vehicles start the week mostly charged: we sample the initial SoC based on

a Gaussian distribution with a mean of 80% of the maximum capacity B kWh

and a standard deviation of 20% of the maximum capacity. We model the

maximum capacities of a Tesla Model 3 and Nissan Leaf as 82 kWh and

40 kWh, respectively.76

We denote the SoC of a given time slot t as sðtÞ, the energy charged at time

slot t as cðtÞ kWh, and the energy consumption at time slot t as dðtÞ kWh. As c

and d are generated from different models, in rare cases the values are outside

the acceptable range. To ensure that the capacity constraints of the vehicles

are met, we map the charging and energy consumption according to:

cðtÞ = cðtÞ � maxfðsðtÞ� 100%Þ � B; 0g;dðtÞ = dðtÞ+minfsðtÞ � B; 0g
(Equation 6)
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Here, cðtÞ and dðtÞ represent themapped charging and energy consumption

values, respectively. The term maxfsðtÞ � B;0g ensures that the charged en-

ergy does not exceed the battery’s capacity, while the term minfsðtÞ;0g
ensures that the charged energy is enough to support the vehicle’s

travel needs. We can then calculate the SoC of the next time slot as

sðt + 1Þ = sðtÞ+ cðtÞ � dðtÞ for all time slots t.
Personalized shifting recommendations to reduce the peak

To allow for session shifting, we establish a set of rules based on EV adopters’

original travel and charging patterns. For travel behavior, we do not require

adopters to change their usual travel patterns. For charging patterns, we limit

session shifting to a maximum tolerable period of a few stays from the original

charging session. Furthermore, we ensure that the shift session will be

completed during the stay after shifting.

We assume EV adopters share similar travel and charging patterns among

weeks and choose a typical week for study. We divide the week into

10-minute intervals, with each week beginning at t = 0 and ending at t =

1008.We define on-peak hours as Ton and off-peak hours as Toff . The charging

rate is a function of charging segment z and is denoted as rðzÞ (e.g., 1.2 kW for

home L1 charging). Suppose an adopter needs to charge ei during stay i and

can tolerate a shift if the new charging session happens within h stays from the

original charging session. In this analysis, we set h equal to 10 here tomake full

use of the demand flexibility. The arrival time of stay i is tia, the departure time is

tid , and the charging end time is tic. We shift the charging session from stay i to

stay j if j satisfies the following conditions:

(1) Consistent with driver’s original charging frequency: the target session

j must be within the threshold h of the original session. The user can

choose to move the session forward, i.e., j < i; ji � jj<h, or the user

can choose to delay the session, i.e., i < j; ji � jj<h.

(2) Consistent with driver’s original charging level preference for a given

location.

(3) On-peak hours to off-peak hours: only shift sessions that happen in

grid on-peak hours to grid off-peak hours, i.e., ½tia; tic�˛Ton and ½tja;
tjc�˛Toff .

(4) Charging needs are satisfied: charging energy needs should be met in

the stay j, i.e., ei=rðzÞ% ðtjd � tjaÞ.
(5) Feasible given all travel plans: if the adopter shifts the session from stay

i to stay j, the charging load and SoC will be updated as sðt + 1Þ =

sðtÞ+ c0ðtÞ � dðtÞ, where c0ðtÞ = rðziÞ;ct˛ ½tja; tjc� and c0ðtÞ = 0;

ct˛ ½tia; tic�. We require 0 %sðtÞ%B;ct.
Predicting potential EV adopters

To sample EV users from all vehicular adopters in the Bay Area, we first extract

vehicular adopters from the entire population using vehicle usage rates at the

census tract scale. Then, we assign each vehicular adopter a probability of us-

ing an EV, denoted by PðEVjI;DÞ, based on their household income I and daily

driving distance D. We assume that I and D are independent random variables

for a given trip maker.

To estimate the probability of using an EV, we use a Bayesian approach:

PðEVjI;DÞ =
PðIjEVÞPðDjEVÞPðEVÞ

PðIÞPðDÞ (Equation 7)

where PðIÞ and PðDÞ are the probability densities of household income and

daily travel distance of all trip makers in the Bay Area, respectively. We set

PðEVÞ to 2%, based on the share of EVs within all cars in the Bay Area in

2019 according to the CVRP dataset. For future scenarios, we vary PðEVÞ
from 20% to 100% to observe how charging demand evolves. To estimate

PðIjEVÞ and PðDjEVÞ, we use data from the California Plug-in Electric Vehicle

Adopter Survey.69 Once we estimate PðEVjI; DÞ, we use these probabilities

to select EV adopters from all vehicular adopters.

Note S8 compares the number of EVs estimated using the Bayesian method

at each ZIP code with the number obtained from the CVRP dataset,61 demon-

strating good agreement between the two methods. Additionally, Note S9
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shows the geographical distribution of EV drivers with increasing adoption

rates.
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Supplemental Experimental Procedures

Note S1: Sensitivity Analysis

We test the performance of our personalized recommendations with three parameters, i.e., maximum shifting
stays, different peak hours, and recommendation acceptance rates.

• Maximum Shifting Stays: Maximum shifting stay is the maximum number of stays we assume each
session can be shifted from the original charging session. We set different maximum shifting limits to
test how shifting by fewer stays would influence the success of the peak shaving results. We find in Fig.
1 (a) that, consistently under different EV adoption rates, larger maximum shifting stays enable more
peak shaving, and even with a maximum displacement of 2 stops (stays) the recommendations are able
to achieve more than 40% shaving.

• Different Peak Hours: Different peak hours are the possible period of grid peak hours. In the future,
the increasing production from renewables and the availability of other system management assets will
cause the peak of the net load on the grid to occur at different times of day. In this sensitivity analysis,
we test how different peak hours will influence the success of the algorithm’s peak shaving results. We
test four cases: morning, afternoon, evening, and late-time peak periods. We find in Fig. 1 (b) that
the morning peak hour benefits from the most shaving and the midnight peak hour benefits from the
least shaving. This happens because the current uncontrolled charging peak occurs in the morning or
afternoon/evening, so the morning/afternoon/evening peak has more potential to be shaved. Also, since
current home charging access is higher than work charging access, moving workplace charging (which
usually happens in the morning) to home charging (which usually happens in the afternoon/evening) is
easier than moving home charging to workplace charging.

• Recommendation Acceptance Rate: Recommendation acceptance rate is the ratio of drivers who
follow the recommendations. In the base case we assume all drivers follow the personalized shifting
recommendations in this work. In practice, adopters may not follow the personalized shifting recom-
mendations for personal reasons. We vary the ratio of drivers who follow the recommendations to test
how different levels of compliance will influence the peak shaving results. We confirm in Fig. 1 (c) that
with an increasing fraction of drivers following the recommendations, peak shaving is more successful.
When the acceptance rate is just 20%, the recommendations can still achieve over 10% shaving. De-
signing incentives and education programs to increase recommendations following ratio is necessary
to realize the full potential of this demand flexibility.



Figure 1: Sensitivity analysis of personalized shifting recommendations. We show ZIP code level differences
between before and after our personalized shifting recommendations in the ratio of before recommendations
under different EV adoption rates. The error bar highlights the variance among ZIP codes. (a) Peak shaving
effects under different maximum numbers of shifting stays. (b) Peak shaving effects under different peak
hours. (c) Peak shaving effects under different recommendation acceptance rates.



Note S2: Unbalanced Demand with Increasing Adoption Rates

With increasing adoption rates, ZIP codes in Bay Area show sub-linear increases and super-linear increases
in peak charging loads. We identify sub-linear and super-linear increases in peak charging load on the ZIP
code level and visualize the increases in Figure 2 and Figure 3. Sub-linear growth in a given ZIP code
indicates there is less EV demand there from early adopters and more from later adopters; super-linear
growth means the opposite.

Figure 2 shows the average peak charging loads with increasing adoption rates for ZIP codes with sub-
linear and super-linear increases in load respectively. The dashed line shows the linear increase of the peak
charging load. The solid line above the dashed line represents the average load of ZIP codes with sublinear
increases while the solid line below the dashed line represents the average load of ZIP codes with superlinear
increases. Figure 2 a and c show that during grid peak hours, the shifting strategy narrows the gap of load
between sub-linear increasing ZIP codes and super-linear increasing ZIP codes. In contrast, Figure 2b and
d show that during grid off-peak hours, the shifting strategy enlarges the gap of load between sub-linear
increasing ZIP codes and super-linear increasing ZIP codes.

Figure 3a-b indicate more sublinear increases in South Bay Area and more superlinear increases in North
Bay Area. The difference among ZIP codes implies the unbalanced development of EV charging demand in
the Bay Area. Figure 3c indicates that the recommendations reduce the number of ZIP codes with sublinear
increases in South Bay Area during grid peak hours. Figure 3d shows that the recommendations reduce the
number of ZIP codes with superlinear increases in North Bay Area and increase the number of ZIP codes
with sublinear increases in South Bay Area during grid off-peak hours.

Figure 2: Sub-linear increase and super-linear increase in peak charging needs.



Figure 3: Sub-linear increase and super-linear increase in peak charging needs.



Note S3: EV models market share

Figure 4 shows the market share of battery-operated EVs used in this study [1]. We observe that Tesla Model
3 and Nissan LEAF S are the most popular model. The Tesla Model 3 has a battery capacity of 50-82 kWh
and Nissan LEAF S has a battery capacity of 40 kWh [3].

Figure 4: BEV models market share.



Note S4: Travel behavior of the EV drivers

Figure 5a shows the distribution arrival time for EV drivers in the year 2019. There are two peaks during the
day. One happens at around 9 a.m. in the morning, while the other happens at around 7 p.m. at night. Figure
5b shows the departure time distribution. The distribution of arrival time and departure time are similar since
people spend little time on the way. The histogram of daily energy consumption is shown in Fig. 5c. Most
people consume less than 25 kWh a day. Figure 5d shows the number of stays during the day. Most people
visit two places during the day.

Figure 5: Statistics illustrating the simulated travel behavior of all users.



Note S5: Speech Groups Data

The dendrograms in Fig. 6 and Fig. 7 illustrate the result of the hierarchical clustering on real charging data
with 136 charging groups. Some statistics are annotated to support the labeling interpreting the clustering
results.

Group Number (0 start):
Number of Drivers: 279         317        854       90      40     47     7  189  96        336      200    132      134    476  46         187       394      490   233    110  224

16  5  9        4        15    2    12  17  8        10       3      6     19    0  11  1       18       14    13     20   7

Only Work

Lower Session Energy
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SFH > W, PL2
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Public L2 and Work

+ Public Fast
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0 kWh < Annual Energy <= 600 kWh 

Group Number (0 start):
Number of Drivers: 817        1056       414     112    139   128         148        10   374   1025          490        141      215    977

40        35       48      45    43   38         42        46   36   44           39        41      47    37
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Group Number (0 start):
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Figure 6: Speech Groups Clustering Dendrograms (Group from 1 to 68)



Group Number (0 start):
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Group Number (0 start):
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+ a little SFH + Public Fast

Public L2 
+ Work
+ a little MUD

Figure 7: Speech Groups Clustering Dendrograms (Group from 69 to 136)



Note S6: Home charging access survey Data

Table 1 shows the share of vehicles that currently park near 120V electricity or could park in locations where
respondents think new electrical installation could occur [2]. We observe that people living in SFH with higher
household incomes have a higher probability to have home charging access.

Household
Income

$ 60,000
or less

$ 60,000
or less

$ 60,000
to $100,000

$ 60,000
to $100,000

$ 100,000
or More

$ 100,000
or More

Housing
Type SFH MFH SFH MFH SFH MFH

Potential Access
with Parking

Behavior
Modification

72% 29% 78% 36% 85% 43%

Table 1: Data from the California Energy Commission’s Home Charging Access Survey [2].



Note S7: Monte Carlo simulation

For each EV adopter, TimeGeo estimates when and where the adopter visit during the week. We apply the
Algorithm 1 to estimate the charging behavior of a given EV adopter.

Algorithm 1 Monte Carlo simulation for one EV adopter
Input: G: charging group of the adopter, where G ∈ [1, ..., 136];

e: weekly energy consumption of the adopter;
t: stay period of the adopter, where ti = (tai , t

d
i ) with tai and tdi as arrival time and departure time,

respectively, tai , t
d
i ∈ [1, ..., 1008];

l: stay place of the adopter, where li = (ltypei , lcoordinatesi ) with ltypei ∈ [home, work, public];
P (z | G): the probability of an adopter charging in the charging segment z given the charging behaviour
group G in a day, where z ∈ [SFH L1, SFH L2, MFH L2, Work L2, Public L2, Public L3];
P (c | G, z): the Gaussian mixture model of charging energy of an adopter in a given group G charging in
each segment z on a day, where c ∈ R+.

Output: t∗; l∗: when and where the adopter charges;
c∗: energy charged in the stay;
z∗: charging segment in the stay.

1: for stay i in all stays do
2:
3: // When and where charging happens
4: t∗i = ti; l

∗
i = li

5:
6: // How to charge (charging segment in the session)
7: if l∗i ∈ [home] then
8: z′

i = [SFH L1, SFH L2, MFH L2, Public L2, Public L3]
9: else if l∗i ∈ [work] then

10: z′
i = [Work L2, Public L2, Public L3]

11: else if l∗i ∈ [public] then
12: z′

i = [ Public L2, Public L3]
13: end if
14: z∗

i = maxz∗
i ∈z′

i
P (zi | G).

15: Sample if the driver charges charges in segment z∗
i with probability P (z∗

i | G).
16:
17: // How much to charge (charging energy in the session)
18: if the driver charges in segment z∗

i then
19: Sample the energy charged with Gaussian mixture model c∗i = P (ci | G, z∗

i ).
20: else
21: c∗i = 0
22: end if
23: end for
24: c∗i =

(
c∗i /

∑
j c

∗
j

)
× e

25: return t∗, l∗, c∗, z∗



Note S8: Validation for adoption model in the year 2019

Figure 8 shows a comparison between the CVRP data [1] and our simulation. Figure 8a and 8b show the
geographical distribution of CVRP and our simulation. The distributions are similar in most ZIP codes. Figure
8c shows the correlation between CVRP data and our simulation, which implies a good agreement between
the number of EVs obtained via the Bayesian estimates and the mobility model versus the ground truth of EV
usage.

Figure 8: Validation for adoption model in the year 2019.



Note S9: Geographical distribution of EV adopters with increasing
adoption rate

Figure 9 shows the number of EV drivers with an increasing adoption rate. The early EV adopters locate
in the South Bay as shown in Fig. 9a-c. When the adoption rate keeps increasing, there will be more EV
adopters in the North Bay Area as shown in Fig. 9d-f.

Figure 9: Geographical distribution of EV adopters with increasing adoption rate
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