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Disclaimer 
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1 Abstract 

On March 19th, 2020, California implemented a Shelter-in-Place (SIP) order in response to 

the COVID-19 pandemic. This report delves into the alteration of human mobility patterns in 

California prompted by the pandemic and the corresponding response measures. Utilizing 

anonymized and opted-in Location-Based Service (LBS) data derived from mobile phones, we 

introduce a mode detection algorithm to explore changes in vehicle miles traveled (VMT) 

statewide, categorized by trip purpose and origin tract within California. Our analysis uncovers 

both spatial and temporal disparities in how the COVID-19 pandemic and the SIP order affected 

VMT. The study investigates shifts in the number of commutes and the structure of the 

commuting flow network. Notably, we identify the emergence of two additional travel zones in 

the flow network, indicative of a growing separation among different regions in the wake of the 

pandemic. Furthermore, we compare the average travel distance, assessed through the radius of 

gyration (rg), before and after the pandemic’s onset, capturing shifts in individual travel 

behaviors. Our findings confirm that not only did people reduce their overall travel due to the 

pandemic, but they also began to travel shorter distances. Additionally, this report examines 

patterns of changes in residential locations during the COVID-19 pandemic using a two-step 

semi-supervised algorithm. Notably, we observe a higher frequency of home changes in March 

2020. Users who relocated during this period tended to move over longer distances, suggesting a 

shift not only within the city but also within the broader region of residence. Finally, we evaluate 

the feasibility of employing LBS data to assess the effectiveness of various mobility-related 

interventions that took place in Sacramento in 2019, employing the aforementioned mode 

detection algorithm. While we do observe the potential to detect changes in motorized trips as a 

result of these interventions, it’s important to note that the sample size for traveler detection is 

relatively small, limiting our ability to draw definitive conclusions. 
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2 Public outreach summary: People Movement through the Lens of Cell Phone Data in 

California during COVID-19 

2.1 Issues 

In 2018, California set an ambitious target: to reduce the state’s greenhouse gas emissions, a 

major driver of global warming, to 40% below the 1990 level by 2030. One of the significant 

contributors to these emissions is the transportation sector, particularly the widespread use of 

motor vehicles. As a result, there is a pressing need for dependable data sources to quantify 

alterations in Vehicle Miles Traveled (VMTs). 

The emergence of the COVID-19 pandemic brought about substantial limitations on people’s 

mobility. A predominant shift towards remote work became the norm for many during this period, 

leading to a fundamental transformation in how and where people traverse within cities. 

The recent advancement in mobile communication technologies has become a power tool to 

explore shifts in travel behavior as a result of the COVID-19 pandemic. Mobile phone data, in 

particular, offers a valuable means to investigate how people modified their vehicle usage and 

travel patterns during this transformative period. 

2.2 Main Question 

The central inquiry of the report revolves around the impact of the COVID-19 pandemic on 

individuals’ mobility and vehicle utilization. Specifically, it explores the potential for utilizing 

location data generated by mobile phones to quantify these changes. 

2.3 Key Results 

The key results from this study are (1) Vehicle usage decreased up to 20% more in urban 

areas than in rural areas because of COVID-19. (2) The number of work commutes decreased 

30% more than the number of non-commute trips. The number of commuting travels we observed 

in 2022 had not returned to the respective 2019 level. As figure 1 indicates, the ratio of work to 

non-work trips never returned to the pre-pandemic level, suggesting that remote work had a 

consistent impact in travel behavior in 2020. (3) In the two-week period following the beginning 

of the lockdown in March 2020, many more people changed residential locations compared to all 

other periods of observation in 2020. (4) Location based service data from mobile phones allow 

us to measure the effects of transportation interventions on non-motorized trips. 

2.4 Conclusions 

Our findings underscore the importance of tailoring policies aimed at reducing vehicle 

dependency to account for regional disparities. In general, urban areas reduced more their VMTs 

than rural areas during the same period of observation in 2020. Notably, the reduction in vehicle 

usage exhibits a significant variance, with some counties decreasing their Vehicle Miles Traveled 

only by 5% in 2020, while others achieved a more substantial reduction of 38%. 

While Location-Based Service (LBS) data proves valuable in measuring travel mode and 

tracking changes in residential locations, it is worth noting that the models developed are limited 

to unsupervised learning due to the lack of labeled data. Consequently, drawing meaningful 

conclusions regarding the demographic characteristics of individuals based on this data remains 

challenging. 
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Figure 1: Number of trips made in 2020 by trip purpose 

 

2.5 Additional Information 

This study is funded under CARB grant No.20RD005 and completed by Shangqing Cao, 

Cristobal Pais, Violet Lingenfelter, Ruining Wang, Elouan Pulveric, Tom Wenzel, and Marta C. 

González. The full title of the study is “A Data Science Framework to Measure Vehicle Miles 

Traveled by Mode and Purpose”. The full paper can be found on the CARB website and the 

associated web application developed can be found here. 

https://caoalbert.shinyapps.io/rg_map/
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3 Executive Summary 

3.1 Background 

Human mobility science is the study of modeling and analyzing individuals’ movements to 

extrapolate population-wide travel patterns and trends. These studies have been boosted by the 

new availability of mobile phones that track trips of large samples of the population. These data 

sources are passively collected in contrast with, and as a great complement to travel diary surveys. 

Mobile phone sources are divided into two types, call detailed records (CDRs) and location-based 

services (LBS). The former are collected by mobile phone providers and have spatial resolution 

given by the coverage areas of the antennas. The latter are collected by different applications 

installed in smartphones and they have spatial resolution of GPS and WiFi access points. 

Characterizing human mobility patterns for a group of users, or in a given area, can assist 

policy makers in designing and implementing effective mobility-related and transportation-related 

policies. This report explores the potential of using mobile phone data and methods from mobility 

science to track changes in travel patterns in California. This helps the state of California to 

design policies that will lead to achieving the state’s goal of reducing greenhouse gas emissions to 

40% below the 1990 level by 2030. We focus on evaluating the impact of the COVID-19 

pandemic on mobility patterns in California as detected via algorithms applied to mobile phone 

data. 

3.2 Objectives and Methods 

The goals of this report encompass evaluating the shifts in vehicle usage, trip purposes, 

commuting patterns, and residential relocations at a statewide level, all prompted by the 

COVID-19 pandemic and relying on mobile phone data as our primary data source. Additionally, 

we assess the influence of multiple mobility-related initiatives implemented in Sacramento in 

2019 to better understand the impact these initiatives have on vehicle user. To achieve these 

objectives, we employ a range of data science techniques and concepts from network science. 

Specifically, we introduce innovative unsupervised learning methods designed for the 

identification of changes in residential locations and the classification of travel modes. Because 

unsupervised learning does not rely on the availability of labeled data, which supervised learning 

does, we can conduct the above tasks without knowing a sample of users’ real home change 

patterns and mode choices. Our analyses are driven by Location-Based Service (LBS) data for 

trip measurement, supplemented by demographic and socioeconomic information sourced from 

census data. 

3.3 Results 

We discover that mobile phone data enables the measurement of shifts in Vehicle Miles 

Traveled (VMTs) during the COVID-19 pandemic and its associated response measures in 

California. Notably, rural areas exhibited a lesser reduction in comparison to their urban and 

suburban counterparts, maintaining relatively high VMT levels even in March and April 2020. A 

more pronounced decline in VMT occurred on weekends, as non-essential travel is further 

reduced compared to essential travel. It’s worth highlighting that the volume of work-related 

movements, particularly commutes, did not rebound to pre-pandemic levels as swiftly as 

non-commute trips. In fact, as indicated by the network analysis, the statewide commuting 

structure has not fully returned to its pre-pandemic state as of 2022. We find that workers who 

had long distance commutes prior to the pandemic still had not returned to their original 
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workplace as of 2022. An analysis of the radius of gyration (rg) reinforces that people not only 

traveled less during the COVID-19 pandemic but also covered shorter distances. 

A notable surge in the number of residential relocations is observed in March 2020, 

coinciding with the rapid spread of the virus in California. Furthermore, individuals relocated 

over greater distances during this period compared to usual times. The data also shows an 

increasing number of movements between Northern and Southern California during this period. 

Major urban centers such as Los Angeles and San Francisco experienced a substantial net outflow 

of residents at the pandemic’s onset, while smaller cities in the central valley, like Fresno and 

Bakersfield, maintained relatively stable populations. 

Another goal of this report is to assess the change in travel behaviors through the use of LBS 

data. Implementation of various mobility-related events and initiatives in Sacramento in 2019 

provide us with specific instances under which we can evaluate the change in travel patterns. The 

analysis reveals that the only event significantly impacting the vehicle usage rate was the 

expansion of the JUMP scooter fleet in June 2019. 

3.4 Conclusion 

In this report, we reveal the shifts in mobility patterns triggered by the COVID-19 pandemic. 

Our study delves into the utilization of mobility science and data science methodologies on 

mobile phone data to monitor vehicle usage and travel behaviors in California. As a crucial 

component of our research, we introduce and implement two innovative models crafted for 

pinpointing residential relocation (KMeansSVM Home Change Detection) and travel modes 

(GMM Model Detection). Looking ahead, future research can be directed towards improving and 

devising supervised learning methods specifically designed to systematically detect modes and 

relocation, thereby shedding light on the implications of limited sample sizes for detecting these 

changes. 
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4 Introduction 

On March 19th, 2020, the state of California announced the Shelter-in-Place (SIP) order 

(also referred as ”lockdown” in parts of this report) as an effort to contain and mitigate the spread 

of Coronavirus Disease 2019 (COVID-19). The measure significantly limited people’s 

movements and introduced new mobility patterns. In order to meet the state’s goal of reducing 

greenhouse gas emissions to 40% below 1990 levels by 2030, understanding the impact of the 

COVID-19 pandemic and its associated responses is key to designing effective and targeted 

policies that reduce vehicle usage, and thus greenhouse gas emissions. The study sheds light on 

understanding the similarities and differences in human mobility patterns across different regions 

in California and during different periods through the lens of mobile phone data. 

Understanding human mobility means understanding how and when people move from 

location to location in their everyday lives. In the past decade or so, advances in technology have 

opened up new opportunities for understanding human mobility through novel data sets. These 

data sets, such as Call Detail Records (CDR) from cell phone providers and location histories 

collected by smartphone apps, referred as Location-Based Services (LBS), allow researchers to 

observe individuals on a new scale [14][30]. The advent of these large data sets requires us to 

empirically derive new metrics, algorithms, and models to understand and capture how human 

behavior relates to human mobility. Improved models for human mobility have far reaching 

impacts, from models of disease spread [95] to transportation demand modeling [114], or to 

understanding behavior in natural disasters [56]. Section 15 provides a more comprehensive 

description of CDR and LBS data. 

The objectives of this report are to assess the ability of mobile phone data to measure the 

statewide changes in Vehicle Miles Traveled (VMT) as a result of the SIP order, and analyze the 

changes to the temporal and spatial commute flow patterns. Our finding, which shows a 40% to 

50% decrease in average VMT agrees with a TRIP report that states vehicle travel in April 2020 

“was 40 percent lower than in April 2019” [99]. We also aim to uncover trends in home 

relocation during the SIP order and investigate the effect of mobility related initiatives on vehicle 

usage in selected area in the city of Sacramento. As a part of the study, we developed a novel 

unsupervised model for identifying vehicle trips to calculate VMT and a two-step 

semi-supervised scheme to identify changes in residential locations on a census block group level. 

The rest of the report is organized as follows: In section 5, we present the data sets used in 

our study. In section 6, we discuss the mode detection algorithm and changes in VMT in 2020 

due to the SIP order. In section 7, we dissect trips into two different categories, commute and 

non-commutes, and analyze changes in trends associated with each type of trip. In section 8, we 

showcase the web application that is developed as a part of this project to display 

Radius of Gyration (rg) , a measure that captures the average distance covered by each individual. 

In section 9, we present the home detection algorithm and the patterns of home changes in March, 

2020. Finally, in section 10, we evaluate the effectiveness of various mobility-related events and 

initiatives in changing vehicle use rate as detected via LBS data. 
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5 Material 

5.1 Location-based Service (LBS) Data 

Aggregated LBS is provided by Spectus1, a location intelligence platform. Data is collected 

from anonymized users who have opted-in to provide access to their location data anonymously, 

through a CCPA and GDPR-compliant framework. Through its Social Impact program, Spectus 

provides mobility insights for academic research and humanitarian initiatives. The Spectus 

responsible data sharing framework enables research partners to query anonymized and privacy-

enhanced data, by providing access to an auditable, on-premise Data Cleanroom environment. 

All final outputs provided to partners are aggregated in order to preserve privacy. LBS data 

starting from January 1st, 2019 is obtained from Spectus and we use data up to December 2022 

for this report. The spatial resolution of the data is census block groups. Raw spatial-temporal 

records (i.e. latitude, longitude, and time) are transformed and processed by Spectus to construct 

trajectories [110], which is defined as a trip between two consecutive stops. The analysis is 

conducted using the trajectory data table built by Spectus. Because of privacy considerations, a 

device is only permitted to retain the same identification number for a duration of up to one year. 

This one-year limit represents the maximum period for which we can monitor a user. Therefore, 

we treat data in the years 2019, 2020, 2021, and 2022 as records collected from four distinct 

group of users. To obtain high-quality behavioral patterns, we adopt the user selection algorithm 

proposed by Xu et al. to select highly active users [114] 2. Section 15.5.2 explains the 

significance for using high-quality users in modeling human mobility patterns. 

First, users who have more than 316 (102.5) pings, which is a single spatial-temporal record 

that contains a timestamp, latitude, and longitude, and an active time-span longer than 60 days are 

deemed high-quality users. An active time-span is defined as the difference in number of days 

between the beginning of the last trajectory record of a user and the beginning of the first 

trajectory record of the user. Figure 2A) illustrates the number of users with particular lengths of  

active time-span and numbers of records in the 2020 dataset. We retain the highlighted users as 

high-quality users. 

 

A) User selection criteria highlighted in the box. We select users with more than 60 days in their activity span and 
more than 102.5 pings. B) Home detection validation with 2019 census data. We observe a good correlation between 
the number of users whose homes are found in particular census tracts and the tract population recorded by census. 

Figure 2: User Selection and Validation 

 

We identify home and work locations of a user to enable the analysis on change in commute 
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patterns. As discussed in 15.2, both CDR and LBS data sets have been validated for capturing the 

commute flow that would otherwise be collected through traditional methods such as travel 

surveys. We define home location as the most frequently visited census block group between 7 pm 

and 7 am for each user with at least 10 visits. Work location is defined as the most frequently 

visited census block group between 7 am and 7 pm for each user with at least 10 visits. Users who 

have a home and a work location found in the same census block group are excluded in parts of 

the report that involve the comparative analysis on commutes and non-commutes [73]. Users 

whose identified home location is the same as the identified work location are deemed as non-

commuters. Figure 2B) shows the correlation between the number of users with homes identified 

in a census tract and the respective census tract population from the 2019 census. On a census tract 

level, we find a Pearson’s correlation coefficient of 0.5, which is slightly lower in what has been 

achieved using similar algorithms in other studies. Xu et al. finds a correlation coefficient of 0.73, 

but on a zip code level [114]. Because the population of census tracts are uniformly distributed, 

we expect to see a smaller correlation coefficient. Table 1 lists the number of users we retain for 

the analysis. The difference in the number of users between 2019 and the rest of the years is due to 

the introduction of new features released by Apple via iOS13. 

 

 

 

 

 

 

 

 

Table 1: Number of Users 

5.2 Definition of Regions 

In parts of this report, we study regional differences in the impact of COVID-19 and the SIP 

order on mobility patterns. We include four metropolitan regions in the study: the Bay Area, 

Greater Los Angeles, San Diego, and Sacramento. The Bay Area spans 9 counties, including San 

Francisco County, San Mateo County, Santa Clara County, Alameda County, Contra Costa 

County, Solano County, Napa County, Sonoma County, and Marin County. The Greater Los 

Angeles region includes Los Angeles County, Orange County, San Bernardino County, and 

Riverside County. The San Diego region and the Sacramento region refer to San Diego County 

and Sacramento County respectively. When using the phrase “state-wide” or not specifying the 

regions, we use the trajectory data of the active users in the entire state of California in the study. 

5.3 Census Data 

Census tract population and income data used in this report is obtained through the census 

Application Programming Interface (API) in python. We use the data of the American 

community survey of 2019. 

 

 

 

 

 
 

1https://spectus.ai/ 
2https://arxiv.org/submit/5308899

Year # Users # High-Quality Users # Users with Home and Work Found 

2019 9,410,380 3,482,574 861,167 

2020 5,912,373 2,396,990 431,190 

2021 5,222,416 2,036,110 465,311 

2022 5,618,760 2,582,405 702,847 
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6 Statewide Changes in Vehicle Miles Traveled (VMT) 

6.1 Mode Detection Algorithm 

To distinguish motor vehicle trips from other trips made by users that are selected in section 

5.1, we develop an unsupervised learning scheme to conduct mode detection. Existing literature 

relies heavily on GPS data, with features such as acceleration, heading, and jolt to train 

supervised learning models for mode detection with labels (i.e. trips with known modes) [87]. 

More specifically, heading is the direction of the movement and jolt is change in acceleration. 

Other attempts have also been made using predefined, deterministic rules for labeling mode and 

geo-referencing dataset such as rail lines and highways to identify mode [44]. 

We develop a novel clustering approach to mode detection with 

Gaussian Mixture Model (GMM). GMM assumes that data in an n-dimensional feature space can 
be clustered into p mixtures using n-dimensional joint Gaussian distributions, characterized by 

the mean vector u ∈ Rn and the covariance matrix Σ ∈ Rn×n [50]. That is to say, each single 

observation in the dataset can be categorized into one of the p mixtures, which are characterized 

by p different number of mean vectors and covariance matrices. We use two features as inputs, 

the logged maximum speed (log kph) and the logged length of the trajectory (log km). 

Using the elbow method, which determines the number of components by evaluating the 

additional decrease in unexplained variance or similar metrics, we determine from figure 3A) that 

the optimal number of mixtures, p, is 3. We choose 3 because adding an additional component 

yields negligible improvement in the performance of the model. Figure 3B) illustrates a sample 

result of GMM. We assign each observation, a trip, one of three labels: motorized, 

non-motorized, or noise. We conclude that trips labeled green must be vehicle trips, as the 

maximum speed that is observed, which is above 101.6 (25 mph or 40 kph), is not feasible with 

walking or running. On the other hand, trips that have a maximum speed less than 100.8 (6.3) kph 

are likely to be non-motorized. The region that these two mixtures occupy provides realistic 

insights into the mode of the trip. For all other trips, which are highlighted in blue, we assign 

noise as the label, which can be interpreted as the set of trips to which a mode cannot be assigned. 

 

A) Parameter tuning. We select p = 3 as the optimal number of clusters. B) GMM clustering result 

Figure 3: Gaussian Mixture Model (GMM) for Mode Detection 
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6.2 Results 

We estimate VMT of users living in selected counties and the entire state of California by 

aggregating all motor vehicle trips identified using the method discussed in section 6.1. To 

compare the relative change in VMT across different counties, we use January 2020 VMT level as 

a benchmark. Figure 4 shows the drastic decrease in VMT level from March to May, the time in 

which the first wave of the pandemic arrived to California. We see it also in late 2020, when 

COVID-19 cases surged in the winter season. We observe a decrease in VMT starting in March, 

when the SIP order was announced by the State’s government. The following month, April, sees 

the largest reduction in VMT levels, a change ranging from -40% to -60%. 

 

Figure 4: Vehicle miles travelled (VMT) changes in selected counties in California in 2020 

 

Figure 5A) illustrates the average VMT changes, separated by day of the week in 2020. The 

SIP order did not change the relative VMT patterns across different days of the week. People 

travel consistently less with vehicles on Sundays and more on Saturdays. We also see the 

fluctuation in VMT within the weekdays always being distinguished from weekends. Still, the 

SIP order greatly reduced the average VMT, particularly on Sundays, during the first few weeks 

after its implementation. In the first two months of 2020, as well as in May and onward, per 

capita VMT level on Sundays is similar to the weekday with the lowest VMT. However, in the 

first few weeks after the implementation of the SIP order, VMT level on weekends decreased 

further compared to weekdays. Figure 5B) shows that across all months, census tracts of higher 

income levels observe a higher average VMT. Still, all census tracts, regardless of their income 

level, experience a decrease in VMT in March, April, November, and December 2020. The 

observation that high-income groups had a greater reduction in VMT in April and December 

2020 can be potentially attributed to the greater flexibility and feasibility of telecommute when 

compared to lower-income groups. 

6.3 Discussion 

It is worth noting that counties characterized by an urban setting such as Los Angeles 

County, Orange County, and Santa Barbara County experienced a larger reduction in VMT 

compared to their rural counterparts such as Imperial County and Kern County. The difference 

reveals that people living in remote, rural places are more dependent on vehicles as a means of 

transport. The greater reduction observed on weekends during the first few weeks after the 

implementation of the SIP order suggests that people cut more non-work related movement at the 
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A) Changes in average VMT per capita in California based on day of the week. A lower VMT level is consistently 

observed on Sundays and a higher VMT level is consistently observed on Saturdays. B) Changes in VMT of census 

tracts of different income levels in California in 2020. 

Figure 5: Changes in statewide vehicle miles travelled (VMT) in 2020 

 

beginning of the pandemic. However, this divergence began to diminish starting in May and 

people’s travel behavior became more similar between weekends and weekdays even though the 

overall VMT was still much less than normal times. Additionally, in California we observe little 

correlation between income levels and the impact on VMT caused by the pandemic. The 

corresponding statistical evidence is further explained in section 18.1. Still, in periods when travel 

decreased drastically, such as in March and December, all census tracts, regardless of their 

income levels, have roughly the same VMT per capita. In comparison, during periods with fast 

recovery, such as the summer months, census tracts of high-income are more elastic in that they 

quickly returned to a relatively high level of VMT. 

7 Change by Trip Purpose 

7.1 Methodology 

In this section, we outline the method behind detecting trips of different purposes. We use 

heuristics and borrow concepts from network science to explore the change in mobility patterns 

by trip purpose. 

7.1.1 Trip Purpose Detection 

With the home and work location identified using the process outlined in section 5.1, we 

define a work trip as a trajectory that starts in a user’s home census block group and ends in the 

user’s work census block group, or vice versa. Any trip that is not a work trip is defined as a 

non-work trip. The word commute, which by our definition is equivalent to a work-trip, is also 

used in the following sections. 

7.1.2 Flow Network 

We construct directed, weighted networks using the commutes to analyze the change in the 

structure of the commute network in California. Networks are graphs that consist of nodes and 

edges, both of which carry attributes. A node can be an entity and the edge between the nodes 

characterize the relationship between the two nodes. In case of a weighted network, the weight on 

the edge defines how strong the connection is between the two nodes. The nodes in the commute 
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flow network are census tracts. We define the weight on each directed edge between the origin 

node and a target node as commute flow, which is the number of people whose home is at the 

origin node and whose workplace is at the target node. We use the concept of communities, which 

are subsets of nodes that are densely connected [66], to characterize the network by showing the 

spatial distribution of connectivity. In network science, communities are subsets of nodes that 

possess more flows within each subset than among the subsets. One such subset is called a 

community. We use the Louvain Method to identify communities in the flow network by 

maximizing modularity, which measures the degree to which a network can be split into distinct 

flow regions or communities. Therefore, a larger number of communities suggests that the 

network can be easily separated into small subsets as the flow within each community 

outnumbers the inter-community flow. 

7.2 Results 

Figure 6 shows the number of trips observed in 2020 separated by trip purpose. Although 

both the number of work and non-work trips decreased in March 2020 and experienced recovery 

in the summer months, work trips recovered at a slower pace compared to non-work trips. The 

ratio of work to non-work trip only started to rebound in September and October, before it 

quickly dropped again in November and December. 

 

Figure 6: Number of trips made in 2020 by trip purpose 

 

We also investigate regional differences in the impact of the COVID-19 pandemic on work 

trips and their recovery process. Figure 7 shows the cumulative distribution of work trip inflow in 

the four different regions across the four different years. The x-axis represents the rank of the 

census tract by the number of users that work in the respective census tract. The y-axis shows the 

cumulative percentage of the total work flow that go into these census tracts. For example, we see 
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the top 20 percentile census tracts in the four regions, as indicated by the x-axis, attract around 

60% of the total work inflow, which is captured by the y-axis. We see that in all four regions, the 

curve for 2020 is shifted to the right, meaning that work locations of users are less concentrated in 

census tracts that previously drew a lot of users as work locations. Also, we observe that the 

distribution returned to 2019 level in 2022, showing a full recovery in the distribution of the ranks 

of work locations. The Greater LA metro region, in contrast to the other three regions, recovered 

more quickly as the distribution of flow in 2021 is already close to its 2019 level. 

 

 
The distributions reveal the degree to which work locations are concentrated in a group of census tracts. We observe 

work locations are less concentrated during the COVID-19 pandemic. All four regions eventually returned to the 2019 

level in 2022. 

Figure 7: Concentration of work locations 

 

As discussed in section 7.1.2, we construct commute flow networks and use network 

communities to study the differences across the four-year period. Table 2 lists the characteristics 

of the flow networks in each year. The 2020 and 2021 commute networks possess a much smaller 

number of edges compared to 2019 and 2022, which shows the reduction in the number of census 

tract pairs that have users commuting between them. We retain roughly the same number of nodes 

across the four years, which is expected, as the number of census tracts that have at least one work 

commute should remain consistent. While the number of edges began to return to 2019 level in 

2022, the number of communities remained at 8 and the modularity remained high. As higher 

level of modularity means that the network is more separable, this reveals that the commute flow 

network in California stays fragmented. Figure 8 shows the difference in the community 
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structure between 2019 and 2020. In both years, we observe separations among different regions. 

Each of the large urban areas, including Los Angeles, the Bay Area, San Diego, Bakersfield, and 

Sacramento act as centers of a wider region, demonstrating the gravitational pull these urban 

centers have on the surrounding region in terms of employment opportunities. It is interesting to 

observe the overwhelming dominance of the Bay Area over its surrounding communities. Cities 

that are geographically closer to Sacramento and Bakersfield also see more commutes to the Bay 

Area rather than to Sacramento or Bakersfield. In 2020, two more communities came into 

existence: one located in El Centro, Southern California, and the other situated on the eastern side 

of the upper Sierras. These locations are isolated from major urban centers due to natural 

obstacles like mountains and deserts. This highlights the heightened impact of the pandemic on 

geographically remote regions. 

 

 # Nodes # Edges # Communities Modularity 

2019 8,033 145,838 6 0.628 

2020 8,026 89,382 8 0.653 

2021 8,009 73,401 8 0.648 

2022 8,019 111,652 8 0.666 

Table 2: Commute Flow Networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Communities in California commute network in 2019. Note, census tracts in gray are tracts with no qualified 

observations. B) Communities in California commute network in 2020. Note, census tracts in gray are tracts with no 

qualified observations. 

Figure 8: Spatial Distribution of Communities in California 
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7.3 Discussion 

Our findings reveal that the COVID-19 pandemic and associated lockdown measures had 

varying effects on trips based on their purposes and geographical regions. Commuting was more 

adversely impacted compared to non-work-related travel. Even as the overall number of trips 

began to recover in the summer of 2020, the ratio of commutes to non-work-related trips did not 

return to pre-pandemic levels. This suggests that the lockdown measures did not necessarily deter 

people from traveling but rather the shift to remote work reduced the necessity for travel. The SIP 

order had a comparatively smaller impact on personal travel. 

Additionally, our analysis of four different regions showed that the top 20% of census tracts, 

in terms of work inflow, accounted for over half of the users. In 2020 and 2021, we observed a 

more dispersed distribution of work locations. Census tracts that previously attracted a significant 

number of users for work played a less dominant role, as the same percentage of users were 

distributed across a greater number of census tracts for work. 

Through the construction of four flow networks spanning a four-year period, we observe a 

significant reduction in the number of edges, suggesting a decline in commutes between 

numerous pairs of census tracts. The heightened modularity indicates a decrease in 

inter-community commutes post-COVID-19 compared to pre-pandemic times. Notably, the 

number of communities remained constant at 8 even in 2022, and the count of census tract pairs 

with commutes did not revert to 2019 levels in 2022. This underscores the enduring and lasting 

impact of the pandemic on commuting patterns in California. 

8 Radius of Gyration (rg) 

8.1 Methodology 

Radius of Gyration (rg) measures the spatial spread of a user’s activity, it is an 

easy-to-compute metric that provides direct yet valuable insights on the travel behaviors of 

individual users. Higher rg suggests more vehicle use and long-distance travel, and a lower rg 
indicates less vehicle use and more local travel. Section 15.1.1 provides a detailed discussion on 

the implication of rg in human mobility. For the following analysis, rg of an individual u is 

defined as: 

where nu is the number of records of an individual and the dist operator calculates the 

distance between the location of a ping and the center of mass of all pings [42]. To compare 

different geographical areas in California, we further define the radius of gyration of an area as 

the average radius of gyration of all users that live in the given area, which can be on various 

levels such as census tract and counties. The home detection process is outlined in section 5.1. 

We built an interactive web application that allows the user to retrieve the radius of gyration 

statistics for various counties. The web application user can retrieve visualization for different weeks 

and counties in 2020 in the San Francisco Bay region, enabling a quick comparison of radius of 

gyration from both a spatial and a temporal perspective. 

Figure 9 shows an example of a map of radius of gyration in California. We see a clear 

distinction between large urban centers, such as the Bay area, Greater Los Angeles, and San 

https://caoalbert.shinyapps.io/rg_map/
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Diego, and the rest of the state. We observe most of the census tracts in these three urban cores 

have a radius of gyration around 20 kilometers. In contrast, the variation in radius of gyration is 

larger in the Central Valley, where exists a mixture of urban areas such as Sacramento and 

Bakersfield, and rural areas. Additionally, we see a large radius of gyration for census tracts on 

the eastern side of the Sierra Nevada, which are rural census tracts that are distant from any major 

urban centers. This difference in radius of gyration is further explored in figure 23 in the 

appendix, where we see more densely populated areas, which are more urban in nature, have 

lower radius of gyration compared to the rural counterparts. We also see a larger radius of 

gyration in census tracts along the interstate 5, where exists a combination of low-density urban 

development and convenient access to freeways. We recognize that some of the neighboring 

census tracts along I-5 differ drastically in their radius of gyration. This difference can be 

attributed to the different number of users who live in these neighboring census tracts. As 

indicated by figure 22, there are gaps in the number of users along I-5. 
 

 

 

Figure 9: Radius of gyration distribution in California in 2020 by census tract 
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8.2 Results and Discussion 

We compute the change in rg by comparing rg in the week after and prior to the 

implementation of the SIP order. The average reduction in rg of a given area, as shown in figure 

10A), is positively correlated with the area of a county, where a large size indicates a more rural 

environment. Although all counties experienced a decrease in their average rg, we see disparity in 

impacts of the SIP on different regions. We observe a smaller decrease in travel in rural counties, 

which are larger in size. In metro regions, as shown in figure 10B), the shift in the distribution of 

rg appears more homogeneous. 

 

A) Correlation between the change in average rg and the area of county after the announcement of the SIP order. We 

observe a weak positive correlation between the area of a county and the percentage change in rg. This suggests that 

people living in rural counties are less affected by COVID-19 as they still continue to make long-distance trips. B) 

Distribution of rg before and after SIP in four metro regions in California. We see that in all four regions, COVID-19 

led to a drastic reduction in rg. 

Figure 10: Regional rg trends 

 

 

9 Changes in Residential Locations 

9.1 Methodology: Home Change Detection Algorithm 

As 15.1.3 examines, LBS and CDR records have proven to be effective in capturing human 

migration patterns on a city-level scale. However, challenges remain in using LBS and CDR data 

to model and detect home changes over short distances. To examine changes in residential 

locations (intra-state moves) on a census tract level during the COVID-19 pandemic in California, 

we devised a two-step semi-supervised learning algorithm. Our assumption is that a mover 

demonstrates two clusters of spatial-temporal travel behaviors, with each cluster corresponding to 

the residential location before and after the move, provided that the user has relocated once. We 

first detect the two clusters using the k-means algorithm, which is the unsupervised step. We then 

use the assigned cluster labels of the observations as pseudo-labels. We use these pseudo-labels 

to train a Support Vector Machine (SVM) model, which returns the separating hyperplane in the 

input space, completing the supervised step. Lastly, we impose heuristics to determine if the two 

clusters indeed resemble two distinct home locations in order to conclude home changes. We find 

that the algorithm is effective at detecting home changes for the synthetic dataset and also the 

results from applying the algorithm to the real dataset shows similar conclusion drawn by other 

studies. 
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K-means algorithm is a clustering technique that updates the location of k centroids by 

minimizing the sum of squared distance between each observation and its closest centroids, thus 

partitioning the n-dimensional population into k sets [62]. SVM is a supervised classification 

algorithm that identifies labels of observations by finding the best separating hyperplane, which 

divides the two clusters each representing the behavior of a mover before and after the move 

respectively, that maximizes the margins between the two groups [23]. 

For each user, we use the latitude and longitude of the end point of the user’s trajectories 

(trajectories defined by Xiang et al. [110]), as well as the date of the trip of all trajectories that 

end between 7pm and 7am as features in the input space. Each observation in the input space, 

therefore, consists of the latitude and longitude of the start of a trajectory and the date, which is 

converted to the unit of the number of days since 1/1/20. We use SVM to prevent potential 

over-fitting in results from k-means clustering, which can lead to observations being falsely 

classified due to their geographical proximity to the centroid of the wrong cluster. For example, a 

user might still visit places near their original home after changing their residential location. 

Because k-means treats all three features, latitude, longitude, and time with equal weight, the 

algorithm can still assign these visits after the home change to the cluster that represents the 

original home location. We set parameter c = 0.01, which is the penalty attached to 

misclassifying observations to create a wider separating hyperplane in SVM, to a very small 

number. This helps correct the mistakes that are made in k-means to construct the clusters of 

behaviors before and after the change in residential location. After identifying the two clusters, 

we determine the date of home change of a user as Move Date = min(max(cbh, cac)), where cbh 
is a set of dates of the observations that belong to the cluster before the home change and cac is a 

set of dates of observations that belong to the cluster after the home change. Using the date of 

home change, we apply the home detection algorithm outlined in section 5.1 to the trajectory 

observations before and after the Move Date to determine the two home locations. 

We impose additional conditions to select users who changed their residential locations. 

Only users whose two home locations are at least 5 miles (8km) apart from each other and that are 

observed for at least 20 times (trajectories) in each of the two clusters are deemed as users who 

moved. Algorithm 1 details the home change detection process. 

9.2 Validation 

We validated the method by applying the algorithm to a set of synthetic users and then used 

the algorithm on the real users. Figure 11A) shows a real user who changed home in 2020 and 

was successfully detected by algorithm 1. The figure shows two distinct clusters of behaviors in 

which the algorithm is able to label the most frequently visited location as the home location 

before and after the home change. Figure 11B) is the result of applying the algorithm to a group 

of synthetic users that are created using the procedures described in section 16. Since the 

synthetic users are created artificially, we know the home locations of these users before and after 

the move. A correct home change labeling is defined as accurately identifying the home census 

tract before and after the home change event. The synthetic dataset consists of 28,260 users, of 

which 5,000 had real home changes. We are able to correctly detect and label 4,321 of them, at a 

rate of 86.4%. We also identify 447 users as movers even though they did not move, which gives 

a Type I error rate, which is the percentage of users that are believed to have moved but did not, 

of 1.6% (447/28260). 
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Algorithm 1 Home Change Detection 

α = 20 ▷ Set the minimum number of records in each cluster to 20 

d = 5 miles or 8 km ▷ Set the minimum distance between the centroids of the two clusters to 

5 miles to conclude a home change 

for every user do 

Select all trajectories that end between 7pm and 7am 

Fit a k-means model with k=2 using 3 features: latitude, longitude, and day 

of visit Use the fitted k-means model to assign each observation to one of 

the labels Fit SVM with the pseudo-labels to cluster the observations 

Compute the move date as min(max(cbh, cac)) 
Conduct frequentist home detection before and after the move date 

if # of records both before and after home change > α then 

if Distance between two home locations > d then 

Conclude home change 

end if 

end if 

 end for  

 

A) Sample home change detection on a real user. B) Home change detection validation on synthetic users. 

Figure 11: Home change detection algorithm validation 

 

9.3 Results 

Figure 12A) shows the temporal distribution of home changes in each year between 2019 

and 2022 and table 3 shows the overall percentage of users that moved within California each 

year. Overall, a smaller percentage of users moved in 2020, a conclusion also drawn by the Pew 

Research Center using the census data [36]. This reduction in moves is possibly due to the travel 

restrictions and the closing of businesses during the SIP order, which makes it more difficult 

logistically for people to move. 
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 # High-Quality Users # Home Changes % Moved 

2019 3,482,574 199,286 5.72% 

2020 2,396,990 125,929 5.25% 

2021 2,036,110 118,446 5.82% 

2022 2,582,405 164,927 6.39% 

Table 3: Number of home changes detected in each year between 2019 and 2022 

 

We observe significantly higher number of moves within the two-week period between when 

the state announced the state of Emergency on 3/4/2020 and when the SIP order was implemented 

on 3/19/2020. The results indicate that the SIP order only had short-term impact on people’s 

moving behaviors as the percentage of moves quickly returned to normal levels in the weeks 

following the SIP. This is possibly due to closure of universities and the transition to remote work, 

which might have made people move home. After the implementation of the SIP order, moving 

became drastically more difficult logistically, which can explain the sudden drop in moves. The 

gradual climb in the percentage of moves at the beginning of each year and the decrease in the 

percentage of moves towards the end of each year are attributed to the nature of the dataset and 

the algorithm. Because of the fact that algorithm 1 only considers users whose two clusters before 

and after the home change contain more than 20 observations as users who moved, it is more 

difficult to conclude home changes at the beginning and at the end of a given time window. 

Additionally, since a user identification number is only present in the database up to one year due 

to privacy reasons, not all observations of a user are used in home change detection. 

 

 

 

A) Temporal distribution of move dates in 2019, 2020, 2021, and 2022. B) Monthly net flow of migration in se- lected 

cities in California C) Distribution of move distance in (excluding) the two-week period between 3/4/2020 and 

3/19/2020. 

Figure 12: Home change behaviors in 2020 

 

Figure 12B) illustrates the net flow of moves in the largest cities in California. The net flow 
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of a city is defined as the difference in the number of people who moved into and out of the city. 

A negative net flow means that more resident left the area than those moved in. We observe 

negative net flow across almost all cities in California in March 2020. Although more populous 

cities experienced proportionally more outflow compared to smaller cities, it is important to note 

that neither Ontario nor Fresno experienced a negative net flow in March. Figure 12C) shows the 

distribution of move distance of users in two groups, which are those living in the top 20 

percentile census tracts by income level, and those that are living in the lower 20 percentile 

census tracts. Move distance is defined as the Euclidean distance between the two centroids of the 

census tracts in which a user’s two homes before and after the move exist. The disparity in move 

distance distribution between these two demographic groups is minimal when we exclude the 

moves that took place between 3/4/2020 and 3/19/2020. Nevertheless, during this specific time 

frame, individuals residing in the poorest census tracts relocated to greater distances compared to 

those in living in some of the wealthiest census tracts. Importantly, the overall move distance 

within this two-week period saw a significant increase, resulting in a bimodal distribution. The 

second mode, shown on the right, corresponds to a move distance of 102.7( 313mi/ 500km) to 

102.8( 394mi/ 630km), which translates to the distance between the Bay Area and Southern 

California. 

9.4 Discussion 

A noticeable surge in residential relocation occurred in early March 2020, in response to the 

array of measures implemented by the state of California to mitigate the spread of COVID-19. 

The immediate effects of the pandemic and associated policies persisted for roughly two weeks. 

Notably, the moves that transpired during this timeframe were distinguished by their longer 

distances, especially among individuals residing in economically disadvantaged census tracts. 

The uptick in move distances suggests that individuals making these relocations underwent 

sudden shifts in their work or study circumstances, necessitating or enabling inter-regional moves. 

Intriguingly, this surge in relocations was relatively brief, lasting for only about two weeks. 

One plausible explanation is that, following the implementation of Shelter-in-Place (SIP) 

measures, logistical challenges associated with moving increased substantially. Additionally, 

regional disparities are evident. Cities in the Central Valley and suburban areas surrounding 

population centers witnessed minimal to no significant net flow changes in March 2020. This 

highlights the greater stability of suburban locations as compared to urban areas for establishing a 

residence. 

10 Detecting Event-Induced VMT Changes 

Our task in this section involves assessing the effects of four mobility-related events that 

took place in Sacramento in 2019. Section 17 has the complete list of census tracts in which these 

mobility-related programs were launched and figure 13 shows the locations of these census tracts, 

which are all in downtown Sacramento. Table 4 presents a comprehensive list detailing the events 

and the expected impact on vehicle usage. Our hypothesis is that electric scooters, given their 

classification as non-motor vehicles and a speed limitation of approximately 15 mph, would 

contribute to a reduction in vehicle use. On the other hand, since car share services and rapid 

transit all provide mobility services with motor vehicles, the introduction of such programs would 

lead to an increase in motorized trips. 
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Figure 13: Selected census tracts in Sacramento 

 

Time Event Hypothesized Impact 

February, 2019 JUMP released electric scooters Decrease in vehicle usage 

March, 2019 GIG Car Share released shared-vehicles Increase in vehicle usage 

June, 2019 JUMP increased its electric bike fleet Decrease in vehicle usage 

September, 2019 
Sacramento Rapid Transit launched a 

new transit program SacRT Forward 
Increase in vehicle usage 

Table 4: Mobility-related events in 2019 

 

10.1 Methodology 

To investigate the impact of these events on motorized travel, we use the mode detection 

algorithm presented in section 6.1 to calculate the percentage of trips that are made using motor 

vehicles. Bootstrap sampling is a sampling technique that calculates a target statistic by 

repeatedly drawing samples of observations from the same population. After each draw, the 

selected observations are returned to the population from which subsequent samples are collected. 

For each event, we create 100 bootstrap samples of trajectories that begin in the selected census 

tracts in the month prior to the event and in the month of the event, each of a sample size of 

50,000. We compare the distribution of the percentage of vehicle trips between these two 

months. 

10.2 Results and Discussion 

Figure 14 illustrates the impact of the events listed in table 4 and table 5 shows the sample 

size in terms of both the number of users and the number of trajectories used in this analysis. 

Among the four events, only the increase in fleet size of JUMP scooters leads to 

distributional changes in vehicle usage rate, shown in C). We have noted a substantial decrease in 

vehicle utilization in the month subsequent to the release. It’s crucial to note that vehicle usage is 
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 # Trips # Users 

January, 2019 192,426 34,636 

February, 2019 190,643 36,203 

March, 2019 248,462 46,121 

May, 2019 270,871 50,633 

June, 2019 277,004 36,203 

August, 2019 256,785 45,665 

September 2019 257,476 46,948 

Table 5: Total sample size before bootstrapping in different months in selected census tracts in Sacramento 

 

influenced by numerous variables, such as weather and seasonal variations. In the absence of a 

controlled environment, these findings should not be construed as conclusions derived from an 

experiment. Nevertheless, the analysis of Location-Based Services (LBS) data provides valuable 

insights into the effects of these initiatives. 

 

Figure 14: Bootstrapped distribution of vehicle trip percentage 
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11 Summary and Conclusions 

In this research, we leverage Location-Based Services (LBS) data to examine shifts in 

human mobility patterns in California caused by the COVID-19 pandemic and the corresponding 

measures enforced by the state. Below, we provide a summary of our key findings and 

achievements: 

• We have identified a significant decline in overall vehicle miles traveled (VMT) across the 

state during March and April of 2020. However, notable regional disparities emerged. 

Urban counties, like Los Angeles County, experienced a VMT reduction of up to 55%, 

while rural counties, such as Imperial and Kern County, saw VMT decrease by 

approximately 20-30% 

• We observe variation in trips of different purposes. The number of non-commute trips 

recovered much faster compared to commutes. The analysis of the network of commuting 

flows shows that commutes did not return to pre-pandemic levels when measured in 2022. 

• We use rg to measure the spread of a user’s activity space. We find that the reduction in rg 
resulted from the SIP order is positively correlated with the area of a county. Rural counties 

experienced little to no reduction in rg. 

• We developed a home change detection algorithm, and we find that people moved over a 

much longer distance within the two-week period between 3/4/20, when the state of 

emergency was announced, and 3/19/20, when the SIP order was announced. It shows the 

impact of the COVID-19 pandemic had on disrupting people’s ties to work or study 

locations. 

• We assess the effectiveness of selected transportation projects in changing mode 

preferences in selected census tracts in the city of Sacramento. We find that JUMP’s 

increase in fleet size in June 2019 decreased the overall vehicle usage rate. 

• We evaluate and validate the use of CDR and LBS data in modelling human mobility 

patterns and review their applications in public health and urban planning. The results can 

be found in the white paper under section 15. 

The main contribution of this report is that we unfold the reactions to the COVID-19 pandemic in 

California through the lens of mobile phone data. Not only did we observe a reduction in people’s 

movement but also spatial and temporal disparities in their impact, as well as disparities in trips of 

different purposes. We demonstrate the viability of using LBS data to monitor human mobility 

patterns in California. We develop novel unsupervised algorithms to conduct mode detection and 

home change detection, overcoming the need for labeled datasets for training purposes. The 

developed algorithms allow us to observe that work travel and work-induced VMT were more 

susceptible to exogenous disruptions, such as the COVID-19 pandemic, when compared to 

non-work travel. We also measured changes from home locations exacerbated during the SIP 

order. 
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12 Recommendations 

Future efforts can be focused on advancing and fine-tuning unsupervised algorithms for 

detecting changes in residential settings and identifying activity modes. These algorithms 

empower the utilization of Location-Based Services (LBS) data for critical inferences without 

relying on costly and challenging-to-acquire labels. 
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[21] Serdar Ç olak et al. “Analyzing cell phone location data for urban travel: current methods, 

limitations, and opportunities”. In: Transportation Research Record 2526.1 (2015), 

pp. 126–135. 

[22] V. Colizza et al. “Modeling the worldwide spread of pandemic influenza: Baseline case 

and containment interventions”. In: PLoS Medicine 4.1 (2007), pp. 0095–0110. DOI: 

10.1371/journal.pmed.0040013. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

33846670320&doi=10.1371%2fjournal.pmed.0040013&partnerID=40& 

md5=05382f5a4700cd9be56a7e6731966eb8. 

[23] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. en. In: Machine 

Learning 20.3 (Sept. 1995), pp. 273–297. ISSN: 0885-6125, 1573-0565. DOI: 

10.1007/BF00994018. URL: 

http://link.springer.com/10.1007/BF00994018 (visited on 09/18/2023). 

[24] Y.-A. De Montjoye et al. “Unique in the Crowd: The privacy bounds of human mobility”. 

In: Scientific Reports 3 (2013). DOI: 10.1038/srep01376. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

84875822474&doi=10.1038%2fsrep01376&partnerID=40&md5= 

e9216afca1ec2126f7b87354851bfd44. 

[25] Hengfang Deng et al. “High-resolution human mobility data reveal race and wealth 

disparities in disaster evacuation patterns”. en. In: Humanities and Social Sciences 

Communications 8.1 (June 2021). Number: 1 Publisher: Palgrave, pp. 1–8. ISSN: 

2662-9992. DOI: 10.1057/s41599-021-00824-8. URL: 

https://www.nature.com/articles/s41599-021-00824-8 (visited on 

08/15/2022). 

https://doi.org/10.1145/2750858.2805845
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960941653&doi=10.1145%2f2750858.2805845&partnerID=40&md5=c9f21296e5b4720bb9ddd3c596822ec5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960941653&doi=10.1145%2f2750858.2805845&partnerID=40&md5=c9f21296e5b4720bb9ddd3c596822ec5
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84960941653&doi=10.1145%2f2750858.2805845&partnerID=40&md5=c9f21296e5b4720bb9ddd3c596822ec5
https://doi.org/10.1109/TITS.2019.2940481
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086513620&doi=10.1109%2fTITS.2019.2940481&partnerID=40&md5=a429aeaeff8be37ead5ce8d143e1b05a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086513620&doi=10.1109%2fTITS.2019.2940481&partnerID=40&md5=a429aeaeff8be37ead5ce8d143e1b05a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85086513620&doi=10.1109%2fTITS.2019.2940481&partnerID=40&md5=a429aeaeff8be37ead5ce8d143e1b05a
https://doi.org/10.1038/ncomms10793
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962624972&doi=10.1038%2fncomms10793&partnerID=40&md5=fe75d867304007041fcd0702ef9f6b4f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962624972&doi=10.1038%2fncomms10793&partnerID=40&md5=fe75d867304007041fcd0702ef9f6b4f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84962624972&doi=10.1038%2fncomms10793&partnerID=40&md5=fe75d867304007041fcd0702ef9f6b4f
https://doi.org/10.1371/journal.pmed.0040013
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846670320&doi=10.1371%2fjournal.pmed.0040013&partnerID=40&md5=05382f5a4700cd9be56a7e6731966eb8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846670320&doi=10.1371%2fjournal.pmed.0040013&partnerID=40&md5=05382f5a4700cd9be56a7e6731966eb8
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846670320&doi=10.1371%2fjournal.pmed.0040013&partnerID=40&md5=05382f5a4700cd9be56a7e6731966eb8
https://doi.org/10.1007/BF00994018
http://link.springer.com/10.1007/BF00994018
https://doi.org/10.1038/srep01376
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875822474&doi=10.1038%2fsrep01376&partnerID=40&md5=e9216afca1ec2126f7b87354851bfd44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875822474&doi=10.1038%2fsrep01376&partnerID=40&md5=e9216afca1ec2126f7b87354851bfd44
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875822474&doi=10.1038%2fsrep01376&partnerID=40&md5=e9216afca1ec2126f7b87354851bfd44
https://doi.org/10.1057/s41599-021-00824-8
https://www.nature.com/articles/s41599-021-00824-8


34  

[26] Department of Transportation, Census Transportation Planning Package (CTPP). 2000. 

URL: https://doi.org/10.21949/1518908 (visited on 12/01/2022). 

[27] P. Deville et al. “Dynamic population mapping using mobile phone data”. In: Proceedings 

of the National Academy of Sciences of the United States of America 111.45 (2014), 

pp. 15888–15893. DOI: 10.1073/pnas.1408439111. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

84909619343&doi=10.1073%2fpnas.1408439111&partnerID=40&md5= 

5dafbfdf35b49fd4a9c81dc80c82da60. 

[28] B. Dewulf et al. “Dynamic assessment of exposure to air pollution using mobile phone 

data”. In: International Journal of Health Geographics 15.1 (2016). DOI: 

10.1186/s12942-016-0042-z. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

84963812530&doi=10.1186%2fs12942-016-0042- 

z&partnerID=40&md5=37c85db4bed39df463390ae68758a855. 

[29] Kirstin Dow and Susan L. Cutter. “Emerging Hurricane Evacuation Issues: Hurricane 

Floyd and South Carolina”. EN. In: Natural Hazards Review 3.1 (Feb. 2002). Publisher: 

American Society of Civil Engineers, pp. 12–18. ISSN: 1527-6988. DOI: 

10.1061/(ASCE)1527-6988(2002)3:1(12). URL: 

https://ascelibrary.org/doi/10.1061/%28ASCE%291527- 

6988%282002%293%3A1%2812%29 (visited on 08/15/2022). 

[30] Sara B. Elagib, Aisha-Hassan A. Hashim, and R. F. Olanrewaju. “CDR analysis using Big 

Data technology”. en. In: 2015 International Conference on Computing, Control, 

Networking, Electronics and Embedded Systems Engineering (ICCNEEE). Khartoum, 

Sudan: IEEE, Sept. 2015, pp. 467–471. ISBN: 978-1-4673-7869-7. DOI: 

10.1109/ICCNEEE.2015.7381414. URL: 

http://ieeexplore.ieee.org/document/7381414/ (visited on 
09/18/2023). 

[31] S. Eubank et al. “Modelling disease outbreaks in realistic urban social networks”. In: 

Nature 429.6988 (2004), pp. 180–184. DOI: 10.1038/nature02541. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

2442686815&doi=10.1038%2fnature02541&partnerID=40&md5= 

a2f694cee3a874c91f11535ac7f747d2. 

[32] Danielle L Ferreira, Bruno Astuto A Nunes, and Katia Obraczka. “Scale-free properties 

of human mobility and applications to intelligent transportation systems”. In: IEEE 

Transactions on Intelligent Transportation Systems 19.11 (2018), pp. 3736–3748. 

[33] Marshall Fixman. “Radius of gyration of polymer chains”. In: The Journal of Chemical 

Physics 36.2 (1962), pp. 306–310. 

[34] Manuel A Florez et al. “Measuring the impact of economic well being in commuting 

networks–A case study of Bogota, Colombia”. In. 

https://doi.org/10.21949/1518908
https://doi.org/10.1073/pnas.1408439111
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909619343&doi=10.1073%2fpnas.1408439111&partnerID=40&md5=5dafbfdf35b49fd4a9c81dc80c82da60
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909619343&doi=10.1073%2fpnas.1408439111&partnerID=40&md5=5dafbfdf35b49fd4a9c81dc80c82da60
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84909619343&doi=10.1073%2fpnas.1408439111&partnerID=40&md5=5dafbfdf35b49fd4a9c81dc80c82da60
https://doi.org/10.1186/s12942-016-0042-z
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963812530&doi=10.1186%2fs12942-016-0042-z&partnerID=40&md5=37c85db4bed39df463390ae68758a855
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963812530&doi=10.1186%2fs12942-016-0042-z&partnerID=40&md5=37c85db4bed39df463390ae68758a855
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84963812530&doi=10.1186%2fs12942-016-0042-z&partnerID=40&md5=37c85db4bed39df463390ae68758a855
https://ascelibrary.org/doi/10.1061/%28ASCE%291527-6988%282002%293%3A1%2812%29
https://ascelibrary.org/doi/10.1061/%28ASCE%291527-6988%282002%293%3A1%2812%29
https://doi.org/10.1109/ICCNEEE.2015.7381414
http://ieeexplore.ieee.org/document/7381414/
https://doi.org/10.1038/nature02541
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442686815&doi=10.1038%2fnature02541&partnerID=40&md5=a2f694cee3a874c91f11535ac7f747d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442686815&doi=10.1038%2fnature02541&partnerID=40&md5=a2f694cee3a874c91f11535ac7f747d2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-2442686815&doi=10.1038%2fnature02541&partnerID=40&md5=a2f694cee3a874c91f11535ac7f747d2


35  

[35] Grace Fox et al. “Exploring the competing influences of privacy concerns and positive 

beliefs on citizen acceptance of contact tracing mobile applications”. en. In: Computers in 

Human Behavior 121 (Aug. 2021), p. 106806. ISSN: 0747-5632. DOI: 

10.1016/j.chb.2021.106806. URL: https://www.sciencedirect.com/ 

science/article/pii/S0747563221001291 (visited on 08/16/2022). 

[36] R. Fry and D. Cohn. “In 2020, fewer Americans moved, exodus from cities slowed”. In: 

(2021). 

[37] A. Galeazzi et al. “Human mobility in response to COVID-19 in France, Italy and UK”. 

English. In: Scientific Reports 11.1 (2021). ISSN: 2045-2322. DOI: 

10.1038/s41598-021-92399-2. 

[38] Hemant Gehlot, Arif M. Sadri, and Satish V. Ukkusuri. “Joint modeling of evacuation 

departure and travel times in hurricanes”. en. In: Transportation 46.6 (Dec. 2019), 

pp. 2419–2440. ISSN: 1572-9435. DOI: 10.1007/s11116-018-9958-4. URL: 

https://doi.org/10.1007/s11116-018-9958-4 (visited on 08/15/2022). 

[39] T.C. Germann et al. “Mitigation strategies for pandemic influenza in the United States”. 

In: Proceedings of the National Academy of Sciences of the United States of America 

103.15 (2006), pp. 5935–5940. DOI: 10.1073/pnas.0601266103. URL: 

https://www.scopus.com/inward/record.uri?eid=2-s2.0- 

33645802797&doi=10.1073%2fpnas.0601266103&partnerID=40&md5= 

a19f56c6c10c0cacdc1203a3c3fa5ebc. 

[40] J.R. Giles et al. “The duration of travel impacts the spatial dynamics of infectious 

diseases”. English. In: Proceedings of the National Academy of Sciences of the United 

States of America 117.36 (2020), pp. 22572–22579. ISSN: 0027-8424. DOI: 

10.1073/pnas.1922663117. 

[41] Marta C Gonzalez, Cesar A Hidalgo, and Albert-Laszlo Barabasi. “Understanding 

individual human mobility patterns”. In: nature 453.7196 (2008), pp. 779–782. 
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14 Glossary of terms, abbreviations, and symbols 

 

Application Programming Interface (API) A set of protocols that allows access to software or 

databases with a programming language. 13 

Call Detail Records (CDR) Electronic records that contain information about cellphone calls, 

including the location of the cell phone tower that the call is conducted through. 11 

Coronavirus Disease 2019 (COVID-19) A contagious disease caused by the Severe Acute 

Respiratory Syndrome Coronavirus 2. 11 

Gaussian Mixture Model (GMM) A clustering method that represents complex data 

distributions with a set of Gaussian distributions. 14 

Location-Based Services (LBS) Electronic records that contain location-related information, 

usually generated through mobile phone applications. 11 

Louvain Method A network science method to identify distinct communities from large 

networks. 17 

Radius of Gyration (rg) A metric that measures the spread of a user’s travel patterns. 11, 20 

Shelter-in-Place (SIP) Shelter-in-place order was announced on 3/19/2020 by Governor Gavin 

Newsom, which requires all residents of the state of California to shelter in place for all but 

essential activities. 11 

Support Vector Machine (SVM) A supervised machine learning algorithm used for regression 

and classification. 22 

Vehicle Miles Traveled (VMT) An indicator of vehicle usage. 11 
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15 Appendix I The Human Mobility White Paper: Human Mobility Data in the 21st 

Century 

Understanding human mobility means understanding how and when people move from 

location to location in their everyday lives. In the past decade or so, advances in technology have 

opened up new opportunities for understanding human mobility through novel data sets. These 

data sets, such as call detail records (CDRs) [30] from cell phone providers and location histories 

collected by smartphone apps, referred as Location Based Services (LBS) [14], allow researchers 

to observe individuals on a new scale. The advent of these large data sets requires us to 

empirically derive new metrics, algorithms, and even models to understand and capture how 

human behavior relates to human mobility. Improved models for human mobility have far 

reaching impacts, from models of disease spread [95] to transportation demand modeling [114], 

or to understanding behavior in natural disasters [56]. 

In this paper, we review several major discoveries in human mobility research from the last 

15 years, and the novel data sets that enabled these breakthroughs. We discuss the universality of 

these discoveries, showing that they can be replicated with two novel data sources using different 

resolutions and sampling methods. We briefly discuss some of the numerous applications of 

human mobility research, and we draw from these recent discoveries and insights to identify 

future directions and challenges in the field. 

In order to discuss the major discoveries of the past decade, it is helpful to first understand 

the empirical data sources used in human mobility research. The breakthroughs discussed in this 

paper were made possible by the availability of novel data sets, and validated using traditional 

sets used in previous research of the field. Before the advent of the novel data sets discussed in 

this paper, researchers only relied on actively collected data sets, like census data and travel 

surveys [94, 108, 109]. Censuses often include questions regarding home and work locations for 

respondents, which can be used to estimate commuting flows, and questions regarding previous 

and current residence locations, which can be used to estimate migration. In the United States, 

information about aggregated commuter flows is available through the Census Transportation 

Planning Package (CTPP) [26]. 

Other conventional data sources to study human mobility are local travel surveys or travel 

diaries. Travel surveys contain individual records of consecutive locations visited. These diaries 

often include self reported information on the time of the trip, the purpose of the trip, and mode of 

transportation at the individual level. Travel surveys offer very granular information, but are 

expensive to collect and often include records for a relatively small number of participants and 

time spans. Census records and travel surveys remain important in the field of human mobility, as 

they can be used as ground truth data to validate results from more novel data sources that are 

passively collected as the result of providing an information service as well as simulation models 

[89, 3, 48]. 

In recent years, the human mobility research community has demonstrated great success in 

using non-traditional data sets to estimate human mobility patterns. One of the first novel data 

sets to be used in human mobility research was from a currency tracking website. Because people 

carry and disperse banknotes when they make transactions, data sets of banknote movements 

encode information about human mobility [17]. 

Perhaps the biggest advance in human mobility data comes from the usage of call detail 

records. CDRs are collected and maintained by cellphone service providers. CDRs are 
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Figure 15: Relevant data sources and their spatial-temporal characteristics 

 

characterized by a unique user ID, a timestamp indicating the time of the activity, and a 

geo-locatable cell tower ID for every call, SMS message, or data session that a person conducts 

with their cell phone. These records can be used to estimate individual mobility patterns 

comparable to travel surveys and aggregate flows comparable to Census estimates. The advent of 

using CDRs to estimate individual mobility is responsible for many of the major breakthroughs 

described in this paper [2, 42, 89, 92, 93, 75]. 

Other novel data sets that have been shown to be useful for estimating human mobility 

include geo-tagged social media posts and location-based services (LBS) data. Both of these data 

sets are made possible by the widespread use of GPS enabled smartphones. Some social media 

websites, like Flickr, Foursquare, and Twitter, allow users to geo-tag their posts. These geo-tags, 

along with their corresponding timestamps, can be used to construct mobility patterns for social 

media users using their publicly available posts [1, 106, 81]. Mobility data from social media sites 

can be coupled with demographic data (e.g., census), using neighborhood demographics or via 

novel methods such as name analysis [61]. LBS data refers to a category of data collected from 

applications on smartphones that utilize a user’s location to provide a specific service to the user. 

These data streams are collected by the app, associated with a unique user ID and timestamp. 

LBS data can be bought or licensed from individual apps or from data aggregators, who collect 

LBS data for individual users across multiple applications. One of the main advantages of LBS 

data is that they can provide high/accurate spatial and temporal resolutions, however, it can be 

unwieldy to use without a clear objective because of its large size (and thus, computational cost) 

and the presence of users with different/non-comparable temporal resolution data points. 

The emergence of these large-scale data sources has presented huge opportunities to progress 

our understanding of human mobility, but using them presents multiple challenges. Rarely are 

mobility insights straightforward to extract, but rather, mobility information is embedded within 

data sets collected for other purposes. Additionally, the size of these data sets can easily become a 

challenge by itself, making basic operations such as data cleaning, statistical analyses, and data 
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storage distinct challenges for researchers. Therefore, we often face a set of trade-offs between 

the ease with which researchers can work with the data, its manipulation costs, the temporal and 

spatial resolutions, its accessibility (in terms of cost and general availability), privacy concerns, 

accuracy of the samples, and the absolute amount of information about individual mobility 

encoded in the data. We illustrate how some of these data sets compare when evaluated for spatial 

and temporal resolution in Fig.15, providing a visual aid of the inherent trade-offs involved for 

researchers interested in human mobility. 

15.1 Universality of Human Mobility 

As data from LBS and CDR are passively collected, it is not a direct task to create travel 

demand models from them. In both cases, it is necessary to identify and extract non-trivial 

patterns from the data, that would in turn allow us to reconstruct complete mobility profiles from 

the sparse traces of multiple individuals records. In this section, we compare a set of patterns of 

individual mobility, contrasting the results obtained by both CDR and LBS records. 

15.1.1 Regularity of Human Mobility. 

One of the first metrics of interest when using CDRs data sets was to capture the high degree 

of regularity in human mobility. To measure each individual’s hinterland, or area of influence, 

González et al. [42] borrowed a quantity from polymer physics known as the radius of gyration 

(rg) [33]. For each individual, it measures the average distance to their mean location (e.g., their 

center of mass). In essence, the radius of gyration is a measurement of the characteristic distance 

an individual travels during an observation period in the order of several months to a year. 

Calculating rg and the number of unique locations visited by individuals (figure 16A and figure 

16B), we observe differences between CDR and LBS data sets. We can attribute these differences 

to both data resolution and demographics. First, LBS data captures closer locations than its CDR 

counterpart (i.e., higher resolution), as antennas processing the signals operate on a specific 

region, frequently labeling multiple (close) locations under the same position. Second, CDR and 

LBS populations may differ in their demographics characteristics, as LBS data collects samples 

from multiple smartphone applications, normally associated with a younger population that could 

be more active in their daily mobility. Focusing on the time between calls/samples (figure 16C), 

we observe how both CDR and LBS data sets show a “bursty” pattern, with CDR data showing, 

on average, longer waiting times between events. This could be attributed to the data collection 

process. While CDR requires an active process (i.e., the individual calls), LBS data collection is 

passive and thus, tends to be collected at regular/most frequent intervals. 

Using the radius of gyration, we can measure the likelihood of a user traveling a distance 

based on their radius of gyration (known as conditional jump lengths), and find that the 

distribution of jump lengths is actually truncated by rg. This indicates that, once jump length 

probabilities are re-scaled by radius of gyration, the distributions collapse into a single curve, 

unveiling that there is a fixed relationship between characteristic distance traveled by individuals 

and their jump length distributions [41]. Figure 17A) recreates these findings using CDR and 

LBS data from the San Francisco Bay Area and the state of California, respectively. While the 

distribution of jump lengths reflects the distance of the chosen locations, we measure the 

probability of finding an individual in a randomly chosen location to add the temporal component. 

From this analysis, it is shown that it follows a regular pattern (periodicity) every 12 hours [42]. 
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A) Distribution of the number of unique locations visited by individuals from CDR and LBS data sets. We observe a 

dominant exploration of LBS users. B) Distribution of radius of gyration from individuals’ trajectories. We observe 

individuals from LBS data presenting a higher mean rg. C) The time between consecutive calls (CDR) and passive 

data collection (LBS). We observe that most calls/data points are placed/collected soon after the previous one, with 

dominance of LBS. Only occasionally, we observe long periods without any activity (higher probability on CDR). 

Mean values (µ) are reported for both CDR and LBS data sets. 

Figure 16: Radius of gyration, unique locations, and burstiness 

 

This pattern can be reproduced using both CDR and LBS data as shown in figure 17B), 

contrasting it with the diffusive movement of random walks for reference. 

This is a direct result of people most likely visiting locations that they have already visited 

many times before. The probability of visiting a location based on its visit frequency rank 

(commonly denoted as L or K) closely follows a Zipf law [42, 93]. We recreated the probability 

distribution for visiting a location based on its visitation frequency rank, finding the expected Zipf 

Law relationship (figure 17C). 

15.1.2 Predictability of Human Mobility. 

One of the next major discoveries in the field was that human mobility is highly predictable, 

in other words, individuals tend to move in highly predictable trajectories. Drawing from the field 

of information science, Song et al. showed that human mobility is more predictable than a 

random variable [92]. Using CDR data, the authors calculated different measures of informational 

entropy for each individual. In this context, informational entropy is a measure of how “regular” a 

user’s behavior is. By calculating random, uncorrelated (defined as the temporal uncorrelated 

entropy of a set of individuals), and “true” entropy (depending on both the visits frequency, order, 

and time spent at each location), Song et al. found that individual predictability is much higher 

than would be expected if individuals moved randomly. In this context, we have shown and 

confirmed this behavior using empirical observations from both CDR and LBS data, highlighting 

how individuals mobility patterns are in fact more predictable than random variables (figure 17D). 

15.1.3 The Scaling Laws Human Mobility. 

One of the first breakthroughs of the field in using novel data sources to estimate human 

mobility came from tracking banknotes in the US [17]. This study was able to model the mobility 

inferred from bank notes using a continuous time random walk model (CTRW) with two 

parameters: jump lengths and wait times. Jump length refers to the distance between two 

instances of the bank note’s location being recorded. Wait times represent the time between 

instances of the bank note’s location being recorded. From the study, the authors found that jump 

lengths for dollar bills follow a power law distribution. This same power law relationship was 

later reproduced for individuals using CDR data. We note that power law distributions are 
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Figure 17: Comparison of universal patterns in human mobility using CDR and LBS data sets 
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considered “scale-free” because they are the only distribution that does not have a typical scale 

[67]. 

While a CTRW model, using wait times and jump lengths as parameters, was shown to 

provide a reasonably good estimate for human mobility, it did not account for several empirically 

observed phenomena. These phenomena include: ultra-slow diffusion (people tend to return 

home, rather than following Brownian motion), and the Zipf law relationship between number of 

unique locations visited over time [8]. Song et al. [93] showed that the CTRW models were 

missing two important factors driving human mobility: exploration and preferential returns. 

Exploration is the observed behavior that people tend to visit fewer new locations over time [93]. 

Preferential returns, as discussed in Section 15.1.1, refer to the observed behavior that people tend 

to return to locations they have visited before. By including these two factors in their model, Song 

et al. were able to recreate empirical scaling laws and analytically predict scaling exponents [93]. 

In a more recent breakthrough, it has been discovered that the scale-free nature of human 

mobility patterns may arise in part from the nested spatial scales in which humans operate [2]. 

Prior empirical findings had found that jump lengths follow a power law distribution, implying 

that human mobility is geographically scale-free [17]. This was a counter-intuitive finding 

because people do tend to operate at meaningful spatial scales (e.g., at a neighborhood, city, 

province, or country scales) and also conceptualize space at relevant scales. The authors of 

Alessendreti et al. were able to unify these contradictory patterns/observations by developing a 

model that uses spatial “containers” to restrict mobility behavior [2]. In their research, they found 

that mobility within spatial containers tended to follow normal or log-normal distributions, but 

that by mixing these distributions at different scales, they could recreate the scale-free distribution 

found in numerous previous studies [32]. They used two GPS data sets to validate their model. 

 

Daily mobility patterns are limited, with only 13 different motifs. The probability P(m) to find one of these motifs in 

both CDR and LBS is presented. The motifs are grouped according to their size separated by dashed lines. Most 

mobility motifs can be classified by complete tours and back and forward trips. 

Figure 18: Mobility motifs and their probability 
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15.1.4 Individual Mobility Patterns. 

Previously discussed findings concern aggregated patterns of several individuals spanning 

months of observations. An interesting body of work has emerged based on characterizing 

individual mobility on daily timescales. For example, Schneider et al., found that people exhibit a 

statistically small number of daily mobility patterns, termed “motifs” [89]. They found that just 

17 unique networks could describe 90% of daily mobility networks found in empirical data, 

validating these results with both CDRs and travel surveys. Individuals tend to exhibit a 

characteristic mobility motif that remains stable over months of observation. In figure. 18, we 

depict a comparison of daily mobility motifs using both CDR and LBS data. 

Another notable work concerns the classification of individuals based on their mobility 

behaviors. Using both CDR and GPS data sets, Pappalardo et al. were able to identify a 

dichotomy – clear distinction – between people that can be characterized as “returners” or 

“explorers” [75]. A returner is a person who’s mobility can be summarized using a few of their 

locations, meaning their mobility can be characterized by a limited subset of their most frequently 

visited locations (e.g., recurrent home-to-work patterns). On the other hand, an explorer is 

someone whose mobility cannot be summarized by using only their most frequently visited 

locations; instead, their mobility tends to be more evenly distributed across many locations. 

Simply put, returners visit a few fixed locations, while explorers go to many locations, being less 

predictable. 

(A) 

(B) 

  

We show the true radius of gyration (Rg) vs the k-radius of gyration (Rgk) for CDR (A) and LBS (B) data sets for 

k ∈ {2, 4, 8}. 

Figure 19: Returner vs. Explorer dichotomy 

 

This dichotomy was captured by developing a metric called k-radius of gyration [75]. The 

k-radius of gyration expands on the prior discovery of radius of gyration as a relevant descriptor 

of human mobility (Section 15.1.1), but examines the characteristic distance traveled when 

considering an individual’s top k locations. At a given value for k, individuals can be described as 
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either “explorers” or “returners” based on the relationship between their k-radius of gyration and 

their true radius of gyration, which includes all their visited locations within the timespan of 

interest. We were able to recreate this dichotomy between individuals mobility patterns using 

both LBS and CDR data (Fig. 20). As expected, more explorations are observed in the LBS data 

due to the higher resolution of the observations and the potential demographic characteristics of 

the main users of the smartphone apps. 

15.2 Validating Flows 

Considerable work has been done in the past years to ensure that these novel data sets 

contain mobility information that is comparable to traditional data sets used in those studies, like 

census data and travel surveys. In this context, Alexander et al. showed that CDRs can be used to 

estimate commuter flows with a high degree of accuracy in Massachusetts, validating their results 

with data from the US Census and the US Census Transportation Planning Package [3]. Similar 

validations were done in diverse cities from the U.S., Portugal, Brazil, and Colombia [98, 34, 21]. 

We have recreated these methodologies and shown that similar results can be achieved in 

California using both CDR and LBS expanded data (Fig. 20). On an individual level, Jiang et al. 

showed that CDRs can be used to approximate results from travel surveys using the TimeGeo 

modeling framework [48]. 

15.3 Applications 

The applications of improved data sources like CDRs and LBS for an understanding of 

human mobility are far reaching. In this review, we will focus our discussion on three general 

areas of applications with high impact outcomes: i) general public health, disease spread 

modeling, and COVID-19 pandemic analysis; ii) evacuation and disaster relief; and iii) urban 

planning and transportation modeling. 

15.3.1 Public Health, Disease Spread Modeling, and COVID-19. 

It is generally accepted that novel and better understanding of empirical human mobility 

leads to improvements of disease spread models [13, 39]. Mobility data can be used to model 

physical contacts for understanding and controlling outbreaks [31]. Recurrent mobility patterns 

can be used to improve disease spread models [101], and mobility-based metrics, such as trip 

duration, have been shown to inform disease spread modeling [40]. While there is a complex 

relationship between migration and disease spread [104], uncovering and understanding the 

dynamics of air travel has proven to be crucial in characterizing disease spread, obtaining 

valuable insights [22]. Novel data sources allow for mobility to be analyzed at many scales, from 

individual to country-to-country flows. This multi-scale characteristic provides the kind of 

mobility estimates and understanding required to further enrich and improve disease spread 

models [7]. 

Understanding the impact of social distancing measures has shown to be important for 

understanding disease spread and estimating disease containment [43]. In recent years, the 

COVID-19 pandemic has sparked particular interest in understanding the relationships between 

mobility restrictions and contagion spread, leading to multiple studies. Researchers have been 

able to analyze the effects of travel restrictions on COVID-19 spread using novel mobility data 

sources [54]. As an example, LBS data have been used to create granular mobility flow 

observations during the COVID-19 pandemic [52], allowing for analysis on multiple spatial 

scales. Similarly, CDRs have been used to model international travel and regional flows during 
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the COVID-19 pandemic [60]. Moreover, mobility patterns inferred from Facebook interaction 

data sets have been used to quantify the impact of imposed COVID-19 travel restrictions [37]. 

In the context of the COVID-19 pandemic, it was observed that mobility reductions during 

lock downs differed based on socioeconomic groups in the U.S. [85]. Similarly in England, 

socioeconomic status was found to influence individual mobility reduction in the early stages of 

the COVID-19 pandemic, with the magnitude of the relationship varying depending on the region 

[57]. In the same line, we find another example using bike-share data in the city of New York, 

showing that the COVID-19 pandemic not only impacted macro-mobility patterns but had a 

significant impact on micro-mobility as well, as bike share usage decreased significantly in 

2019-2020 [111]. 

Focusing on the general disease spreading phenomenon, mobile phone data showed to be 

especially useful for modeling disease spread in populous, urban areas [71]. Human mobility has 

been shown to be a critical factor in inter-urban vector-borne disease spread, like dengue, which is 

spread by mosquitoes [63]. In this context, the application of CDRs data have been shown to be 

useful for predicting Zika outbreaks in Colombia [79]. Overall, multiple studies have 

demonstrated that mobile phone data helps to create actionable data sets in pandemic 

management, if properly leveraged [68]. 

In addition to applications in disease spread modeling, human mobility data has relevant 

applications in the broader field of public health. Here, high resolution mobility trajectories can 

be leveraged to estimate, for example, individual exposure to environmental hazards, like air 

pollution [28, 119, 116]. Another effective application of mobility patterns inferred from mobile 

phone data consists of the successful monitoring of mood, one of the most important indicators 

for mental health [18]. Mobility data can be also used to understand health-promoting behaviors, 

like jogging [96], and the widespread availability of these data make it possible to develop large-

scale and accurate comparative studies. One of these studies uses minute-by-minute data from a 

step counter app to measure physical activity. Then, the authors performed an analysis to reveal 

which factors impact physical activity level across 46 different countries [4]. 

15.3.2 Emergency Evacuations and Natural Disasters. 

Social ties, travel duration, and departure times are all important factors in understanding 

disaster evacuation behaviors [38]. In addition, understanding routing choices is important for 

evacuation planning [29]. Moreover, neighborhood demographics can influence natural disaster 

outcomes and even future mitigation policies [56]. 

In this context, we find a series of relevant studies exploiting mobility data to draw 

significant insights and useful support tools to deal with these challenging situations. For 

example, both CDRs and Twitter data sets can be used to identify disaster events in real-time [88], 

or near real-time [15], making it possible to generate a constant stream of up-to-date reports to 

guide people during such events. CDRs make it possible to compare mobility in emergency 

scenarios to non-emergency crowd scenarios, such as large social events [6]. Novel mobility data 

allows researchers to compare the impacts of extreme weather events, such as snowstorms and 

rainstorms, on demand for different modes of transportation [123]. On a longer planning horizon 

view, mobility data inferred from mobile phones can be used to model displacement post-disaster, 

such as after the 2010 Haiti earthquake [59] and after Hurricane Harvey in 2017 in Houston, 

Texas [25]. 
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The capacity for mobility data to be coupled with demographic characteristics has allowed 

for critical post-disaster analysis on a very large scale. High resolution mobility data has revealed 

disparities in disaster evacuation patterns along racial and wealth lines, with more white, 

wealthier people being more likely to evacuate and have more cohesion in their evacuation 

destinations than their poorer counterparts [25]. In Florida, after Hurricane Irma in 2017, 

researchers found that evacuees with higher income were more likely to evacuate, reach safer 

locations, and suffer less damage on their housing and infrastructure by studying mobile phone 

records [117]. Similarly, higher social connectivity (i.e., a denser support network), or higher 

numbers of people moving in and out of counties in Puerto Rico, were shown to correlate to a 

faster recovery from Hurricane Maria devastation in 2017 [118]. From these studies, we note how 

important insights for informing municipalities in their pre-disaster planning, and post disaster 

recovery plans can be obtained by understanding and exploiting mobility data. 

15.3.3 Urban Planning and Transportation Modeling. 

Some of the most studied applications for human mobility research come from the desire to 

understand how people interact with cities [32]. Therefore, it is not a surprise that cell phone 

derived mobility data, such as CDRs and LBS, have been deeply used in urban planning research 

[83]. 

The applications of mobility research in urban studies are far reaching. For example, 

mobility data have been used to empirically identify neighborhood boundaries [107, 121]. CDRs 

and other mobility data sets can be used to infer different land use types [97, 58, 78]. CDRs can 

be used to estimate laborshed, the areas in which city’s workers live, and partyshed, the areas in 

which those who visit a city for social reasons [12]. Human mobility can be coupled with 

energy-related information like water consumption data sets to model short-term water demand 

[91], used in electric vehicle charging station planning [103, 115], and even applied to modeling 

energy demand [64, 49, 9]. Human migration mobility data analysis has been used in Colombia to 

study return migration, or migration to a city previously inhabited by an individual [82]. More 

recently, a study uses Google Location History data (i.e., LBS records) to uncover the relationship 

between hierarchical mobility and different urban metrics, like emissions, walkability, and health 

indicators [10]. 

Data derived from mobile phones, including mobility traces, have been shown to be useful in 

demographic research [70]. This is particularly useful when dealing with shorter timescales than 

traditional data sets (e.g., census) due to their constant recording nature and availability, allowing 

researchers to estimate and map population levels over shorter time intervals [27]. Novel mobility 

data collection methods can be also used to study traditionally hard to reach demographics, like 

the unhoused [90]. While it is tempting to draw universal conclusions about the relationship 

between mobility and socio-economic factors, these relationships have been shown to vary, as it is 

influenced by segregation, employment opportunities that are unique to specific geographic 

regions [77]. Still, some mobility metrics, such as number of activity locations, activity entropy, 

and travel diversity have been shown to be similar across socioeconomic classes across different 

countries, leading to obtain general insights across multiple population profiles and regions [113]. 

Moreover, different kinds of mobility data sets can be coupled to study more complex 

phenomena and patterns accurately, characterizing complex interacting systems. For example, 

CDRs can be used to estimate travel demand [98] and GPS trajectories of vehicles can be used to 
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model transportation demand, by estimating car travel patterns [72]. LBS data can be used to 

recreate vehicle paths, and these paths can be associated with individuals [114]. CDRs can be 

used to generate activity-based models [11] and daily activity patterns [80, 47]. LBS data from 

bicycle share apps have been leveraged to understand and model micro-mobility demand [51] and 

similarly, CDR data have been researched to inform bike path planning [69]. 

Mobile phone data have been studied to understand traffic congestion [20]. Using mobility 

data, researchers have been able to identify the few driver sources contributing to the major 

congestion [105]. Novel mobility data sources, like social media derived mobility traces or CDRs, 

make it possible to analyze the impact of human activities (like social gatherings) on traffic 

congestion [45] and can be used to reduce congestion due to mega events, such as the 2016 

Olympic Games in Rio de Janeiro [112]. Related, improved methods in using non-traditional data 

sets to estimate mobility allow for better public transportation management [120]. In addition to 

understanding congestion, mobility data have been used in previous studies focusing on the use of 

smartphones to sense driver behavior in near real-time, with the aim of monitoring for behaviors 

that increase the likelihood of traffic accidents [19]. 

15.4 Future Directions and Challenges 

The widespread availability of these novel data sources make comparative studies between 

different neighborhoods, cities, and even countries more viable [46, 65]. Global data sets to aid in 

mobility research, such as global school and work holiday data sets, have been compiled [55], and 

LBS data, taken from Google Location History, has been used to generate high-quality global 

mobility data sets [86, 53]. Many studies have compared mobility traces in different regions, 

showing that while the empirical methods can be transferred, not all results are general/universal 

between different study areas. This has been shown, for example, by comparing CDRs from 

Portugal to those from Cote d’Ivoire [5], as well as by comparing commuters in Boston and 

Singapore [113], among other studies. 

The advent of passively collected mobility data opens up new avenues for research, but it 

also presents new threats and issues. Human mobility traces have been shown to be highly 

unique, meaning that it is challenging to truly anonymize mobility data [24, 122]. And, while 

these mobility data sets can be a lens through which to study social issues, like racial segregation 

[16], it can also be used to monitor minority groups. The tension between the benefits of 

applications of mobile phone tracking and concerns about privacy has been particularly evident 

during the COVID-19 pandemic, with efforts such as contact tracing [35, 84]. 

15.5 Methods for the White Paper 

15.5.1 Raw Data 

The call detail records dataset (CDR) ranges temporally from December 2018 to July 2019, 

and spatially covers a major US metropolitan region. Our raw data comes from three sources: 

SMS logs, call logs, and data usage logs. Each record has an associated timestamp, cell phone 

tower ID closest to the location of the cell phone, and user ID (∼22.6M valid ids). Across these 
datasets, user IDs remain consistent, allowing for the three datasets to be combined to form a 

broader picture of an individual’s mobility habits across different activities/channels. The location 

based services (LBS) ranges temporally from October 2018 to February 2019, and spatially 

covers a US state (California) that contains the metropolitan area covered by the CDR dataset. 

Each record contains a timestamp, user ID (∼6.3M unique ids), and a (latitude, longitude) 
coordinate pair. 
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Generalized pipeline to produce commuter flows from raw data, showing the inputs and outputs at every step of the pipeline 

Figure 21: Mobility data processing pipeline 

 

15.5.2 User Selection 

Because not all users in either dataset are present long enough or active enough to provide 

meaningful mobility insights, we begin by filtering users with a set of minimum activity 

thresholds. This is often an iterative empirical process to avoid introducing significant bias into 

the study, as too narrow of filters results in only the most active users, giving a limited view of the 

mobility patterns of the population, and too wide of filters results in a noisy data set with no clear 

patterns to analyze and learn from. Because of the large scale of these data sets, user selection is 

also an important step to avoid unnecessary processing steps later in the pipeline for inactive 

users. As seen in figure 21, this is the first step in the data processing pipeline. 

Based on our initial data exploration, we observe that for CDR users, we require users to 

have at least one record every other day on average to be considered active enough for further (and 

meaningful) analysis. For LBS users, we required that users had an average of at least two records 

per day and be present in the data set for at least a third of all dates to be included in further analysis. 

Ultimately, we retained approximately 30% of the original users (∼6.8M and ∼1.9M for CDR and  

LBS, respectively), whose data accounted for approximately 85% of the raw records. 
 

15.5.3 Radius of gyration 

In the context of human mobility, the radius of gyration refers to a measure of the spatial 

extent of an individual’s movements within a given area or region. Mathematically, it is a scalar 

value defined as the average distance of all the locations that a person visits from the centroid of an 

area in a specific time window of interest. To estimate it, researchers typically use data about the 

individual’s location over a period of time t. These data could be, e.g., GPS, CDR, or LBS data. 

The calculation involves the following steps: i) Identify the centroid of the area of interest, such 

as a city or neighborhood; ii) For each time interval of interest (e.g., hours, days, weeks), calculate 
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the distance between the individual’s location and the centroid of the area; iii) Finally, we calculate 

the average distance of all the locations visited by the individual for a time period t. We note that 

we can repeat the calculation for multiple time periods t to obtain a more representative estimate 

of the individual’s typical radius of gyration. 

In this work, we calculate the radius of gyration ra(t) of each individual’s trajectory up to 

time t following the approach of previous seminal works [41] (Eq. 1). We define na(t) := the total 

number of positions recorded for an individual  up to time t; r⃗a the vector of dimension na(t) of 

position i ∈ {1, ..., na(t)} recorded for the individual up to time t; and r⃗a the center of mass of 

the trajectory estimated by  
 

       (1) 

Similarly, the k−radius of gyration rgk can be defined as a extension of the original radius of  

gyration [74]. Here, k refers to the number of top k different places that a person visits during the  

time period t. For example, if k = 1, rk=1 represents the average distance that a person travels g  

from their most frequently visited place (e.g., their work location), considering all the places they 

visit during the time period t. Similarly, if k = k∗, then rk∗ will consider only the k∗ most frequently 

visited places. We calculate the k−radius of gyration ra,k(t) for an individual a up to g  

time t by defining (Eq. 2): nka(t) := the total number of positions recorded for an individual a up to 

time t for their k most frequent locations; r⃗a,k the vector of dimension nk(t) of position i ∈ {1, ..., 

nk (t)} recorded for the individual up to time t; and r⃗a,k the center of mass of the trajectory, a cm  

only considering the visits to the k most frequent locations. Thus, replacing these expression in Eq. 

1 we have:  

 

We note that rk is a relative measure. It depends on the specific period of time t and the 

locations k considered. Therefore, it is important to choose a consistent time frame and definition 

of visited locations when comparing rk values across different individuals/populations. 

 

15.5.4 Entropy 

We use the concept of entropy to quantify the predictability of a person’s movements. It 

measures how evenly (or not) a person’s visits are distributed among the locations they visit. In 

other words, how likely it is to predict the next location that a person will visit, based on their 

previous locations. Known also as “real entropy”, is it calculated by the following expression [91]: 

 

where Ta := the trajectory of individual a; STa := a particular time-ordered sub-trajectory of 

the original trajectory Ta; and P() the probability operator. From Eq. 3, we observe how the 

expression depends on both the frequency and the order in which the nodes are visited, as well as 
the time spent by the individual at each location. 

cm 
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Uncorrelated entropy [91] refers to the estimation of a temporal-uncorrelated entropy. Also 

known as Shannon entropy, it is a measure of the diversity of a person’s visited locations without 

considering their temporal order. Therefore, a higher value of uncorrelated entropy indicates a more 

even distribution of visits across locations, and thus a higher degree of unpredictability. It is calculated 

as the negative sum of the products of the probability of an individual a visiting each location j, P(a, 
j), and the logarithm of that probability. P(a, j) is estimated from historical data, as the frequency of 

visits to each location divided by the total number of visits. Thus, we calculate Eunc using Eq. 4: 

 

with na the total number of distinct locations visited by individual a. 

Finally, we calculate the random entropy for each individual trajectory [91]. In simple words, it 

measures the degree of randomness or unpredictability of the order in which a person visits locations. 

We calculate it as the logarithm (base two) of the total number of distinct visited lo- cations by an 

individual a, na, capturing the degree of predictability if each location is visited with equal probability. 

Therefore, a higher value of random entropy indicates a more random and unpredictable sequence of 

visited locations. In Eq. 5 we can see the formula for Erand: 

Erand = log2(na) (5) 

In summary, entropy measures the predictability of a person’s movements, while 

uncorrelated entropy measures the diversity of the visited locations, and random 

entropy measures the randomness of the temporal order of the visits. 

15.5.5 Stop Detection 

Once the users that meet the activity thresholds have been identified, their raw location data 

must be converted into stops, or meaningful locations where (multiple) users spent a significant 

amount of time. There are many methods available in human mobility literature for performing 

stop detection [74, 102]. For this analysis, we chose to use a tessellation based approach, such as 

the one used in the known scikit-mobility Python package [76]. 

The tessellation approach requires all location data to be aggregated into a continuous 

tessellation of the Earth’s surface over the coverage area. For the LBS data, we aggregated the 

raw (latitude, longitude) coordinates to a global hexagonal tessellation using the known H3 

package [100]. In our experiments, we tested two resolutions levels characterized by an average 

hexagon area of 0.74 and 0.1 km2; and an average hexagon edge length of 0.46 and 0.17 km, 

respectively. These correspond to 539,133 and 3,773,919 hexagons covering the state of 

California. Based on the results (less than ∼ 1% of difference) we keep the tessellation with the 
lower resolution, decreasing the computational burden. For the CDR data, we first geo-located the 

cell tower IDs for each record, combining nearby cell towers into a unique coordinate pair (e.g., 

multiple cells available in the same antenna). We then created a Voronoi tessellation over the 

coverage area using the cell tower coordinates that we used as our geographic scale. 
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Algorithm 2 Stop detection and initial user selection 

1: Step 1: User selection 

2: for user ∈ Users do ▷ Loops through each user in the raw data 

3: Count the timespan and the number of records 

4: if timespan < daysmin or # records < recmin, then 

5: Remove the user’s records 

6: end if 

7: end for 

8: return selected users’ data 

9: Step 2: Tessellation 

10: for user ∈ Users do ▷ Loops through each user in the selected data 

11:   for item ∈ records do  ▷ Loop through each item in user’s records 
12: Replace item locations with tessellation polygon IDs, geoids 

13: end for 

14: end for 

15: return tessellated data 

16: Step 3: Stop Detection 

17: for user ∈ Users do ▷ Loops through each user in the selected data 

18:   for item ∈ records do  ▷ Loop through each item in user’s records 
19: Calculate the time difference between the current and next item, ∆t 

20: if ∆t ≥ 20 min then 
21: Check to see if the user’s location has changed 

22: if geoidi ̸= geoidi+1 then 

23: Save trace as beginning of new stop 

24: end if 

25: end if 

26: end for 

27: end for 

28: User’s stops are ready. 

29: return stops for all users 
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Once we converted the geographic scale of our data to our selected tessellations and 

resolution, we began performing stop detection (see Alg. 1). Based on the data distribution, if a 

user remains in the same tessellation polygon for at least t minutes (20 minutes in our case), those 

records are aggregated and recorded as a stop location. All other records not satisfying this 

condition are discarded. 

15.5.6 Home and Work Detection 

Once the raw data have been converted to meaningful stops for the selected users, we detect 

the locations of those users’ homes (see figure 21, step 3). Homes are defined as the most 

frequently visited location between a pre-defined time interval, commonly associated with 

sleeping time. Again, multiple methods have been proposed to estimate homes locations [76]. In 

this study, we focus on the observations between 8 p.m. and 7 a.m.. Users who did not visit their 

identified home at least once a week on average, or did not have any stops during night hours, 

were discarded. 

Next, we infer the work locations of those individuals. For any given user, their work 

location is defined as the location that maximizes n × d, where i) n is the number of visits to that 

location during weekdays; ii) d is the distance between that location and the identified home 

location; and iii) given that the location is at least 0.5 miles from the identified home, following 

the methodology presented in Alexander et al. [3]. Note that, under this methodology, not all 

users will have identified home and work locations. After applying this logic, we have i) a total of 

1,908,961 and 1,818,116 users with identified home locations for CDR and LBS data sets, 

respectively; and ii) a total of 1,641,401 and 1,815,876 users with identified work locations for 

CDR and LBS data sets, respectively. 

15.5.7 Estimating Commuter Flows and Expansion Factor. 

Once we have established a (home, work) pair for most users in both data sets (i.e., CDR and 

LBS records), we can expand our data to population level using census data. Again, following the 

methodology presented in Alexander et al. [3], we count the number of users with homes inside 

each of our respective tessellation polygons (i.e., hexagons). We then join these counts to match 

the geography of our Census data (tract and Census-designated or CDP, for this analysis). Then, 

we calculate an expansion factor for each Census geographic unit for both the CDR and the LBS 

data sets, defined as the ratio of the Census population estimate to the number of residents 

estimated with our data set. Thanks to this factor, we can upscale our residence and worker 

estimates to be representative at total population levels, resulting in expanded flows. This is 

observed in figure 20, where we show the estimates for home and work locations both before and 

after expansion for both data sets as well as for overall flows. Finally, these expanded flows are 

used as inputs for travel demand models for the region of study. 
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Algorithm 3 Estimating Individual Commute Pattern 

1: Step 1: Home Detection 

2: for user ∈ Users do ▷ Loops through each user in the stops 

3: Take only records between 8 p.m. and 7 a.m. 

4:  Count number of visits to each location, determining most frequently visited nightly loca- 

tion, geoidhome, and the number of visits to that location, nhome 
5: if nhome < once per week then 

6:  Remove the user’s records 

7: end if 

8: end for 

9: return selected data 

10: Step 2: Work Detection 

11: for user ∈ Users do ▷ Loops through each user with identified home 
12: Take only records between 8 a.m. and 7 p.m. on weekdays 

13: for geoid ∈ Geoids do ▷ Loops over unique locations visited by user 

14: Calculate distance dgeoid between geoid and user’s home 

15: Calculate number of visits to this geoid, ngeoid 
16: end for 

17: Find geoidwork, that maximizes ngeoid × dgeoid 
18: if dwork < 0.5 miles OR nwork < once a week then 

19: Discard geoidwork for this user 

20: end if 

21: end for 

22: return (geoidhome.geoidwork) pairs for all selected users 
 

 

16 Appendix II Validation for the Home Change Detection Algorithm KMeansSVM 

We create synthetic users to validate the home change detection algorithm. We first define 

stationary users as users who keep the same home location for every month in 2020, meaning that 

their most frequently-visited location did not change between 7pm and 7am. We then sample 

50,000 stationary users and select the ones that have at least 180 days in their time span, which is 

the difference, in number of days, between their last record and the first record available. We sort 

the users by the date of first appearance in their records and calculate the median date of records 

for each pair of users available. Let di be a set of the number of days since 1/1/2020 that user i 
initiates a trajectory. If the user has n trajectories in a single day, then the number of days since 

1/1/2020 of this date is repeated n times. We define the median of the trajectories of user i as the 

median over the set di. For each pair of users (x, y), we define min(median(dx), median(dy)) as 

the cutoff date, by which we use to recombine the records. We delete all records of the user with 

the smaller median(di) after the cutoff date and append all the records of the user with the larger 

median(di) after this cutoff date. Then, the cutoff date is defined as the date of relocation for this 

newly synthesized user. The two home locations of the initial users are the home before and after 

relocation of the synthesized user. With this process, we created a sample of 15,413 synthetic 

users. 
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17 Appendix III Coverage Area of Mobility-Related Initiatives 

Below is a complete list of the census tracts considered in Sacramento County. 06 is the 

California state code and 067 is the Sacramento County code. 

• 06.067.000400 

• 06.067.000501 

• 06.067.000502 

• 06.067.000600 

• 06.067.000700 

• 06.067.000800 

• 06.067.001201 

• 06.067.001202 

• 06.067.001300 

• 06.067.001400 

• 06.067.001900 

• 06.067.002000 

• 06.067.002100 

 

18 Appendix IV Other Supporting Statistical Models 

18.1 Panel Regression on VKT using Income Level 

To examine if the income level of census tracts explains the variation in VKT, we construct a 

2-way fixed effect panel regression model consisting of two independent variables, the income 

level of a particular census tract, and month, which captures the variation in time. We find that the 

fitted coefficient for income is 6.153e-07 with a standard error of 1.12e-06. The resulting p-value 

of the t-test is 0.583, which shows that income is not a statistically significant variable. 

19 Appendix V Other Supporting Figures 

19.1 Spatial Distribution of Users in 2020 

19.2 Radius of Gyration vs. Population Density 

19.3 Expansion Factor 
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Figure 22: Number of Users by Census Tracts in 2020 
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Figure 23: Radius of gyration versus population density by census tract 

 

 

 

 

Figure 24: Expansion factor in the 4-year period 
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