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Supplementary Note 1: Numerical testing in San Francisco Fuel Transportation
network under different connection strategies
Similarly to the approximation in [1], it is not easy to obtain a general upper bound for the |xq

i − yq|, as it is heavily
dependent on the network structure. However, we note that comparison should be made between yq (calculated using the

approximation) and
∑Nq

i=1 Cq
i x

q
i∑Nq

i=1 Cq
i

(calculated using the exact equations), which is the exact stock level at layer q. To test the

approximation, we consider its application under different network structures based on the original geographical network
presented in [2] and discussed in the current manuscript at the start of the Results section. The network includes N1 = 5
refineries, N2 = 29 terminals and N3 = 3422 gas stations. Refineries and terminals link through a heavily interconnected
system of pipelines, that on the scale of data we have (recall that our flow and production capacities are in Mgal/week) allow
transferring resource between any pair of them. Thus, we always consider the layers q = 1 (refineries) and q = 2 (terminals)
as fully connected. Layer q = 3 (gas stations) connects to refineries and terminals through the road network only. Thus, we
explore the impact on the approximation of changes in the number of links to refineries a gas station has. As the cost of
transportation is heavily associated to distance travelled, we choose to connect gas stations to terminals and refineries based
on the road network distance (i.e. taking into account the length of the route in the road network). We construct networks
with constant in-degree in the gas station layer, having nr = 1, . . . , 5 connections to refineries and nt = 1, . . . , 29 connections
to terminals. For each gas station, we connect it to the nr nearest refineries and nt nearest terminals. As our data is on
the layer level, we construct the networks to be consistent with our reference values of W 12, W 13, W 23 and N1P = N3D
(layer-level flow, production and demand capacities). Thus, on average the production capacity of a refinery is P , the demand
capacity at gas station is D and the average flow capacity is W qr/Mqr, where Mqr is the number of links between layer q
and r. We consider two situations:

• In case (1) we assign a value equal to the average for each parameter: Pi = P , Di = D and W qr
ij = W qr/Mqr if xq

i is
linked to xr

j and zero otherwise.
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• In case (2), we sample the values from a normal distribution with deviation equal to a ten percent of the average value:
Pi ∼ N (P, 0.1P ), Di =∼ N (D, 0.1D) and W qr

ij ∼ N (W qr/Mqr, 0.1W
qr/Mqr) if xq

i is linked to xr
j and zero otherwise.

Using these networks, we simulate the evolution of facilities and use the simulation to compute the observed layer stock level
as

∑Nq
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q
i x

q
i /

∑Nq
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q
i . Then, by calculating the parameters p, d and sqr we simulate the approximated layer stock level yq.

Supplementary Figure 1 shows an example of how this simulation looks like. We can see that while intra-layer variance can
be very high, the approximation captures reasonably well the dynamics of the layer stock level. To compare approximation
and exact result, we sample initial conditions for every variable xq

i (0) ∼ U [0.25, 0.75] ten times, and calculate the average
error over them. We consider two measures of error: how well the stable level is determined and how well is the transition
from initial condition to stable state captured. The results are shown in Supplementary Figures 2 and 3 for cases (1) and (2)
respectively. Notice that in both cases, we use the same parameters for the layer stock level. In both Supplementary Figures
we see that as the number of connections between gas stations and terminals increases, the error reduces until reaching an
average error below 0.05 for the gas station layer and 0.025 for the terminals and refineries in both cases.

Supplementary Figure 1: Simulation example with N1 = 5 refineries, N2 = 29 terminals and N3 = 3422 gas stations.
Refinery-Terminal layer is fully connected, and gas stations connect to 4 refineries and 26 terminals. The broad brown line
represents the exact layer stock level
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i /
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i , while the black line corresponds to the approximation of yq

through Eq. 2 in the main article. The simulation setting considers that every parameter is equal to the average value for
the corresponding capacity (case 1 described in the main text).

Supplementary Note 2: Numerical testing of the reduced-dimension represen-
tation in random tripartite networks
To test the approximation in other structures, we construct random tripartite networks (i.e., networks where there are three
layers of nodes, and connections only exists between nodes in different layers), and assign one layer to production (e.g.
refineries), other to momentary storage (e.g., terminals), and other to consumption (e.g., gas stations). We consider different
sizes for the layers, and different values for the flow capacities. Our testing procedure is similar to one used in [3], in the sense
that we consider the Stochastic Block Model (SBM) as benchmark network model for testing. We use the same functions Π,
Ψ and ∆ used to represent the San Francisco Fuel Transportation Network:
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Supplementary Figure 2: Approximation error
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2 for case (1), all parameters are equal
to their average values. Stable: the only time considered is 20 weeks, where the system has already stabilized. Transitory:
the error is considered only in the first part of the evolution, for times between 0 and 5 weeks. Circles correspond to the gas
station layer, squares correspond to terminals and triangles to refineries.

Π(x) = (1 + 10−6)(1− x)/(1 + 10−6 − x)

∆(x) = (1 + 10−6)x/(x+ 10−6)

Ψ(x1, x2) = x1(1− x2)

(1)

By exploring different layer sizes, variability in flow capacities and number of connections, we observe that the layer
average provides a good estimator of the true average stock level in most of the cases. As the number of nodes in a given
layer increases, the estimation error decreases. We observe that variability in weights induces variability in the stable stock
levels of the nodes, but the impact on the average is small. The biggest effect is due to the number of connections per layer:
in more sparse networks the difference between the true average and the estimation increases. However, the difference is
smaller than the actual variability between the nodes within the same layer (represented through their standard deviation).
We find that the error increases due to the increase in the number of nodes that either are disconnected from refineries, or
disconnected from gas stations. This nodes are unable to transfer the resource they have (or don’t receive any incoming
resource), and thus are stuck outside the dynamics. Thus, from the perspective of representing a fully functional network,
the approximation captures well the behavior of the system under Eq. 1. The model to construct the networks to test the
approximation can be summarised as follows:

• Select layer sizes N1, N2 and N3.

• Sample each possible connection between layers q and r (q ̸= r) with probability u. The resulting network will have,
on average, uNqNr connections between layers q and r.

• Production capacity P is set to 1 at every node in layer 1, and demand capacity D is set equal to N1/N3.
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Supplementary Figure 3: Approximation error
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2 for case (2), parameters are sampled
from a normal distribution with average equal to the global average and deviation equal to a 10% of the average. Stable: the
only time considered is 20 weeks, where the system has already stabilized. Transitory: the error is considered only in the
first part of the evolution, for times between 0 and 5 weeks. Circles correspond to the gas station layer, squares correspond
to terminals and triangles to refineries.
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• Sample flow capacities W qr
ij for each layer uniformly from the interval [1− dW, 1 + dW ], with dW < 1.

Thus, the total flow capacity for the random network is W qr ≈ uNqNr on average. Our focus in on comparing the exact
layer average < xq > (t) =

∑Nq

i=1 x
q
i /Nq with the evolution obtained through the approximation for yq.

Probability of connection

We explore the impact of changing the connection sampling probability u through two magnitudes: the deviation within a

single layer, SD(xq) =

√
(
∑Nq

i=1(x
q
i− < xq >)2), and the mean absolute error MAE(< xq >, yq) = | < xq > −yq|. In every

simulation, we select the initial condition of the layer average to be consistent with the true average, i.e. yq(t = 0) =< xq >
(t = 0). We consider Nq = 10 and W qr

ij = 1. This way, we isolate the impact of changes in the connectivity. The results
are presented in Supplementary Figure 4 for different initial conditions. In all cases, we see that MAE(< xq >, yq) increases
for lower levels of connectivity, going from ≈ 0 to 0.2 on average. However, when comparing the MAE with the natural
variability in the stock levels xq

i , SD(xq), we see that the difference between the < xq > and yq is at worst on the same order
than the standard deviation of the original nodes. Thus, we conclude that while the error of the approximation increases for
lower values of the sampling probability u, the variability within the layer also increases, being greater or within a similar
order. The MAE(< xq >, yq) is also dependent on the initial condition considered. Notoriously, setting all starting values
at random produces the highest variability in stock levels SD(xq), but the lowest error in the estimator MAE(< xq >, yq)
(on average).

Layer sizes and probability of edge

We find that by increasing the layer size Nq, the error of the approximation reduces. This means that as more nodes are
considered, the approximation becomes better. We combine the change in layer size with the probability of connection u to
inspect the error in terms of the average degree of a layer. Thus, we consider systems with equal layer size (N1 = N2 =

N3 = N) and different probabilities u. We calculate the global MAE(< x >, y) = 1
3

∑3
q=1 MAE(< xq >, yq) and plot it in

function of the inter-layer degree uN . We found that the error grows as a power law of the average degree with exponent
≈ −2.15. The plot is presented in Supplementary Figure 5

Flow capacity variability

We explore the effect of flow capacity W qr
ij variability by keeping the network structure fixed (fully connected layers with

Nq = 10), and assign flow capacities W qr
ij uniformly at random between [1 − dW, 1 + dW ], with dW ∈ [0, 1]. We plot

1
3

∑3
q=1 MAE(< xq >, yq) as a function of dW (Supplementary Figure 6). We find that the error increases as a power law

of dW (exponent 1.8), but it is still low when compared to the impact of the sampling probability u.
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Supplementary Figure 4: Testing of the approximation for different values of the sampling probability of edges.
Each different curve corresponds to a different initial condition. AllEmpty corresponds to xq

i (t = 0) = 0 ∀i, q. AllFull
corresponds to xq

i (t = 0) = 1 ∀i, q. EqualRandom corresponds to xq
i (t = 0) = x0 ∀i, q, with x0 a random number between

0 and 1. LayerRandom corresponds to xq
i (t = 0) = xq

0 ∀i with xq
0 a different random number for each layer. Random

corresponds to xq
i (t = 0) sampled independently within [0, 1].
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Supplementary Figure 5: Testing of the approximation for different values of the average degree between layers.
The relationship found follows a power law with exponent −2.15
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Supplementary Figure 6: Approximation error as function of flow capacity variability. We found the difference to
increase as a power law of the size interval from where flow capacities are sampled. The exponent obtained is 1.8.
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