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ABSTRACT

Networked dynamics are essential for assessing the resilience of lifeline infrastructures. The dimension-reduction approach was
designed as an efficient way to map the high-dimensional dynamics to a low-dimensional representation capturing system-level
behavior while taking into consideration network structure. However, its application to socio-technical systems has not been
considered yet. Here, we extend the dimension-reduction approach to resource-flow dynamics in multiplex networks. We apply
it to the San Francisco fuel transportation network, considering the flow between refineries, terminals and gas stations. We
capture the aggregated dynamics between the facilities of each type and identify macroscopic conditions for the system to
supply a given demand of fuel. By considering multiple sea level rise scenarios between 2020 and 2100, we address the impact
of coastal flooding due to climate change on the maximum suppliable demand. Finally, we analyze the system’s transient
response to production failures, investigating the temporary interruption in production and the duration it takes for complete
demand satisfaction to become unachievable after the interruption.

Introduction

In recent years, the topic of system resilience has gained more attention from the scientific community1–4, as the effects of
climate change become more evident in the world around us5–7. Climate change exposes lifeline systems to unexpected levels
and types of stress, endangering their functionality. Resilience analysis considers the dynamical behavior of a system during a
failure, by considering its different stages: preparation, robustness and recovery2. One possible approach to assess resilience is
based on Dynamical Systems theory, usually through changes in the parameters describing the system at different scenarios.
However, traditional Dynamical Systems methodologies may require a detailed description of system dynamics, unfeasible in
many cases. Techniques have been developed to partially overcome this limitation, by working with general, broadly defined
functions, seeking to understand a system’s behavior around its stable state8, 9. As the system scale increases and interaction
patterns become more complex, network-based approaches have become crucial to model a system’s topology, and assess the
impact of changes on its structure1, 2, 10. By combining network structure and dynamics, the dimension-reduction approach11–14

provides a tool to assess system dynamics at large scale, while taking into account the patterns of interactions between the
system’s constituents. Originally developed in the context of ecology, the approach focuses on generating a low-dimension set
of equations capturing the macroscopic behavior of the system, through only a few equations (compared to the original system
size). The parameters appearing in the reduced set of equations capture the network topology, and help analyze the impact of
network structure on system dynamics.

In this work, we extend the dimension-reduction approach11–14 to the context of resource-flow networks. Resource-flow
networks15 comprise those networked systems where some quantity is transported from one part of a system to another, following
conservation laws. Resource-flow dynamics include many examples from urban systems, as supply chain management9, 16,
disease propagation17, water distribution18, and trade relationships19. Here, we consider a case study from supply chains: the
San Francisco Fuel Transportation Network (SFFTN). We examine the influence of climate change on the SFFTN, and we
delve into the ramifications of Sea Level Rise (SLR)20 as detailed in He et al.21.

Supply chain dynamics can be challenging, as they are heavily dependent on various levels of human decision and



environmental factors. Future demand estimation has been considered, through the use of difference equations16, 22 finding
how demand variation increases from consumers to producers (known as the bullwhip effect). Ordinary differential equations
have been used to model supply chain dynamics from a coarsen perspective9, since they treat flow as a continuous magnitude,
and thus they are not suited to capture events in very small scales of time. Information privacy on flows between firms limits
modeling, as only little data is available for comparison. Here, we study resource-flow networks under simple dynamics
capturing the qualitative behavior of supply and demand, and the general conditions for stability induced by network topology.
Instead of looking for a detailed description of each facility within the network, we focus on a system-level scale, through the
dimension-reduction approach. By considering refineries, terminals, and gas stations included within the SFFTN, we write
down a set of ordinary differential equations representing the flow of fuel from refineries to gas stations. Then, we obtain a
dimensionally reduced description of the system by considering the average amount of fuel stored at each type of facility.

We use the approximation to analyze the impact of coastal flooding on the transportation system, by considering its
ability to supply demand under different climate change scenarios. Later, we consider the ability of the system to sustain
demand during a production failure, under different coastal flooding scenarios between years 2020 and 2100. The results
depict the transition of the system through different stages of failure, up to the point of it being unable to satisfy any level of
demand. By considering both the impact of topology alone and through simple dynamical laws capturing transportation’s
qualitative behavior, our approximation provides an estimate of the maximum demand that could be sustained under multiple
SLR scenarios. Our work constitutes three different contributions to the topic of resilience of networked dynamical systems.
First, the dimension-reduction approach shows the conditions imposed over the space of stable flows by the network structure.
Second, by studying lifeline infrastructure systems such as the SFFTN, we extend the dimension-reduction approach to the
context of socio-technical systems. Lastly, by considering the impact of SLR through climate change scenario analysis, we
study a realistic example of failure from a dynamical systems perspective.

Results

The San Francisco Fuel Transportation Network and the effects of coastal flooding
The SFFTN was presented originally in He et al.21. It was constructed by considering spatial information from OpenStreetMaps
and Google Places, the California Energy Commission (CEC), and the companies involved in fuel production and transportation
in the region. It includes two types of nodes, corresponding to transportation means (railway, sea, road, oil and product pipelines),
and facilities (ports, terminals, refineries, gas stations and airports). We simplify this complex structure by representing it as
a multiplex network where nodes are facilities (and each layer corresponds to a type of facility) and transportation means
correspond to different types of links between the layers. For the purpose of this work, we focus on the subnetwork supporting
the transportation from refineries (production points) to terminals (intermediate storage points) and gas stations (consumption
points). Refineries and terminals connect through product pipelines, in a structure that allows flow between any pair of them.
Both of them connect to gas stations through the road network, which allows transportation from any refinery or terminal to any
gas station. The majority of the flow goes from refineries to terminals through product pipelines, and from terminals to gas
stations through trucks. A smaller portion of the fuel is directly transported from refineries to gas stations through trucks. The
spatial representation of the SFFTN can be found in Fig. 1 a, and its network abstraction in Fig. 1 d.

Due to the effect of climate change, coastal regions in the San Francisco Bay Area (SFBA) are likely to flood frequently in
the next hundred years23. Through the use of computational modeling, scenario analysis has been used to assess the impact
of coastal flooding on the systems located within the region23. Using the flooding scenarios constructed in Radke et al.23,
we consider four different time horizons (2020-2040, 2040-2060, 2060-2080, and 2080-2100), under two Representative
Concentration Pathways (RCPs, 4.5 and 8.5)24. For each, four global climate or earth system models (GCM) are used to
produce predictions of typical, high, and extreme SLR at the SFBA, corresponding to the 50, 95, and 99.9 percentiles of the
SLR predicted by each model and for each location at the SFBA. The models are CanESM2, MIROC5, CNRM-CM5 and
HadGEM2-ES, corresponding to the CMIP5 suite of models25. Water column height estimations are constructed through the
3Di hydrodynamic model26. Further details are provided in the Methods section. Fig. 1 a-f depicts the impact of SLR on
time horizons 2060-2080 and 2080-2100 for RCP 8.5 and the 99.9 SLR percentile, where it is more appreciable. A region
is considered flooded under a given scenario if the water column at that region is higher than 15cm. Coastal flooding can be
appreciated in the spatial representation (Figs. 1 a-c). Nodes at flooded locations are removed from the network, as they are
considered failed. In the abstract representation (Figs. 1 d-f), it is evident how coastal flooding largely reduces the number of
terminals and product pipelines, while also reducing the number of refineries in the last time horizon. The effect of coastal
flooding is not only to remove facilities, but also to disconnect them from the different layers. This impacts the flow capacities
between the layers, reducing the ability of the refineries to transmit the produced fuel to the terminals and gas stations. See
Methods section for more detail on the change of the network structure due to coastal flooding.
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Dynamical representation
We start by considering a set of ordinary differential equations describing fuel transportation, produced at refineries, transported
to terminals, and then to gas stations (the main path of flow) or directly to gas stations (a secondary path of flow). Usually,
production, consumption, and flow between facilities will depend on the stock level they have at a given moment. To describe
the state of the system, we consider variables xq

i ∈ [0,1], indicating the stock level at facility i = 1, . . . .Nq in layer q = 1,2,3
(corresponding to refineries, terminals, and gas stations, respectively). We consider that nodes in layer q have stock capacity Cq,
and so the resource stored at it is Cqxq

i . We assume that production at a refinery and consumption at a gas station only depend
on their individual stock levels, and that flow between facilities only depends on the stock levels of the facilities involved. Then
the dynamics of the stock levels are described by
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where:

• Π(x1
i ) ∈ [0,1] is the production level at refinery i, and P is the production capacity (maximum production possible) of a

refinery.

• ∆(x3
i ) ∈ [0,1] is the demand level at gas station i, and D is the maximum demand that can be supplied by a gas station.

• Ψ(xq
i ,x

r
j) is the flow level from facility i in layer q to facility j in layer r, and W qr

i j is the flow capacity between them.

Notice the similarity of Eq. 1 with the Barzel-Barabasi equation27, considered in the original application of the dimension-
reduction approach11. However, in the context of resource-flow systems, the interaction term appears with a different sign at
the different ends of the flow, and thus the interaction term is different at each layer. One of the main difficulties when working
with supply chains connecting multiple firms is that detailed information on their transportation policies and capacities is often
unavailable. In the case of the SFFTN, reasonable values for the system’s parameters can be found in an aggregated fashion
through the CEC, as described in the Methods section. To address the uncertainty in the parameter values, we consider ranges
for some of them. These can be found in Table 1.

Dimension-reduction
We construct a reduced representation of the SFFTN, induced by flow capacities W qr

i j and production and demand capacities, P
and D. The dimension-reduction approach considers the average dynamics by constructing an effective state, representative of
the system as a whole. A set of equations for this average state is derived, taking into account the original equations and the
network structure. Thus, the resulting set of equations can be directly analyzed by means of traditional Dynamical Systems
tools. In the context of this problem, we regard the layer stock levels as the relevant variables, NqCqyq = ∑

Nq
i=1 Cqxq

i . Notice
that in the case of equal stock capacities, the layer stock level matches the layer average fill level. We choose to use the layer
stock level as system-state variable for two reasons. First, the resulting mean-field estimator preserves the important property
of flow conservation across layers. Considering different weights based on facility connectivity would lead to distortions
in that property, as flows would be weighted differently depending on where they arrive to or depart from. Second, in our
case study information on flow capacities at the facility level is not available, and thus it wouldn’t be possible to construct an
estimator based on them in the first place. However, as it will be shown below, aggregated information on flow capacities can
be estimated, and thus dynamical behavior for the layer stock levels can be analyzed. By calculating the time derivatives ẏq,
and following the typical approximations used for dimension reduction (that stock, production, demand and flow capacities
are not correlated to each other, and that flow capacities and stock levels are not correlated) we obtain the set of differential
equations for the layer averages yq:

ẏ1 = pΠ(y1)− s12Ψ(y1,y2)− s13Ψ(y1,y3)

ẏ2 =
s12

α12
Ψ(y1,y2)− s23Ψ(y2,y3)

ẏ3 =−d∆(y3)+
s13

α12α23
Ψ(y1,y3)+

s23

α23
Ψ(y2,y3)

(2)
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where:

• p = P/C1 is the normalized production capacity, and d = D/C3 is the normalized maximum suppliable demand.

• sqr = ∑
Nq
i=1 ∑

Nr
j=1 W qr

i j /NqCq is the normalized average flow capacity from layer q to layer r.

• αqr = NrCr/NqCq is the stock capacity ratio between layers q and r.

In the Methods section, we detail the deduction of the approximation for the general case where facilities may have different
stock, production, demand and flow capacities. The approximation assumes low correlation between the system parameters and
the values that the level function Π, ∆ and Ψ take, similar to the assumptions in11, 13. Numerical testing of the approximation
for different connectivity patterns between gas stations and the other two layers is provided in the Supplementary Note 1,
while different connectivity levels and flow capacities are considered in the Supplementary Note 2. In particular, it is worth
to mention that the the approximated set in Eq. 2 works well even when stock, production, demand and flow capacities are
perturbed up to a 10% of their expected value. The accuracy of the approximation increases as the interlayer connectivity and
the number of nodes increase.

The approximation reduces the original set of over 3,400 equations to only 3, allowing the use of traditional Dynamical
Systems techniques to analyze the dynamics of the system in terms of global, average parameters. In turn, we change our focus
of analysis from the details of each facility to the macroscopic dynamics between layers. The dimensionally reduced system
captures the macroscopic behavior of the demand, without focusing on the details at the level of the facilities. By considering
the layer stock level, the system’s dynamics are approximated by a reduced set of equations, universal for all systems with
equal stock capacity structure and average production, demand, and flow capacities. We approximate each layer independently,
to account for the transportation between them.

A relevant magnitude for describing the behavior of the system is the total amount of resource stored in it, denoted as U .
In terms of normalized parameters, it can be written as U = y1 +α12(y2 +α23y3) ∈ [0,1+α12(1+α23)], where its value is
normalized by the total capacity of the first layer N1C1 (and thus the total stock in Mgal is equal to N1C1U). The ranges of
values for the normalized parameters can be found in Table 2.

Stable states
In resource-flow dynamics, it is usual to have a continuous range of possible stable flow levels9, depending on the amount of
resource entering or exiting the system. Thus, we look for conditions that consider stable demand or production as variable
parameters. We define Π∗, ∆∗, and Ψ∗, as the stable production, demand, and flow levels. By setting ẏq = 0 in Eq. 2, we find
the two following conditions linking them:

pΠ
∗ = α12α23d∆

∗

α12α23d∆
∗ ≤ s13 +min(s12,α12s23)

(3)

The first condition requires stable production and demand levels Π∗ and ∆∗ to be proportional to each other. Notice that
p = P/C1 is the total production capacity and that α12α23d = N3D/N1C1 is the total demand capacity, both in units of total
stock capacity of refineries. The second condition indicates that the average demand has to be lower than the addition of
the flow capacities from layer 1 to layer 3 for that demand level to be stable. For the purpose of this work, we assume that
the first condition in Eq. 3 is always satisfied, meaning that the total production is equal to the total demand, and thus the
stability of the system only depends on the flow capacities. The second condition from Eq. 3 is equivalent to the maximum flow
theorem between the layers28. By considering the constraints over the stable flows imposed by this condition, we find that
they are confined to a line in a 3-dimensional space (see Methods section for the full deduction of Eq. 3) for each value of the
stable demand ∆∗. Thus, network structure shapes the stable state space through the maximum flow condition, limiting stable
flows to those satisfying it. However, notice that the stable stock levels depend on the functions Π, ∆ and Ψ being considered.
Comparing these results with the findings from11, we can see two examples of how network structure shapes the stable state
spaces of the ordinary differential equations. In11, the mutualistic interaction considered has a positive effect on each pair of
species involved (i.e. it increases the number of individuals of both species). As network connectivity increases, there is a
critical point above which the interaction percolates, making the system resilient to sudden reductions in the abundance of
each species. In the case of resource-flow networks, the topology limits the stable flows to those satisfying the maximum flow
condition28. Future advances in this topic could help understand further how the evolution of different systems is shaped by the
intertwine between dynamics and network structures of various types.
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Numerical example
While the stability of the system can be addressed in general, assessing many dynamical characteristics (as stable stock levels)
requires specifying functions Π, ∆, and Ψ. However, only aggregated information is available for the SFFTN. Thus, we look to
model its dynamics by considering three simple characteristics. First, according to the CEC, the production is held constant at
maximum capacity, independently of the stock level of the refineries. Thus, we set Π(x) to be approximately constant except for
stock levels near x ≈ 1, when a refinery would not have enough stock space to produce more. We consider a similar behavior
for ∆(x), being constant aside from stock levels near x ≈ 0, where a gas station would not be able to supply any demand due to
the absence of resources. For the flow level Ψ(x1,x2), we assume that it will increase as the sender x1 has a higher stock level
(more to send), or the receiver x2 has a lower stock level (more space to receive). Figs. 2 a, b and c depict the functions Π(x),
∆(x) and Ψ(x1,x2) used for this work. Under these functions, the system dynamics present a smooth evolution to a stable point
(see Fig. 2 d). The approximation captures well the layer stock level, while the different facilities show dispersion around it due
to the differences in the flow capacities. The stable values of the layer stock levels yq depend on the initial amount of resource
saved in the system, U(t = 0) (Fig. 2 e). For low amounts of total resources, most of them are located at refineries, leaving
the third layer empty below a certain point. The flow capacities can change the size and shape of the stable state space. For
example, at a given value of U(t = 0), increasing the value of s12 reduces the stable stock level at refineries (y1), and increases
the stable stock level at gas stations (y3). This is due to the increased flow, that moves resource to the third layer faster than it
is consumed. Notice that the stable stock levels yq are bounded between two values (different for each layer), dependent on
s12. Thus, the total stable resource U(t) is also bounded. As s12 reduces, the resource is more concentrated in the first layer,
leaving the third layer empty. Similar effects can be observed by changing the value of the other two normalized average flow
capacities.

Impacts of SLR on the system dynamics
Next, we consider the impact of SLR on the maximum stable demand that the system would be able to sustain. We assume
that in all the scenarios the total production and demand remain constant. Thus, as refineries and gas stations are removed
from the system due to flooding, average capacities p and d increase to maintain constant (and equal) total production and
demand. Fig. 3 a shows the average percentage changes of the parameters due to flooding, for the two RCP and the 4 time
horizons considered at the 99.9 (worst case) SLR percentile. The majority of the parameters reduce their values, except for the
average production capacity p and the total capacity ratio α23. The biggest change occurs in the flow capacity from refineries
to terminals, with a reduction of 40% (RCP 4.5) and 75% (RCP 8.5) of s12 (representing the pipeline average flow capacity
from refineries to terminals). This is followed by a similar decrease for s13, the flow capacity from refineries to gas stations
directly. The value of p increases when the number of refineries reduces to keep the total production constant. α23 increases as
proportionally more terminals are affected than gas stations. More detail on the changes of the parameters can be found in
Table 3 in the Methods section.

The system is able to sustain the original demand in the time horizons 2020-2040 and 2040-2060 for all the scenarios
considered. However, demand failure is observed in 2080-2100 for RCP 4.5 and 2060-2080, 2080-2100 for RCP 8.5 and 95
and 99.9 SLR percentiles (Fig. 3 b and c). This is due to two effects combined, observed in Fig. 3 b. On one hand, the flow
capacities from refineries to the other facilities reduce, limiting the maximum flow that the system is able to establish. On the
other hand, the reduction in the number of terminals (expressed through the decrease of α12 and increase of α23) requires a
higher average flow to and from each terminal to keep supplying the total demand. This is represented in Fig. 3 b, where we
consider a phase-like diagram for the maximum stable demand constructed with the dynamics from Fig. 2 a. The diagrams
show the maximum stable demand as a function of s12 and s13, with the remaining parameters fixed at their average value for
the two considered RCPs and the last two time horizons, for the worst case scenario (99.9 SLR percentile). Each white dot
in the demand diagrams corresponds to the average value of the flow capacities for each of the four GCM. Flooding reduces
the flow capacities, (white dots move to the lower left of each diagram). At the same time, the region with maximum stable
demand below 1 increases (red region increases). Interestingly, the results are similar for RCP 4.5 within 2080-2100 and RCP
8.5 within 2060-2080, where the flow capacities are at the border of the low-demand region. For RCP 8.5 within 2080-2100,
the estimated flow capacities are completely inside the low-demand region, indicating that the system is far from being able to
supply the full demand.

Topological constraints on the stable demand
While the diagrams in Fig. 3 b depict the effect of coastal flooding on the maximum stable demand, they depend on the specific
dynamics considered (Fig. 2 a). Inspired by the generalized modeling framework8, 9, we consider a metric that only takes into
account the capacity structure of the network, and thus consider the minimum requirements over the stable demand (Eq. 3),
necessary over any functions Π, ∆ and Ψ. We estimate the percentage of scenarios under which the system is able to provide a
given demand level. For this purpose, we take into account the ranges of values for each of the original parameters alongside
the different SLR scenarios. We use Eq. 3 to measure the ability of the system to sustain a given stable demand level ∆∗, and
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calculate the percentage of scenarios where the condition is satisfied. The results are presented in Fig. 3 c, for the three SLR
percentiles, the last two time horizons and the two RCPs. While for RCP 4.5 within 2060-2080 there is only a slight chance of
failing to supply 100% of the original demand (∆∗ = 1), the percentage of scenarios unable to sustain 100% of the demand
increases to 60% (for the 99.9 percentile) within 2080-2100. For RCP 8.5 the percentage is around 60% (for the 99.9 percentile)
for 2060-2080, increasing to 100% for any demand over 50 of the original demand.

Production interruption under IPCC scenarios of Sea Level Rise
The previous analysis depicts the impact of permanent, long-term changes that affect the topology of a resource-flow network
by modifying the size relation between layers and their flow capacities. These long-term changes may interplay with other,
short-term, failure events. As an example, we consider production interruptions, that could be associated with a stoppage of
supply to the refineries. We model this failure event by setting p = 0 in the model during a finite amount of time ∆T , ranging
from half week to three weeks, and then re-establishing its original value. We initialize the system in a stable state (associated
with a particular value of U), and set p = 0 during a time-lapse ∆T . As the demand is constant, the third layer decreases its
stock level at rate d. Depending on the duration of the failure, we observe three outcomes from the production failure (Fig. 4
a). For small ∆T (Fig. 4 a, ∆T = 0.5 and 1.5 weeks), the total amount of resources is reduced, but none of the layers reach
near-zero stock levels. Notice how, independently of which layer reaches the lowest stock level during the failure, once the
failure resumes, the stock levels reorganize based on the new value of U . For intermediate ∆T (Fig. 4 a, ∆T = 2 weeks), the
failure may reduce U up to a point where the y3 ≈ 0, even after production is restored. This is a side effect of the redistribution
of resources across layers, as demonstrated in Fig. 2 e, where it is shown how at low values of U , y3 ≈ 0. As expected, for
large ∆T , all the layers are depleted before the failure ends (Fig. 4 a, ∆T = 5 weeks). Notice that when y3 ≈ 0, ∆(y3) starts to
decrease, and thus we observe a demand failure. As the system is initially producing at maximum capacity, when production
is restored the system stabilizes in a lower level of resource, instead of going back to the original state. To increase the total
resource U the system would require to have a higher production than demand. Under our assumptions, this only happens if
demand fails, allowing production to accumulate in the different layers.

We analyze two aspects of production failure: the time that it takes the system to reach demand failure τ (that is, the time it
takes for the third layer to reach y3(τ)≈ 0), and the average demand level during failure QD:

QD =
1
T

∫ T

0
∆(y3(t))dt (4)

Where T is the time period under consideration. Notice that it is not required for T to be equal to the failure duration, as the
aftermath can be of relevant to. T hese two metrics capture part of the dynamic aspects of the failure, moving one step forward
from stable state analysis. To study the behavior of the system under this transient failure, we simulate the evolution of the
system using the average values of each parameter (for each considered scenario), and initialize the stock levels yq at stable
states with different values of U . Recall that, as depicted in Fig. 2 c, stable stock levels yq depend on the initial resource stored
in the system U(t = 0), and are limited by the flow capacities sqr. For each coastal flooding scenario, we consider failure
duration ∆T from 0.5 to 3 weeks. We use this set of simulations to measure the time to demand failure τ and the average
demand level QD.

To study the time to demand failure τ , we consider the longest failure duration ∆T = 3 weeks and measure at which time
the system stops being able to supply the required demand. We use ∆T = 3 weeks as all the considered settings reach failure
within that time. Notice that this corresponds to the bottom right of Fig. 4 a. Fig. 4 b shows the value of τ as a function of
the initial total resource in the network U(t = 0). Obviously, τ increases with U(t = 0) (if the system has more resources
stored, it will take more time for it to get depleted). As the network is impacted by coastal flooding, we see two effects. First,
for the same value of U(t = 0), the value of τ is lower as we consider farther time horizons. At the same time, the change
in parameters reduces the range of stable values for U , producing a smaller range of values for U(t = 0), undermining the
possibility of starting from a more stock full stable state. As we consider scenarios with higher levels of coastal flooding, we see
a decrease of the higher τ from ≈ 3 weeks, to approximately 1.5 weeks in 2080-2100 with RCP 4.5 and the 50 SLR percentile.
A similar value is found for 2060-2080 at RCP 8.5 and the 50 SLR percentile and RCP 4.5 with the 95 percentile of SLR. Once
the network is unable to provide full demand, the range of U(t = 0) concentrates at a single point, and τ ≈ 0 for that value.
This can be seen in Fig. 4 b, for 2080-2100 at RCP 8.5 and 50 SLR percentile, and for the 2060-2080 at RCP 4.5 and 8.5
for the 95 SLR percentile. Comparing with Fig. 2 e, we see that as the flow capacities are reduced, the stable stock level of
refineries reaches 1, and the stock level of terminals stabilizes at an intermediate value, dependent on the specific value of the
flow capacities. Fuel is not able to reach the gas stations, and thus the system is essentially at demand failure.

While τ estimates how long the system will last without failing, QD estimates its performance during a given failure.
Notice that while τ measures directly a characteristic of the production failure (when the system stops being able to supply full
demand), QD provides an overview on the restoration of the demand as well, as it takes into account the value after the demand
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has been restored. As all the considered scenarios reach failure after 3 weeks, we choose T = 3 weeks in Eq. 4. This way, we
compare all the failure evolutions under the same time period. As demand failure depends on the value of U at the start, we
average QD over the possible values of initial resource U . Fig. 4 c shows the values of QD for the different failure duration ∆T
and scenarios considered. We observe a common behavior: for short failures (∆T < 1 week), QD ≈ 1. Then, as ∆T increases,
QD transitions to a linear decreasing function of ∆T . This means that for short failures the demand is not affected, and for
long failures the decrease is linear in the failure duration, in accordance with Fig. 4 a. For all the scenarios considered, the
total decrease in QD is approximately 10% at ∆T = 3 weeks. When comparing QD as a function of ∆T for the different SLR
scenarios, we observe very similar curves, with a lower QD at a given ∆T as we consider further time horizons. The curve only
changes slightly for system capable of providing full demand, with the highest difference around 5% for ∆T = 3 weeks. For
failed systems, QD is noticeable below 1 for ∆T = 0.5 week, as the demand is heavily impacted by the coastal flooding.

Limitations and advantages of dimension-reduction for sociotechnical systems
We have presented on the application of dimensional reduction to resource flow systems, particularly exemplified by the
transportation of fuel in the San Francisco Bay Area. The approximation aggregates the facilities based on their stock capacities,
producing system-level variables that capture layer-level dynamics. It allows studying a very complex networked system,
including thousands of different facilities from an aggregated perspective, even with very limited information. As it is discussed
in the Supplementary Note 1, the approximation still works well under random perturbation of the different types of parameters.
However, by aggregating the system we ignore internal correlations that may exist in it (for example, correlations between
production and flow capacities). Systems with significant correlations between their parameters (i.e. stock, production and
demand capacities) might not be well captured by this aggregated approximations. The Supplementary Note 1 includes testing
of the approximation for different in degrees of gas stations, varying to how many terminals and refineries they connect to. The
test shows that as long as gas stations connect to more than 10 terminals, the approximation has less than 5% error. Even more,
the approximation still works well under small variations of the parameters (while still maintaining the same average value).

From the perspective of the applications to real systems, we consider that dimension-reduction supposes two contributions
to the analysis of large, interconnected socio-technical systems. First, it allows providing estimates of the impact of failures
even with very limited information. Of course, in the case of trying to precisely estimate the impact of extreme events on a
particular network, researchers should look for the most detailed information possible. Nevertheless, the procedure discussed
here is independent on the specific functional forms considered. Second, dimensional reduction can be extremely useful as
we consider systems of systems, where each system is already complex on its own. Simplifying the subsystems can serve as
starting point for assessing the behavior of a system of systems, by including them from an analytically tractable point of view,
and assess their interactions as a whole.

Discussion
We presented an analysis of the demand levels that the San Francisco Fuel Transportation Network is able to satisfy under
different coastal flooding scenarios. We focused on the demand stability under the perturbations induced by coastal flooding,
and its dynamic behavior under a production failure. We approximate the system’s dynamics by reducing its dimension,
focusing on the aggregated flow between refineries, terminals and gas stations. By working with the dynamical representation
of the system, changes in network topology can be directly related to its role as resource supplier, helping to reduce the gap
between traditional network measures (like number of connected components or global efficiency) and realistic policies (like
demand rationing), more accessible to decision-makers.

By considering layer dynamics through the dimension-reduction approach, we find that the space of stable macroscopic
flows is constrained by a relationship equivalent to the maximum flow theorem between layers. This result adds up to the
findings for mutualistic interactions in11, which demonstrate how the stability of the system is connected to the percolation
of the mutualistic interaction through the network, allowing the system to recover from reductions in the abundance of each
species. Further analysis on other network structures can expand the understanding on how network topology shapes the
dynamics of networked ordinary differential equations.

In the case study considered here, the assumptions used for the approximation are reasonable as the pipeline system and
road networks allows transporting fuel essentially from any facility to any other, while at the same time we do not have access
to greater detail on the flows between facilities. However, in more complex structures, with higher levels of heterogeneity,
other system-state variables may be preferred. The goal of the dimension-reduction framework is to map the high-dimensional
dynamics to a smaller set of relevant system variables, which may be different depending on the problem, and thus they
should be adjusted depending on the case under consideration. For example, the state-variable considered here preserves flow
properties typical from resource-flow systems, while the estimator used in11 is specially designed to put emphasis on hubs,
which are crucial for percolation of interactions.
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Our results indicate that the structure of the San Francisco Fuel Transportation Network would be able to sustain the current
demand during the period 2020-2060. Yet, the current structure will likely start being affected after that period, specially
under high levels of greenhouse gas emissions. Through failure simulation, we find that the maximum survival time without
production decreases from three weeks to one and a half even in the best-case scenario (for a three weeks production stoppage).
However, as only very limited information is available on the network dynamics, these values should be considered as broad
estimations. It would be interesting to consider the dimension-reduction approach in other transportation networks, where more
information is available, and the effect of differences on production, stock, demand and flow capacities can be compared with
data.

We show that the dimension-reduction approach can help understand better the dynamics of lifeline systems, by constructing
analytically tractable representations that capture their macroscopic behavior. While these simplifications average the details on
finer scales, they allow studying the effect of changes in the infrastructure from a system level perspective. In future analysis,
it would be interesting to explore through the dimension-reduction approach how different lifeline infrastructures interact
with each other, forming systems of systems. The reduction can help by simplifying the dynamics of each sub-system, while
keeping tract of their interactions. Steps in this direction have already been done in the context of Ecology12, by considering
the interaction between network communities. Increasing our understanding of how dynamics of interconnected lifeline
infrastructure are affected by climate extreme events is crucial for preparation for the changes our world is currently facing.

Methods
The San Francisco Fuel Transportation Network
The network topology of the SFFTN has been analyzed in a previous project by He et al.21. The spatial elements conforming
the network were obtained from multiple sources. Location of refineries and terminals was provided by the U.S. Energy
Information Administration. The location of gas stations was obtained through Google Places. Pipeline structure was obtained
through the U.S. National Pipeline Mapping, and roads were downloaded from OpenStreetMaps29. To connect pipelines and
roads with the three different facilities, the nearest node in each transportation network was connected to each facility (only
roads in the case of gas stations). This provides the spatial representation necessary to assess the impact of coastal flooding.

Layered dimension reduction
Following previous work from Gao et al.11 we construct an approximation that captures the average behavior of the different
layers in the transportation network. The dimension-reduction approach was originally developed in the context of the
Barzel-Barabasi equation,

ẋi = F(xi)+
N

∑
i=1

Ai jG(xi,x j) (5)

that considers an homogeneous interaction across all the elements of the system. In the Eq. 5, F and G represent self and
pair interactions, and Ai j is the adjacency matrix associated to the interaction graph. Effective variables are constructed
through weighting each variable based on their connectivity in the network. However, in the context of resource-flow networks,
interactions have to take into account incoming and outgoing flow to adjacent nodes. Thus, an extension of the original approach
is necessary. From the point of view of system stability analysis, dimension-reduction operates by constructing a single variable
representing the system’s global state. This variable is a function of the constituents of the systems. In11, the system-level
variable is constructed by weighting each variable based on its connectivity. This leads to a system-average that puts emphasis
on more connected nodes. While this makes sense for mutualistic interactions, it is not the only option possible. For the purpose
of this work, we will consider that the importance of a node is dependent on their stock capacity Cq, which is a property of the
facility instead of its connectivity. While weighting each node by its degree (or strength, equivalent to its total flow capacity in
the context of resource-flow) puts the focus on the node that has the highest connectivity, weighting by node’s stock capacity
we preserve the connection between our system variables and the total amount of resource stored in the system (essential in the
context of flow of resources). At the same time, if we wanted to weight each node based on their connectivity, it would be
necessary to distinguish between incoming and outgoing flow capacities. This would lead to an asymmetric estimator, which
considers each layer differently depending on which side we are looking at. By weighting by the node’s stock capacity, we
obtain a symmetric weighting, independent of the flow direction.

In the dynamical description of the transportation network, the state of each facility is described by xq
i , the stock level of

node i in layer q. Here, we derive the equations departing from a slightly more general point of view than the one described
in section . We consider that every facility has its own stock capacity Cq

i , production capacity Pi (in refineries) and demand
capacity Di (in gas stations). We derive the equations with more generality looking to make the proposed approximation more
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clear, while for the application discussed in the Results we simplify by considering every capacity equal due to the lack detail
in the data. The goal is to obtain a set of equations capturing the dynamics of the fuel stored at each of the three facility layers.
The stock level of facility i in layer q is represented by xq

i . The evolution of the variables xq
i is described by the set of ordinary

differential equations:

C1
i ẋ1

i = PiΠ(x1
i )−

N2

∑
j=1

W 12
i j Ψ(x1

i ,x
2
j)−

N3

∑
j=1

W 13
i j Ψ(x1

i ,x
3
j)

C2
i ẋ2

i =
N1

∑
j=1

W 12
ji Ψ(x1

j ,x
2
i )−

N3

∑
j=1

W 23
i j Ψ(x2

i ,x
3
j)

C3
i ẋ3

i =−Di∆(x3
i )+

N1

∑
j=1

W 13
ji Ψ(x1

j ,x
3
i )+

N2

∑
j=1

W 23
ji Ψ(x2

j ,x
3
i )

(6)

where the Cq
i is the stock capacity of facilities in layer q, Pi the production capacity of refinery i in layer 1, Di the demand

capacity of gas station i in layer 3 and W qr
i j is the flow capacity between node i in layer q and node j in layer r. The total amount

of resource in layer q is ∑
Nq
i=1 Cq

i xq
i , and thus the stock level of layer q is yq = 1

NqCq ∑
Nq
i=1 Cq

i xq
i , where Cq = ∑

Nq
i=1 Cq

i . To obtain
a differential equation for the layer stock level yq, we take the derivative and approximate Eq. 6. Then, we have the three
equations:

N1C1ẏ1 =
N1

∑
i=1

C1
i ẋ1

i =
N1

∑
i=1

{
PiΠ(x1

i )−
N2

∑
j=1

W 12
i j Ψ(x1

i ,x
2
j)−

N3

∑
j=1

W 13
i j Ψ(x1

i ,x
3
j)

}

N2C2ẏ2 =
N2

∑
i=1

C2
i ẋ2

i =
N2

∑
i=1

{
N1

∑
j=1

W 12
ji Ψ(x1

j ,x
2
i )−

N3

∑
j=1

W 23
i j Ψ(x2

i ,x
3
j)

}

N3C3ẏ3 =
N3

∑
i=1

C3
i ẋ3

i =
N3

∑
i=1

{
−Di∆(x3

i )+
N1

∑
j=1

W 13
ji Ψ(x1

j ,x
3
i )+

N2

∑
j=1

W 23
ji Ψ(x2

j ,x
3
i )

} (7)

Following the common steps of the mean-field approximation, we assume that the correlation between stock, production and
flow capacities, and the values of the functions Π(x), ∆(x) and Ψ(x,y) are low. Then, we can approximate the average of the
products with the product of the averages. For the production term, we have:

1
N1C1

N1

∑
i=1

PiΠ(x1
i )≈

1
C1 (

1
N1

N1

∑
i=1

Pi)(
1

N1

N1

∑
i=1

Π(x1
i ))≈

P
C1 (

1
N1

N1

∑
i=1

Π(x1
i )) (8)

To link the average of functions Π(x1
i ) with the layer stock level y1, we recall the results from13, where the authors

propose to make a polynomial decomposition of the functions, and subsequently repeat the approximation over the expansion
coefficients. In that case, we have (to first order, the three dots represent the next terms in the expansion):

1
N1

N1

∑
i=1

Π(x1
i )≈

1
N1

N1

∑
i=1

Π(0)+Π
′(0)x1

i + . . .

= Π(0)+
1

N1
Π

′(0)
N1

∑
i=1

C1
i

C1
i

x1
i + . . .

≈ Π(0)+Π
′(0)(

N1

∑
i=1

C1

N1C1
i
)y1 + . . .

≈ Π̃(y1)

(9)

Where in the third line we approximated ∑
N1
i=1 x1

i ≈ ∑
N1
i=1 y1C1/Ci. Thus, the approximation leads to a layer production function

∑
N1
i=1 PiΠ(x1

i )/N1 ≈ PΠ̃(y1), where P is the refinery’s average production capacity and Π̃(y1), which is an average of the
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production levels, weighted by the inverse of the stock capacity of each layer. To first order, and under the assumption of
low correlation between the polynomial expansion coefficients and the stock levels, the coefficient involving the capacities
is C1

∑
N1
i=1 1/C1

i . This re-scaling accounts for the variability of the capacities across facilities (and thus, for the different
scales of each production function). In the context of our work, where we consider that all the refineries have the same stock
capacity, the function Π̃ matches exactly the function Π. In general, the quality of the approximation should be tested for
other functions Π and stock capacities based on the case under study. The derivation discussed is equivalent to the one for
∑

N3
i=1 Di∆(x3

i )/N3 ≈ D∆̃(y3).
For the flow terms, we follow a similar procedure, with the minor difference that summation is done over the two layers:

1
Nq

Nq

∑
i=1

Nr

∑
j=1

W qr
i j Ψ(xq

i ,x
r
j) =

Nr

NqNr

Nq

∑
i=1

Nr

∑
j=1

W qr
i j Ψ(xq

i ,x
r
j)

≈ Nr(
1

NqNr

Nq

∑
i=1

Nr

∑
j=1

W qr
i j )(

1
NqNr

Nq

∑
i=1

Nr

∑
j=1

Ψ(xq
i ,x

r
j))

≈ W qr

Nq

Nq

∑
i=1

Nr

∑
j=1

1
NqNr Ψ(xq

i ,x
r
j)

≈ W qr

Nq
Ψ̃(yq,yr)

(10)

Where W qr = ∑
Nq
i=1 ∑

Nr
j=1 W qr

i j is the total flow capacity between layers q and r. To approximate function Ψ and obtain function
Ψ̃, the approximation steps are as follows (again to first order, with dots representing higher orders in the Taylor expansion):

1
Nq

1
Nr

Ψ(xq
i ,x

r
j)≈

1
N1N2

Nq

∑
i=1

Nr

∑
j=1

Ψ(0,0)+Ψ
′
q(0,0)x

q
i +Ψ

′
r(0,0)x

r
j + . . .

= Ψ(0,0)+
1

Nq

Nq

∑
i=1

Ψ
′
q(0,0)x

q
i +

1
Nr

Nr

∑
j=1

Ψ
′
r(0,0)x

r
j + . . .

= Ψ(0,0)+
1

Nq

Nq

∑
i=1

Ψ
′
q(0,0)

Cq
i

Cq
i

xq
i +

1
Nr

Nr

∑
j=1

Ψ
′
r(0,0)

Cr
j

Cr
j
xr

j + . . .

= Ψ(0,0)+
yq

Nq

Nq

∑
i=1

CqΨ′
q(0,0)
Cq

i
+

yr

Nr

Nr

∑
j=1

CrΨ′
r(0,0)
Cr

j
+ . . .

≈ Ψ̃(yq,yr)

(11)

In this case, the approximation yields the term W qrΨ̃(yq,yr)/Nq. This term includes function Ψ̃, the average flow level
from layer q to layer r, and the average total flow capacity of a facility in layer q to the whole layer r. For the case in which
we consider incoming flow instead of outgoing, the expression slightly changes, as we are summing over layer r instead of
over layer q. This leads to the expression W qrΨ̃(yq,yr)/Nr, and thus the global flow level is multiplied by the average (in)flow
capacity perceived by nodes in layer r, considering all nodes in layer q. As in the previous case, when we consider all the nodes
in the same layer to have the same stock capacity, function Ψ̃ matches Ψ. Thus, we obtain the final set of equations:

C1ẏ1 ≈ PΠ̃(y1)− W 12

N1
Ψ̃(y1,y2)− W 13

N1
Ψ̃(y1,y3)

C2ẏ2 ≈ W 12

N2
Ψ̃(y1,y2)− W 13

N2
Ψ̃(y2,y3)

C3ẏ3 ≈−D∆̃(y3)+
W 13

N3
Ψ̃(y1,y3)+

W 23

N3
Ψ̃(y2,y3)

(12)

where we recall that, in the case of equal stock capacities (Cq
i =Cq), Π̃ = Π, ∆̃ = ∆ and Ψ̃ = Ψ. For the rest of the Methods

section, we assume that Cq
i =Cq and thus Π̃ = Π, ∆̃ = ∆ and Ψ̃ = Ψ.
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To take this set of equations to a more compact form involving less parameters, we divide each equation by the corresponding
stock capacity, and rename the combined parameters. This leads to:

ẏ1 = pΠ(y1)− s12Ψ(y1,y2)− s13Ψ(y1,y3)

ẏ2 =
s12

α12
Ψ(y1,y2)− s23Ψ(y2,y3)

ẏ3 =−d∆(y3)+
s13

α12α23
Ψ(y1,y3)+

s23

α23
Ψ(y2,y3)

(13)

where:

• p = P/C1 is the normalized production capacity, and d = D/C3 is the normalized maximum suppliable demand (which
we call demand capacitiy).

• sqr = ∑
Nq
i=1 ∑

Nr
j=1 W qr

i j /NqCq is the normalized average flow capacity from layer q to layer r.

• αqr = NrCr/NqCq is the stock capacity ratio between layers q and r.

The quotient between average normalized flow capacities and total capacity ratios represents the different perspective on
the average depending on the layer: while s12 can be seen as the average outflow capacity of a refinery, s12/α12 =W 12/N2C2,
the normalized average inflow capacity at terminals.

The (normalized) total resource stored in the system is U = y1 +α12(y2 +α23y3), while N1C1U is the total resource stored
in the original units. Thanks to the internal balance of flows within the system, we have:

U̇ = pΠ(y1)−α12α23∆(y3) (14)

Which represents the global balance of resource in the whole system. Notice that the balance of resource stops changing
(U̇ = 0) when production and demand balance each other, and that the change in time of U does not depend on the stock level
of the intermediate layer.

Stable state
To identify the stable state we set yq = 0 in Eq. 13, and identify the conditions for stability. As we haven’t precised functional
forms for Π, ∆ and Ψ yet, we focus on the conditions over these functions first. If we call yq∗ the values of the (average) stable
stock levels at layer q, and we define Π(y1∗) = Π∗, ∆(y2∗) = ∆∗ and Ψ(yq∗,yr∗) = Ψ∗

qr, then:

pΠ
∗ = s12Ψ

∗
12 + s13Ψ

∗
13

s12Ψ
∗
12 = α12s23Ψ

∗
23

α12α23d∆
∗ = s13Ψ

∗
13 +α12s23Ψ

∗
23

(15)

The solution to these equations only exists if the production and demand are balanced,

pΠ
∗ = α12α23∆

∗ (16)

Under this condition, the stable flows are define by ∆∗ (or equivalently by Π∗).

(
Ψ∗

13
Ψ∗

23

)
=

(
α12α23d

s13
∆∗

0

)
+Ψ

∗
12

(
− s12

s13s12
α12s23

)
(17)

We can see that all the stable flows are located within a line in the 3-dimensional space of flows for a fixed value of ∆∗. This
ambiguity comes from the existence of two possible paths through which the flow can go. As total flow balance is the only
condition for stability, many internal flows are possible. Notice that the range of values for Ψ∗

12 is dependent on the different
capacities and the demand level ∆∗. As each flow level Ψ∗

qr is constrained to be between 0 and 1, we obtain the constraint for
Ψ∗

12:

max(0,
α12α23d∆∗− s13

s12
)≤ Ψ

∗
12 ≤ min(1,

α12s23

s12
,

α12α23d∆∗

s12
) (18)
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We can see that increasing ∆∗ moves the lower range up, and increasing the flow capacity s12 moves the upper limit down.
If we look for the border condition at which there is only a single possible value for the stable flow (and thus maximum and
minimum in Eq. 18 are equal), we find the requirement:

α12α23d ≤ s13 +min(s12,α12s23) (19)

This equation is equivalent to the max-flow theorem condition between the three considered layers. In this case, the total
demand α12α23d is equal to the sum of the flow capacities of the direct path from refineries to gas stations, s13, and the long path
from refineries to terminals, and terminals to refineries, min(s12,α12s23). Comparing these result with the findings from11, we
can see two examples of how network structure shapes the stable state spaces of the differential equations. In11, the mutualistic
interaction considered has a positive effect on the pair of species involved (i.e. it increases the number of individuals of both
species). The dimension-reduction captures the connectivity of the network in a single coefficient, and there is a critical point
above which the mutualistic interaction percolates, making the system resilient to sudden reductions in the abundance of each
species. In the context of resource-flow, the dimension-reduction captures the maximum flow condition limiting the stable
flows28.

Network capacities
Precise information on production, flow and demand capacities (P, W qr

i j and D in Eq. 1) is not openly available. However, CEC
provides total production for Northern California and average daily number of trucks30. We use 97.5 Mgal as a reasonable
estimation of the total production capacity N1P at the five refineries in Northern California. To estimate the demand capacity,
we consider its average value as N1P/N3, the total production divided the number of refineries. This equates to the assumption
that, on average, the system is stable (total production is equal to total demand). To obtain an estimation of the average stock
capacity C1 of the refineries, we consider the maximum total stock reported by Northern California at the refineries, provided
by CEC. The maximum total stock observed is equal to 191 Mgal, or 38.2 Mgal on average per refinery. To explore a wide
range of values, we consider C1 ∈ [38.2,57.3] Mgal. For the terminal’s stock capacity C2, we consider the average of the
stock capacities provided by Kinder Morgan31, equal to 31.1 Mgal, and consider the range C2 ∈ [31.1,62.2] Mgal. For the gas
stations stock capacity, we consider a single value of C3 = 0.035 Mgal, based on the information publicly provided by U.S. Oil
Spill Prevention organization.

Direct estimation of individual flow capacities would require knowing policies regarding the number of trucks that a
each facility can contact. However, under the dimension-reduction approximation, we can provide estimates for the total
flow capacities W 12, W 13 and W 23. According to CEC, there are approximately 5,000 tanker truck trips per day. We assume
all them occur between terminals and gas stations. We consider that the storage capacity of a tanker truck ranges between
3 and 7 thousands of gallons. Then, we consider the range for the total flow capacity between terminals and gas stations,
W 12 ∈ [105,245] Mgal week−1. Flow from refineries to gas stations directly is also possible, while we assume it is comparatively
smaller as in general it would be more costly. Thus, we consider a smaller range W 13 ∈ [21,81] Mgal week−1. For the pipeline
flow capacity between refineries and terminals, we calculate the minimal cut to separate all the refineries from all the terminals,
finding it would require to remove 5 independent segments of pipeline in the original (unperturbed) network. We consider the
flow capacity of a single pipeline to be between 2 and 4 millions of gallons per day, and thus we take as range for the weekly
total flow capacity W 12 ∈ [70,140] Mgal week−1.

Sea level rise and coastal flooding
By using sea level and climate projections between 2020 and 2100 from California’s Fourth Climate Change Assessment32

flood inundation time series maps for two Representative Concentration Pathways (RCPs) and four general climate or earth
system models (GCMs), three probabilistic percentile estimates of SLR were created for a previous project21, 23. The four GCM
are CanESM2, MIROC5, CNRM-CM5 and HadGEM2-ES, corresponding to the CMIP5 suite of models25. The two RCPs
considered are 4.5 and 8.5, representing a mild and a high level of greenhouse gas emissions. The four GCM are mathematical
models that represent physical processes in the atmosphere, ocean, cryosphere, and land surface. The three probabilistic
percentile estimates of SLR correspond to the 50, 95 and 99.9 estimates of SLR for a given time horizons and RCP. The SLR
estimates are used as input for the 3Di hydrodynamic model26, taking into account the elevation of the region considered and
the tidal movement. The hydrodynamic model outputs the water column at 50m spatial resolution produced by tidal movement
at each point of space during a high sea level event (i.e. a 72-hour storm event with the highest sea level at a given scenario) for
each of the scenarios considered (corresponding to a combination of SLR percentile, GCM, RCP and time horizon). A detailed
description of the modeling process is well documented in reference23 under Appendix A. For the purpose of flooding impact
analysis, we considered that a node was failed if the water height at its location was 15cm or higher, based on information
provided by the fuel companies of the region.
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Impact of coastal flooding
By overlaying flooding maps and network spatial representation, we identified failed nodes, removed them, and recalculated
every aggregated parameter for each flooding scenario. We consider that stock and flow capacities are not affected by flooding,
and thus changes in the parameters are due solely to changes in network structure. The changes in network structure are
captured by the number of facilities of each type, the minimal pipeline cut to separate refineries from terminals, and the fraction
of gas stations accessible from the average refinery and terminal through the road network, as explained below. A range of
values for each one of the magnitudes is provided in Table 3 to provide an idea of the impact of SLR.

Total stock capacity ratios change solely due to changes in the number of nodes of each type, as stock capacities are
considered fixed. For the pipeline flow capacities (associated with parameters W 12 and s12), we calculate the minimal cut
between refineries and terminals under each flooding scenario, and consider as aggregated flow capacity the minimum cut times
the flow capacity of a typical product pipeline. Minimum cut is reported in Table 3.

To estimate the reduction in flow capacity from terminals to gas stations (done by truck), we calculate the number of
accessible gas stations for each terminal (through the road network). If the average terminal has f N3 gas stations accessible
under a given flooding scenario (0 < f < 1), then we estimate the new total flow capacity W 23 ′ = fW 23 (with W 23 being the
original unperturbed flow capacity from terminals to gas stations). An equivalent calculation is done for the flow capacity from
refineries to gas stations.

Data Availability
The original network was constructed with privacy-protected information from the fuel companies involved in fuel transportation
and thus cannot be shared. The flooding maps and results from the simulations used to make the plots are available at
github.com/humnetlab/sfftn-dr. All other data can be made available on reasonable request.

Code Availability
Simulations are based on ODE solver package deSolve (cran.r-project.org/web/packages/deSolve). The code used for analysis
the simulations can be found at github.com/humnetlab/sfftn-dr.
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Figure 1. San Francisco Bay Area fuel transportation network, under different sea level rise scenarios. The
transportation network consists of three layers, linking facilities (refineries, terminals and gas stations), through transportation
means (roads and product pipelines). a: Original network, represented in space. b and c: Spatial representation of the network
at RCP (Representative Concentration Pathways) 8.5 and 99.9 SLR (Sea Level Rise) percentile scenarios, for 2060-2080 and
2080-2100 respectively. The blue regions represent the areas with water height larger than 15cm. d: Original network without
sea level rise, in an abstract network space representation. Notice that facilities do not link directly to each other, but connect
through transportation nodes (road and pipelines). e and f: Network including nodes unaffected by sea level rise, at RCP 8.5
and 99.9 SLR percentile scenario, for the period 2060-2080 and 2080-2100, respectively.

Parameter Values
N1 5
N2 29
N3 3422
C1 [38.2,57.3] Mgal
C2 [31,62] Mgal
C3 0.035 Mgal

W 12 [70,140] Mgal week−1

W 23 [105,245] Mgal week−1

W 13 [21,81] Mgal week−1

P 18.9 Mgal week−1

D 0.028 Mgal week−1

Table 1. Parameters representing the aggregated characteristics of the SFFTN. W qr = ∑
Nq
i=1 ∑

Nr
j=1 W qr

i j represents the
aggregated flow capacity between layers q and r. By considering ranges for some of the parameters we are able to capture a
reasonable range of scenarios for the network description. See Methods section for more details.
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Figure 2. Dynamical representation considered. a: Production level Π as function of stock level x. The function captures
maximal production except when stock level x ≈ 1. b: Demand level ∆ as a function of stock level x. The function captures
constant demand except for x ≈ 0. c: Flow level, as a function of sender and receiver stock levels, x1 and x2. The flow is greater
for high stock levels of the sender or low stock levels of the receiver. d: Dynamical evolution for a system with 5 refineries, 29
terminals, and a random sample of 100 gas stations. All layers are considered fully connected, and flow capacities are constant
and equal to W qr/NqNr between nodes in layers q and r. Black solid lines represent the stock level estimated by the
approximation. e: The stable values of stock levels yq for each layer calculated using the approximation, as a function of the
initial total resource U(t = 0) = y1(t = 0)+α12y2(t = 0)+α12α23y3(t = 0) and the flow capacities of the network. Scale (in
legend) represents the transformation of flow capacities respect to their average values. At a given scale S, the flow capacities
are S× sqr. Notice how the stable stock levels increase for higher values of U(t = 0). The maximum and minimum possible
stock levels are limited by the flow capacities in the network, exemplified the change in scale. For low values of U(t = 0) and
scale S, the third layer may get empty, producing a demand failure.

Figure 3. Demand stability under different sea level rise scenarios. a: Parameter as percent of their original values, for the
different time horizons and for the two Representative Concentration Pathways (RCPs) considered. As the Sea Level Rise (SLR
increases, changes are more evident. Note that a23 increases because coastal flooding affects terminals more than gas stations.
Also, p increases due to the flooding at one refinery, under the assumption of equal total production at every scenario. b:
Demand diagrams in terms of s12 and s13 for the original network and the last two time horizons, where demand failure occurs.
Each white dot corresponds to the average values of the flow capacities s12 and s13 under the prediction of each Global Climate
Model (GCM), for the corresponding time horizon and RCP value. Notice how the values of s12 and s13 move toward the region
of demand failure, but also the region of demand failure increases. To construct the diagrams, the average value of s23, α12, α23,
p and d for each scenario are used. Panels a and b correspond to the 99.9 SLR percentile. c: Percentage of network scenarios
(considering the range of possible values for each parameter) with failed demand, as a function of the desired demand level ∆∗.
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Figure 4. Dynamics of production failure under Sea Level Rise scenarios. a: To simulate a full production failure, we
initialize the system at a stable state, and set p = 0 during a time ∆T . The stock levels decrease and demand failure may be
reached if y3 ≈ 0. Notice that y3 may still reach 0 even after the failure ended. The plot shows stock level of layer 1 (green),
layer 2 (cyan) and layer 3 (magenta), and total stock level (dashed pink line). b: For the Sea Level Rise (SLR) at 50 and 95
percentiles, we calculate the time τ it takes the system to reach demand failure as a function of the resource stored on it. The
change in the parameters reduce the values of τ for a given amount of resource. Even more, the range of total resource that the
system can store also reduces. The color scale indicates the time horizons: original (black), 2020-2040 (red), 2040-2060
(orange), 2060-2080 (light green) and 2080-2100 (blue). c: Average demand level QD as a function of the failure duration. For
low failure duration times, the system is able to resist failure and sustain maximum demand. For long failure duration times
demand failure occurs, reducing the average demand. While for short failure duration the SLR affects similarly the average
demand, the effect increases for the last time horizons (green and blue lines). For RCP 8.5 and high percentiles, the effect is so
drastic that the average demand decreases for any failure duration in the last horizon (RCP 4.5) and the two last horizons (RCP
8.5). The same color scale applies for panels b and c.

Parameter Values
α12 [3.14,9.41]
α23 [0.07,0.13]
s12 [0.25,0.79] week−1

s23 [0.05,0.27] week−1

s13 [0.17,0.43] week−1

p [0.33,0.49] week−1

d 0.79 week−1

Table 2. Normalized parameters capturing realistic values for the SFFTN The ranges of values are obtained from the
ranges in the natural parameters in Table 1
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N1 N2 N3 Min-Cut f13[%] f23[%]
Original 5 29 3422 5 1 1

Representative Concentration Pathway (RCP) 4.5
2020-2040 5 [26,28] [3369,3388] 5 [98.1,98.7] [80.6,88.2]
2040-2060 5 [25,26] [3359,3377] 5 [97.7,98.3] [73.3,87.8]
2060-2080 5 [23,26] [3315,3368] [4,5] [96.4,98.1] [65.4,80.6]
2080-2100 5 [19,25] [3225,3346] [3,5] [55.8,97.6] [43.2,76.7]

Representative Concentration Pathway (RCP) 8.5
2020-2040 5 [26,27] [3371,3382] 5 [98.2,98.4] [80.7,87.9]
2040-2060 5 [24,26] [3324,3379] 5 [96.8,98.3] [72.6,87.8]
2060-2080 5 [20,25] [3248,3356] [3,5] [56.4,97.9] [47,76.9]
2080-2100 [4,5] [17,22] [3117,3292] [1,3] [36,95.6] [41.7,51.2]

Table 3. Change of the network structure through the different time horizons, for the two Representative
Concentration Pathways considered. The ranges of values correspond to the predictions of the four Global Climate Models
and the three Sea Level Rise percentiles. N1, N2 and N3 correspond to the number of refineries, terminals and gas stations.
Min-cut corresponds to the minimum cut to separate all refineries from all terminals. f13 is the average fraction of gas stations
that are accessible from a refinery through the road network. f23 is the average fraction of gas stations that are accessible from
a terminal through the road network.
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