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Well-established fine-scale urban mobility models today depend on
detailed but cumbersome and expensive travel surveys for their
calibration. Not much is known, however, about the set of mecha-
nisms needed to generate complete mobility profiles if only using
passive datasets with mostly sparse traces of individuals. In this
study, we present a mechanistic modeling framework (TimeGeo)
that effectively generates urban mobility patterns with resolution
of 10 min and hundreds of meters. It ties together the inference of
home and work activity locations from data, with the modeling of
flexible activities (e.g., other) in space and time. The temporal choices
are captured by only three features: the weekly home-based tour
number, the dwell rate, and the burst rate. These combined generate
for each individual: (i) stay duration of activities, (ii) number of vis-
ited locations per day, and (iii) daily mobility networks. These pa-
rameters capture how an individual deviates from the circadian
rhythm of the population, and generate the wide spectrum of em-
pirically observed mobility behaviors. The spatial choices of visited
locations are modeled by a rank-based exploration and preferential
return (r-EPR) mechanism that incorporates space in the EPR model.
Finally, we show that a hierarchical multiplicative cascade method
can measure the interaction between land use and generation of
trips. In this way, urban structure is directly related to the observed
distance of travels. This framework allows us to fully embrace the
massive amount of individual data generated by information and
communication technologies (ICTs) worldwide to comprehensively
model urban mobility without travel surveys.

human mobility | urban model | mobile phone data | networks |
urban planning

Our ability to correctly model urban daily activities for traffic
control, energy consumption, and urban planning (1, 2) has

critical impacts on people’s quality of life and the everyday func-
tioning of our cities. To inform policy making of important pro-
jects such as planning a new metro line and managing the traffic
demand during big events, or to prepare for emergencies, we need
reliable models of urban travel demand. These are models with
high resolution that simulate individual mobility for an entire re-
gion (3, 4). Traditionally, inputs for such models are based on
census and household travel surveys. These surveys collect in-
formation about individuals (socioeconomic, demographic, etc.),
their household (size, structure, relationships), and their journeys
on a given day. Nonetheless, the high costs of gathering the sur-
veys put severe limits on their sample sizes and frequencies. In
most cases, they capture only 1% of the urban household pop-
ulation once in a decade with information of only one or few days
per individual. The low sampling rate has made it very costly to
infer choices of the entire urban population (3, 5–7).
More recent studies try to learn about human behavior in cities

by using data collected from location-aware technologies, instead
of manual surveys, to infer the preferences in travel decisions that
are needed to calibrate existing choice modeling frameworks (8–
10). The problem, however, is that the geotagged data available
from communication technologies, in the massive and low-cost
form, cannot inform us about the detailed activity choices of their

users, making most of the data useless for meaningful urban-scale
mobility models. To make the best use of the massive and passive
data, a fundamental paradigm shift is needed to model urban mo-
bility and enhance new opportunities emerging through urban com-
puting (11). This is our goal with TimeGeo, a modeling framework
that extracts individual features and key mechanisms needed to ef-
fectively generate complete urban mobility profiles from the sparse
and incomplete information available in telecommunication activities.
Mobile phones are the prevalent communication tools of the

21st century, with the worldwide coverage up to 96% of the pop-
ulation (12). The call detailed records (CDRs), managed by mobile
phone service providers for billing purposes, contain information in
the form of geolocated traces of users across the globe. Mobile
phone data have been useful so far to improve our knowledge on
human mobility at an unprecedented scale, informing us about the
frequency and the number of visited locations over long-term ob-
servations (13–18), daily mobility networks of individuals (15, 19),
and the distribution of trip distances (13, 15, 17, 20–22). Due to the
sparse nature of mobile phone use, these data sources have sam-
pling biases and do not provide complete journeys in space and
time for each individual (9). Nonetheless, it has been possible to
extract and characterize from phone data where each individual
may stay or pass by, and then infer the types of activities that they
engage in at various urban locations depending on the time of their
visits (23). By labeling visited location types for individual users as
home, work, or other, representative traffic origin–destination
(OD) matrices for an average day and by time of day can be
generated (24, 25). They are aggregated estimates of person-trips
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between pairs of ODs within few hours, and these results have
been successfully validated in various cities against existing travel
demand models that required expensive surveys for calibration
(24, 25).
A fundamental question still remains on how to perform a

spatiotemporal mapping of raw mobile phone data to establish
models of travel demand with high spatiotemporal resolution,
through which individuals’ disaggregated daily journeys can be
generated. In the current literature that analyzes sparse geotagged
data, the daily temporal behavior of human mobility is either not
modeled or oversimplified (13, 16). For example, previous studies
on human dynamics do not explicitly model individual temporal
choices, but randomly draw parameters such as waiting time or the
number of activities in each active period from aggregated distri-
butions measured from data (14, 15). The model in ref. 19 in-
troduces time dependency in travel and tendency to arrange short
out-of-home activities in consecutive sequences (i.e., bursts of
activities) (26–30), but the stay duration at flexible (other) loca-
tions is fixed. Furthermore, it does not incorporate spatial choices
or the heterogeneity of individual behavior.
To realistically model individual mobility in cities at both

micro- and macrolevel, it is necessary to understand the essential

features of a population distribution in space at different times.
Here we show that these features can be extracted from big data
sources. Instead of using social-demographic information to cali-
brate the set of detailed decisions involved in activity choices—as
required by mainstream transportation modeling approaches––
the framework consists of directly measurable parameters dis-
covered from passive data. It represents a needed paradigm shift
to model individual daily trajectories in cities, adapted to ubiq-
uitously available sparse digital traces of individuals. The results
are high-resolution travel diaries for a large sample of users
based on their information and communication technology
(ICT) data in the urban context. The presented set of parameters
can be further refined as more information becomes available at
the individual level.

Activity Extraction from Mobile Phone Data
To demonstrate the mechanistic modeling framework, we ana-
lyze a CDR data set of 1.92 million anonymous mobile phone
users for a period of 6 wk in 2010 in the Greater Boston area. To
have a control experiment, we also examine a donated set of self-
collected mobile phone traces of a graduate student in the same
region over a course of 14 mo in 2013 and 2014, recorded by a

Fig. 1. Extraction of stays and daily journeys from raw cell phone data. (A–C) Stay locations extracted from the self-collected cell phone records of a student
in three sample days. (D–F) Illustration of trips between consecutive stays in each day. (G–I) Visitation frequency of all locations, counting from the first day of
the observation period to the current day. For this individual, home and work stays dominate all visits. Highlighted arrows mark the trips on that day. The
time bar above each subfigure is color-coded by activity type based on each stay’s duration. (J–L) Illustration of the rank-based EPR model. To illustrate
different cases we use the individual’s home, work, and one other location as trip origins. The potential trip destinations are color-coded by different chosen
probabilities based on their rank. The closer a location is to the origin, the higher the probability it has to be chosen. The height of the dots represents the
density of destinations in the surrounding region. The most dense place for other type of activities is in downtown Boston.
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smartphone application. When an individual anchors at a loca-
tion to conduct an activity, it is defined as a stay. We apply the
stay extraction method discussed in the literature (23) to both
data sets. We filter out signal jumps as well as pass-by records
when mobile phone users were traveling. For each user, based on
the start time and frequency of visits to each stay location, we
infer the stay location type as home (H), work (W), or other (O).
We are able to identify home locations for 1.44 million users,

which is 75% of our initial user base. Next, we filter users who
have more than 50 total stays and at least 10 home stays in the
observation period. These are identified as active users and are
used to extract the various parameters of TimeGeo (as explained
in detail in the next sections). These active users can be labeled
as commuters (133,448 individuals) who have journey-to-work
trips, and noncommuters (43,606 individuals) who have no
journey-to-work trips.
Fig. 1 illustrates the pipeline of extracting stays, labeling ac-

tivity types, and deriving individual mobility features from raw
mobile phone data for each of three demonstrated days. Fig. 1
A–C shows the raw cell phone records (in blue for 14 mo, and in
purple for each day), and the extracted stay locations of the in-
dividual (in red). Fig. 1 D–F shows that for active users the
extracted stays in each day define a daily journey (usually starting
and ending at home). A trip is made when a user changes stay
locations. The time bar shows the start time and duration for
each stay, and activity types are color-coded.

Generating Mechanisms of Individual Mobility
The modeling framework of TimeGeo is presented in Fig. 2A. It
integrates the temporal and spatial choice mechanisms of human
mobility. We assume that for an individual agent, her work activity
has a fixed location, start time, and duration; her home activity is
fixed in terms of location but flexible with start time and duration;
her other activity is flexible with regard to location, start time, and
duration. The presented framework aims to model the flexible
spatial and temporal mobility choices, whereas the schedule of the
fixed activity (i.e., work) is assumed as predetermined (see SI
Appendix, section 2 for details). We divide each day of a week into
144 discrete intervals of 10 min (i.e., 1,008 time intervals in a

week). For each time interval t within a week, an individual first
decides to stay or move. If she chooses to move, she then decides
where to go. We improve from previous human mobility models
(14, 19) by generating spatiotemporal patterns while introducing
individual-specific mobility parameters, namely: a weekly home-
based tour number, a dwell rate, and a burst rate (explicitly de-
fined later). These parameters capture the heterogeneity of indi-
vidual daily mobility observed in the passive digital traces.
Nevertheless, due to the limited observation period of the CDR
data used in this study, some parameters cannot be extracted at
the individual level. These global parameters measure the pref-
erential return and exploration rates, and the rank selection
probability. As large-scale data with higher frequency (e.g., GPS
traces) and longer observation periods (e.g., many months) be-
come available, these global parameters could be measured at the
individual level as well.

Temporal Choices. To uncover the key generating mechanisms
needed to reproduce individual daily trajectories, we propose a
time-inhomogeneous Markov chain model with three individual-
specific parameters—weekly home-based tour number (nw), dwell
rate (β1), and burst rate (β2)—to capture individual circadian
propensity to travel (16, 19, 31) and likelihood of arranging short
activities in consecutive sequences (26–30). As work activity is as-
sumed to have fixed start time and duration, we consider two
Markov states: home and other. Home is considered as a less-ac-
tive state, because the average stay duration at home is significantly
longer than that at other states where people are more active (i.e.,
likely to travel).
When an individual l is at home, her individual travel circadian

rhythm is defined as nwPðtÞ, representing her likelihood of making
a trip originated from home in a time-interval t of a week. The
weekly home-based tour number nw counts the total number of
trips that an individual l initiated from home to other places. PðtÞ is
the global travel circadian rhythm of the population in an average
week. We differentiate PðtÞ for commuters and noncommuters (SI
Appendix, section 3.1). For noncommuters, PðtÞ is measured as
the fraction of all user-trips in the time interval t of the week for the
population (i.e.,

P1,008
t=1 PðtÞ= 1, t= 1,2, . . . , 1,008), capturing the
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Fig. 2. Flowchart of TimeGeo and input features extracted from active CDR users. (A) Spatial and temporal choices per time step. Three individual specific
parameters control temporal patterns, including the weekly home-based tours (nw), dwell rate (β1), and the burst rate (β2). nw influences the travel likelihood
when a person is at home, β1nw influences the travel likelihood when a person is out of home, whereas β2nw influences the likelihood of performing
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commuters (who have no journey-to-work trips). (C) Joint distribution of β1nw, β2nw, and nw for active noncommuters in the CDR data set. The 2D marginal
distributions are shown by the contour plots. The green dot is the most probable parameter value combination with nw = 6.1, β1nw = 22.4, β2nw = 508.0.
(D) Empirical probability to visit a new location Pnew as a function of distinct visited locations S; it follows Pnew = 0.6S−0.21. (E) Empirical probability of choosing
the rank k location as a trip destination follows PðkÞ∼ k−0.86.
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expected variation of travel in different time of the week (shown in
Fig. 2B). For commuters, because work is modeled as a fixed ac-
tivity, PðtÞ does not include trips to or from work. The product of
the two, nwPðtÞ, less than 1, defines the individual travel probability
at a specific time interval ðtÞ while she is at home.
To model an individual’s propensity to travel from an other

(out-of-home) state, we introduce a dwell rate β1 which measures
how much more active (or likely to travel) the person is at an
other state compared with home. The probability of traveling
when an individual is at an other state is defined as β1nwPðtÞ. By
capturing individual propensity to move from an other state,
β1nw controls the stay duration Δt for flexible activities. The
higher the product β1nw, the more likely the person will choose
to move and thus the shorter duration Δt she will stay at
other locations.
Next, if an individual is already out of home and chooses to

move at time t, we then model her decision to either go home or
go to an additional other location by introducing a burst rate β2.
We define the probability that the individual travels from an
other location O1 to an additional other location O2 as
PðO1 →O2Þ= β2nwPðtÞβ1nwPðtÞ. It is assumed that for an indi-
vidual who has decided to move, the probability of visiting an
additional other location is proportional to β2nw. The ratio be-
tween the two choices of going to an additional other location or
going home can be presented as follows:

PðO1 →O2Þ
PðO1 →HÞ =

β2nwPðtÞ
1− β2nwPðtÞ

. [1]

For a given value of β2nw, when PðtÞ is high (e.g., in the after-
noon), people are more likely to visit additional other locations;
when PðtÞ is low, people are more likely to return home. For a
given PðtÞ, the higher the value of β2nw, the higher probability the
individual will keep visiting flexible (other) locations, and thus
the greater number of daily locations N she will visit.
Compared with previous models that randomly draw the stay

duration (or waiting time Δt) or the number of visited locations
(N) from aggregated empirical distributions (14, 15, 29), by in-
troducing three individual-specific parameters including weekly
home-based tour number nw, dwell rate β1, and burst rate β2, we
explicitly model the temporal dynamics of individual mobility.
The Markov model framework allows it to be analytically trac-
table and to derive explicit effects in the resulting stay-duration
and daily-location distributions PðΔtÞ and PðNÞ (SI Appendix,
section 6).

Spatial Choices. To model the spatial choices of individual mo-
bility, we propose a rank-based exploration and preferential
return (r-EPR) model by incorporating a rank-based selection of
new locations to the original EPR model (14). The EPR model
explains well the differences in the frequency of visits of each
location (13–18, 32). For each movement, an individual decides
either to explore a new location with probability Pnew, or return
to a previously visited location with probability 1−Pnew. The
exploration probability Pnew = ρS−γ captures a decreasing pro-
pensity to visit new locations as the number of previously visited
locations (S) increases with time, and effectively captures indi-
vidual mobility choices between explorations and returns. If the
individual decides to return to previously visited locations, she
chooses a specific location i with probability Pi defined as the
visitation frequency of location i (14). Fig. 1 G–I illustrates Pi
with different circle sizes, using the volunteered student’s loca-
tion records as an example. In each subfigure, we label the vis-
itation frequency of each location up to the current day. We
highlight locations visited in the current day in the foreground
and show the previously visited ones in the background.

If the individual decides to explore a new location, she needs
to choose a destination from a large number of possible alter-
natives. One limitation of the original EPR model proposed in
ref. 14 is its lack of a mechanism for the new-location selection.
To select a new location, the original EPR model randomly
draws the exploration jump-size (Δr) from a global empirical
distribution. To model the exploration mechanism more sensi-
ble to the urban structure, in this study, we incorporate a rank-
based selection mechanism for newly explored locations (i.e.,
r-EPR model).
Our selection mechanism gives a rank k to each alternative

destination based on their distances to the trip origin (33–36).
Among all potential new destinations, the one closest to the
current location is of k = 1, the second closest k = 2, etc. The
empirical probability of selecting the kth location as a destination
is quantified as PðkÞ∼ k−α; the same form has been measured in
various studies that analyze aggregated trips between locations
for both commuting and noncommuting trips (33–36). For an
individual to select an exploration destination, we measure PðkÞ
aggregating all users’ destinations. Fig. 1 J–L illustrates proba-
bilities of selecting different destinations (with higher ranks in
red and lower ranks in blue). Each dot represents a location for
an other activity extracted from the CDR data. The height of the
dot on the z axis represents the dot density at the location.
Because the observation period of the empirical data in this

study is 6 wk, most users have a limited number of exploration
trips, making it difficult to estimate the spatial parameters of
PðkÞ at the individual level. Given more abundant data, this
distribution could be estimated at the individual level as well.

Role of Land Use on Travel Distance
Different spatial patterns of cities imply different geographical
advantages to urban functioning (37). TimeGeo takes the spatial
distribution of locations (e.g., observed from the CDR data) as
an input. To explain and quantify the influence of land use on
travel, we propose a hierarchical multiplicative cascade frame-
work of analysis. It allows scenario tests on how changes in land-
use patterns will affect individual travel. It can generate different
scenarios of urban structure (i.e., spatial distribution of home
and other activities).
Fig. 3 A–D shows the distribution of different types of loca-

tions (home and other) extracted from the mobile phone data set
at two scales: At a scale with larger grids, home and other lo-
cations are mixed spatially, showing high spatial correlations. At
a scale with smaller grids, the separation between home and
other types of land use becomes clear (35). The intuition behind
this phenomenon is that at a scale with smaller grids (e.g., similar
to the census block level), land use is often separated—meaning
that residential land use is separated from nonresidential one,
whereas at a scale with larger grids (e.g., at the district, town, or
regional level), residential and nonresidential land uses mix to-
gether. A hierarchical multiplicative cascade divides an area of
interest into grids with different granularity and quantifies the
spatial correlation of each type of land use at different scales.
The current framework integrates the two features that in-

fluence the spatial choices of exploration to other locations.
These are (i) the spatial distribution of activity locations, and (ii)
the rank-based location-selection mechanism (illustrated in Fig.
1 J–L). By characterizing the spatial distributions of population
and facilities at various scales, here we formalize how these two
features influence the observed trip–distance distribution.
To quantitatively represent home to other (H −O) trip dis-

tance, we denote home locations as the demand side D, and
other locations as the supply side S. The entire region of interest
is Ω0 (taken as a unit square, shown in Fig. 3E). We progressively
partition Ω0 into 41, 42,. . ., 4n square tiles with side length
2−1, 2−2, . . . , 2−n. Each time a mother tile Ωi−1 (at resolution level
i− 1) is partitioned into four daughter tiles Ωi (at resolution level
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i). Then, the probability that a trip goes outside its origin tile at
resolution level i, P>ðiÞ, can be expressed as

P>ðiÞ=
Z M

1
P>ðkÞfSi,tripðkÞdk, [2]

where M is the total number of supplies in the entire region Ω0;
P>ðkÞ is the probability that the k supplies in the origin tile are not
chosen; fSi,tripðkÞ is the probability of finding k supplies within the
origin tile. The tile exceeding probability P>ðiÞ at different tile
resolutions generates the resulting distribution of trip distances.
Eq. 2 ties together the rank-based selection mechanism P>ðkÞ
and the geographic distribution of locations fSi,trip ðkÞ, which can
be calculated as

fSi,tripðkÞ=
Z Q

0
fDi,tripðDÞfSi jDi=DðkÞdD, [3]

where fDi,tripðDÞ is the conditional probability that a trip originates
in a tile at level i given D demands are in that tile. fSijDi is the
conditional probability of supply given demand. Q is the num-
ber of demand in the entire study area. In summary, to quan-
tify trip distance through P>ðiÞ, we not only need the
distribution of each type (home and other) of location, but
also the correlation between them at different scales. The de-
tailed introduction to the cascade method of analysis can be
found in ref. 38 and in Materials and Methods; the derivation of
the resulting trip distance distribution is presented in SI Ap-
pendix, section 5.

Results
Extracted Mobility Features from Mobile Phone Data. In this section
we show the results for noncommuters. For each individual, the
weekly home-based tour number nw is directly extracted from the

data, whereas the β1 and β2 parameters are calibrated using the
temporal Markov model. The rest of the parameters needed are
α= 0.86 for the rank selection probability PðkÞ∼ k−α, and ρ= 0.6
and γ = 0.21 for the preferential return mechanism Pnew = ρS−γ.
These three parameters are extracted from the aggregated data of
the entire population (Fig. 2 D and E).
The individual values of β1 and β2 values are obtained by

calibrating the Markov model to minimize the following statistic:

Aðβ1, β2Þ=
Z

jPDðΔtÞ−PMðΔtjβ1, β2ÞjdΔt+ ηjND −NMðβ1, β2Þj,
[4]

where PDðΔtÞ and PMðΔtjβ1, β2Þ are the distributions of the indi-
vidual empirical and modeled stay duration, respectively. Scalar
values ND and NMðβ1, β2Þ are the average daily number of vis-
ited locations measured from the individual’s empirical data
and from the model simulation, respectively. The difference
between ND and nw is that ND counts all trips whereas nw only
counts trips starting at home. Metaparameter η= 0.035 con-
trols the weight between the two components. Because Aðβ1, β2Þ
is a nonconvex function, discrete β1 and β2 values are used
(β1 = 1,2,3, . . . , 20, β2 = 1,6,11, . . . , 101) to estimate the (β1, β2)
pair that minimizes Aðβ1, β2Þ for each person. The empirical re-
sults of nwβ1, nwβ2, and nw for all of the individuals are presented
in Fig. 2C. The median values of nw, nwβ1, and nwβ2 for noncom-
muters are 7.4, 34.2, and 355.6, respectively. Median dwell rate
β1 = 4.6, suggesting that when people are not at home, they are on
average 4.6 times more likely to travel.

Simulated Mobility Features. Taking the featured parameters mea-
sured directly from active users of the mobile phone data set,
TimeGeo can generate realistic individual daily trajectories over a
long time period at the urban scale.

Fig. 3. Multiplicative cascade analysis framework. (A and B) The distribution of home locations in the Boston area at two different resolutions. (C and D) The
distribution of other locations at two different resolutions. The variance of both distributions and their correlations depend on the resolution of the grids, or
the cascade level i. At the scale with larger grid cells, the number of nonresidential (other) locations has higher correlation with the distribution of home
locations, whereas at the scale with smaller grid cells separation between residential and other land-use types are observed. (E) Illustration of the hierarchical
cascade process generating trip demand D. Each tile is repetitively divided into four smaller tiles. The density of locations in each tile is controlled by the
cascade generatorW at each tile level. (F) P>ðiÞ is the probability of an exploration trip going outside their origin tiles at level i at eight tile levels with tile side
length from 24 km to 187 m (the entire Boston Metro area, larger than the area shown in the maps, is set as a 48-km square). Results show the calculation with
the multiplicative cascade framework, in the simulation and measured by the mobile phone data.
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We first use the student volunteer’s 14-mo mobile phone re-
cords as an example to explain the simulation and interpret the
results of TimeGeo. We fix the locations of home and work (in
this case school is identified as work) and apply the proposed
modeling framework to simulate the spatiotemporal choices of
flexible other activities and temporal choices of home activities.
For the student, we computed that his dwell rate β1 = 4, burst
rate β2 = 36, and weekly home-based tour number nw = 7. His
burst rate is lower than the population average, reflecting smaller
likelihood to conduct consecutive short activities. Fig. 4 A–C
shows three simulated days for the student. The days are pre-
dominated by home–work trips, with a few trips to other loca-
tions. The model is able to capture not only the number of
locations visited each day, but also more detailed configuration
of daily trip chains. Fig. 4D shows the distribution of the most
frequent daily mobility networks, i.e., daily motifs, of the student.
We represent unique locations as nodes and trips between lo-
cations as edges and count the motif distribution for days start
and end at home. The dominating motif is traveling just between
two locations in a day. To show the infrequent motifs clearer, we
present the percentage in log scale.
A key value of TimeGeo is to use ICT records to generate

individual trajectories from discovered mobility features at the
urban scale. In Fig. 4 E–H, we illustrate a user with very sparse
data. She only had four distinct locations in 30 d and we simulate
her complete daily trajectories in space and time. We select two
different sets of β1, β2, and nw from the joint distribution shown
in Fig. 2C to generate two synthetic realizations of the user.
Fig. 4 F and G shows the two resulting profiles of simulated
journeys of the same sparse user and Fig. 4H shows the distinct
motif distributions.

The importance of the individual features extracted from data
(Fig. 2C) lies in their ability to capture diverse travel behaviors
observed in the population. Fig. 5 A and B compares mobility
patterns for different individual profiles. The individual 1 and 2
represent two extreme cases: one travels more frequently (shown
in squares, nw = 10.86, β1 = 6, β2 = 41) and the other travels less
frequently (shown in circles, nw = 5.51, β1 = 1, β2 = 36). As a
comparison we also present the average case—a simulation using
median values of the parameters nw, β1, and β2. Fig. 5 A and B
shows that these three individuals have distinct PðΔtÞ and PðNÞ
distributions. The less-frequent traveler has significantly longer
stay duration and visits fewer locations per day. To quantify the
differences between empirical distributions of data and the
model simulation, we use the Kolmogorov–Smirnov (KS) test.
The KS statistic between empirical and simulated PðΔtÞ for the
two extreme individuals is 0.12 and 0.11, respectively. If we
compare their empirical data with the average case, the KS
statistic increases to 0.25 and 0.20, respectively. Similarly, for
these two individuals, the KS statistic for PðNÞ is 0.05 and 0.12.
When comparing with the average case, the KS statistic increases
to 0.40 and 0.50, respectively. It confirms the importance of
including individual-specific parameters to model temporal
choices. With data of high frequency and longer observation
period available in future studies, machine learning methods
can be applied to better learn from choices at individual level
when choosing return trips for improvement of our proposed
modeling framework.
Fig. 5 C–F compares aggregated mobility features extracted

from data and simulation for all of the active noncommuters.
These results show that to reproduce individual mobility patterns
realistically, it is critical to incorporate each of the mechanisms

Fig. 4. Simulation of daily trajectories of one active commuter and one sparse user. (A–C) Simulated trajectories of the student with self-collected cell phone
records. Three sample days are shown here. The trips for each sample day are in purple, and the visitation frequency of each location is calculated until the
sample day and represented by the circle sizes. (D) Distributions of daily mobility motifs for the active commuter’s data vs. simulation. The model captures well
the higher propensity of motifs with node sizes 2 and 3 as well as some other occurrences. (E) A sample sparse user with 10 stays at 4 distinct locations in an
observation period of 30 d. (F and G) Two different realizations for simulating the same sparse user with different parameter values. The first realization uses
nw = 6, β1 = 4, β2 = 23. The second realization uses nw = 6, β1 = 10, β2 = 73. Larger values of β1 and β2 generate more consecutive out-of-home activities and
more daily visited locations. (H) Distributions of daily mobility motifs for the two realizations of the same sparse user using different parameter values. With
small nw, β1nw, and β2nw values the person is likely to have simple motifs, whereas large parameter values lead to more complex daily activity chains.
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proposed in the current modeling framework, namely, the weekly
home-based tour number, dwell rate, burst rate, and the rank-
based EPR, over the land-use profile of the city under consid-
eration. The results on the aggregated daily mobility motif dis-
tribution are presented in SI Appendix, section 4.2. For the dwell
rate (β1), if β1 = 1, i.e., the model does not differentiate the
mobility circadian rhythms of home or other activities. The
resulting PðΔtÞ distribution will underestimate trips with short
duration, and the KS statistic increases from 0.04 to 0.27. For the
PðNÞ distribution, the KS statistic for the model with and without
the burst rate β2 is 0.03 and 0.22, respectively. The bursts of
flexible activities, captured by the dwell and burst rates β1 and β2,
ensure realistic distributions of the stay duration PðΔtÞ and the
number of daily visited locations PðNÞ. The improved rank-based
EPR mechanism models the selection of locations. It improves
the KS statistic of the trip distance distribution from 0.52 to 0.39.
The visitation frequency to the Lth most visited location follows
f ðLÞ∼L−1.2±0.1. In Fig. 3 D, P>ðiÞmeasures the probability that a
generic exploration trip goes outside its origin tile at resolution
level i. At the largest four tile sizes (24, 12, 6, and 3 km), the
cascade is a pure log-normal cascade, P>ðiÞ can be analytically
calculated, and the result compares very well with the data. The
empirical data, simulation, and analytical calculation all show
that 10% of the trips cross the tile with a size of 24 km, and over
60% cross the tile with a size of 3 km.
Taken together, we now use the extracted features from active

mobile phone users with the presented modeling framework
to estimate the daily mobility for the entire metropolitan area.
To do so, we expand the users (commuters and noncommuters)
to the population (aged 16 and over), and generate 1-weekday
mobility trajectories using TimeGeo for the population (see SI
Appendix, section 4.3 for more details). In the Fig. 5 (Bottom), we
compare our simulated daily mobility patterns for the population
in Metro Boston (3.54 million individuals aged 16 and over) with

traditional travel survey data, including the 2010–2011 Mas-
sachusetts Travel Survey (MTS) and the 2009 National Household
Travel Survey (NHTS). When comparing the simulation results
with the MTS and NHTS, respectively, the KS statistic for PðΔtÞ is
0.23 and 0.59 (Fig. 5G). Note that these stay duration distributions
are significantly different among the surveys and our simulation. It
is mainly because in the 1-d surveys people rarely report duration
of stays longer than 12 h, whereas the active mobile phone users’
data records informed our simulation. This range of stays can add
up to 20% of the data, as seen in the cumulative distribution of
Fig. 5A. Besides, the distribution of the daily visited locations PðNÞ
compares well among the simulation and the surveys, as presented
in Fig. 5H, with the KS statistic of 0.07 and 0.23, respectively. For
PðΔrÞ, comparing the simulation with the MTS, the KS statistic is
0.24 (Fig. 5I). Here the model, which does not consider trip dis-
tances in the selection of return locations, overestimates long
distance trips. We do not compare with travel distances from the
national survey (NHTS), because spatial aspects of travel depend
directly on the specific extension of the urban form, which varies
across the nation (39).
Fig. 5J compares the total number of trips from home to work

in our simulation with the estimates of the model developed by
the Boston Region Metropolitan Planning Organization (MPO)
for 2010 (40). The comparisons of the number of commuting
trips are presented both for those between the 164 cities and
towns in the metropolitan area (intertown) and for trips within
them (intratown). The results for commuting trips are excellent,
with a Pearson correlation coefficient of 0.90 and 0.99, re-
spectively. More differences are present in the trips from home
to other locations and between other types of locations. Finally,
Fig. 5K compares the fraction of trips being initiated at different
times of the day among our simulation, the 2009 NHTS, and the
2010 MTS. Although the total estimates compare well, we esti-
mate more trips between nonhome destinations in the evening

A B C

D

G H I

E

F

J

K

Fig. 5. Mobility patterns for different individuals and population distributions. The top panels (A–F) show the comparison of the simulation results with the
phone data for noncommuters. (A and B) Comparison of mobility patterns for three representative noncommuters. Individuals 1 and 2 represent two extreme
cases, one has shorter stays (shown in squares, nw =10.86, β1 = 6, β2 = 41) and the other travels less frequently (shown in circles, nw = 5.51, β1 = 1, β2 = 36). The third
case represents an average noncommuter and is simulated using the median parameter values of nw, β1, and β2. (A) Stay duration distribution. (B) Daily visited
location distribution. The Markov modeling framework allows the calculations of the number of visited locations per day, as shown in dashed lines, and is
discussed in SI Appendix. (C) Activity duration distribution PðΔtÞ. The model without differentiating home and other states (setting β1 =1) is considered as a
benchmark here. In this case, stays with short duration are underestimated. (D) The distribution of the number of daily visited location PðNÞ. Both the model’s
calculation and simulation results are shown. It shows the need for the β2 parameter in the model. (E) Visitation frequency fðLÞ to the Lth most visited location
follows the form fðLÞ∼ L−1.2±0.1. The benchmark shows the result without the preferential return mechanism. (F) Trip distance distribution PðΔrÞ extracted from
data, and simulation results using an r-EPR mechanism, compared with the random selection of exploration locations (not using the rank-based selection
mechanism). The bottom panels (G–K) show the comparison of the simulated daily mobility patterns for the population (aged 16 and over, for both commuters
and noncommuters) in Metro Boston (3.54 million individuals) with traditional travel survey data, including the 2009 NHTS, and the 2010–2011 MTS. (G) Stay
duration distribution. (H) Daily visited location distribution. (I) Trip distance distribution. (J) Comparison of total commuting trips between and within the 164
cities and towns (i.e., inter- and intratown) estimated by our simulation and the model of the Boston Region MPO (40). (K) Fraction of trip departures by time of
the day, comparing the simulation, the 2009 NHTS, and the 2010 MTS. SI Appendix, Fig. S18 shows comparisons for various trip purposes.
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than those reported in the surveys (see SI Appendix, section 4.3
for detailed comparisons). Overall, the results show good agree-
ment with existing MPO models which needed expensive travel
survey for their calibration.

Conclusion
We present a mechanistic modeling framework to generate in-
dividual daily mobility with fine resolution at urban scale.
Temporally, we introduce the weekly home-based tour number,
dwell rate, and burst rate to model the bursts of short flexible
activities in activity chains. This mechanism can reproduce in-
dividual distributions of stay duration, number of daily visited
locations, and daily mobility motif distribution. Spatially, an
improved rank-based EPR model is introduced to explain indi-
vidual activity location selection choices. Compared with the
original EPR model, the ranking mechanism quantifies the
likelihood of selecting new destinations in space based on
the distribution of facilities around trip origins. Moreover, the
covariance of the distributions of population and facilities in a
given region is characterized using a hierarchical multiplicative
cascade framework of analysis. In this way, we take account of
the influence of region-specific spatial structure on individual
travel distances. This enables us to perform scenario tests on how
changing land use in the city would affect microlevel individual
travel behavior and macrolevel OD flows.
TimeGeo serves as a general modeling framework of urban

trajectories that can be flexibly adapted to different application
scenarios using population density and the distributions of facili-
ties in any city. It can be coupled with sparse location data from
ICTs that sample the visitation preferences of actual individuals
and can complement or, for some applications, substitute the need
for expensive travel surveys for modeling urban travel. The frame-
work is flexible to generate trajectories with various data con-
ditions. The minimum requirement is to have population and
facility distributions. In the current results, the parameters to
model exploration and returns (α, ρ, and γ) are assumed to be
the same across population, whereas the temporal mobility rates
of an individual are assumed to be independent of the actual
location. In future studies, as more data of higher frequency and
over longer periods become available, it is possible to further
learn from the individual variations of the proposed parameters.
It is also interesting to explore the variations of the model pa-
rameters across urban areas, and across population groups with
different demographics and lifestyles.

Materials and Methods
All study procedures were carried out with Institutional Review Board ap-
proval from Massachusetts Institute of Technology (MIT) Committee on the
Use of Humans as Experimental Subjects (COUHES) (Protocol 1405006399)
approved on June 10, 2014. CDR data were collected by AirSage for oper-
ational purposes of two mobile phone carriers. The student, who donated
his 14-mo self-collected mobile phone traces through a smartphone ap-
plication (OpenPaths), provided informed consent for the research.

Mobile Phone Data. We extracted activity stay locations of 1.92 million cell
phone users from their CDRs in the Greater Boston area during an obser-
vation period of 6 wk in 2010. A stay means performing an activity at a
location. A stay sequence, or an activity sequence, represents consecutive
stays a person made in a period (usually a day). A trip is made between
consecutive stay locations. These stay locations are also called trip origins and
destinations. In the CDR data, a record is made when a user calls, sends text
messages, or uses data through the cellular networks. Each record is in the
following format: (UserID, longitude, latitude, time). The precision of the
location is about 200–300 m in urban areas. For the voluntarily self-collected
mobile phone user example, a record is made every time the smartphone
application detects a significant spatial movement. The data are in the same
format and similar spatial resolution as the CDR data. The detailed methods
to extract stay locations and to label location types (as home, work, and

other) are presented in SI Appendix, section 1. For the CDR data, the records
do not directly correspond to a user’s stays—a stay could not be detected if a
user did not use his or her cell phone more than once during a stay. Even for
cases when more than one cell phone use was recorded, the stay duration
can only be approximated for active phone users. Therefore, not all cell
phone users have enough records to be measured for basic mobility patterns
presented in this study. Meanwhile, we cannot determine if long stays at
one location (for over 2 d) are caused by no cell phone use or actual stay at
one location for over 2 d; therefore, these stays were removed from the
analysis and not captured by the model.

The Hierarchical Multiplicative Cascade Model. For any given subregion ω⊂Ω0,
DðωÞ is the number of trip origins in ω and SðωÞ is the number of trip des-
tinations in ω. We use bivariate random measures XðωÞ= ½DðωÞ, SðωÞ� to
represent the number of demand and supply locations in ω, where X results
from a cascade process in which the fluctuations at different spatial scales
combine in a multiplicative way. The generation of bivariate ½D, S� cascades is
illustrated in Fig. 3C. The demand and supply in a generic i-tile Ωi are Di and
Si and the associated measure densities are Di′=Di=jΩi j and Si′= Si=jΩi j. One
starts with uniform measure densities D0′ and S0′ in Ω0, then progressively
partitions Ω0 into 41, 42, . . ., 4n square tiles of side length 2−1, 2−2, . . . , 2−n.
The demand and supply densities in the daughter tiles are multiplied by
independent realizations of nonnegative random factors WDi and WSi , with
mean value 1. The random vectors Wi = ½WDi ,WSi �, i= 1,2, . . . ,n are the
generators of the cascade. Although the generators Wi have independent
values in different i tiles, their components WDi and WSi in a given i tile may
be dependent. Moreover, the distribution of Wi may vary with the resolu-
tion level i. These features provide important modeling flexibility. The
measured densities at resolution level i− 1 and i are related as

�
Di
′

Si′

�
=
d
�
WDi 0
0 WSi

��
Di−1

′

Si−1′

�
. [5]

According to Fig. 3 A–D), at larger tile sizes almost all tiles are nonempty
and the supply and demand have positive correlation. Consequently for
small i values (large tile sizes) the generator can be described as joint log-
normal variables (38). If the log generators lnðWDi Þ and lnðWSi Þ have joint
normal distribution with variances σ2WDi

and σ2WSi
, mean values −1=2σ2WDi

and
−1=2σ2WSi

, and correlation coefficient ρLNi
, then lnðDiÞ and lnðSiÞ have joint

normal distribution with mean values mDi and mSi , variances σ
2
Di

and σ2Si , and
correlation coefficient ρi given by

σ2Di
=

Xi

j=1

σ2WDj
,mDi = ln

�
D04−i

�
− 1=2σ2Di

, [6]

σ2Si =
Xi

j=1

σ2WSj
,mSi = ln

�
S04−i

�
− 1=2σ2Si , [7]

ρi =
Xi

j=1

ρLNj
σWDj

σWSj

σDi σSi
. [8]

Therefore, once we can estimate σWDi
, σWSi

, and ρLNj
, the rest of the variables

can be calculated.
At smaller tile sizes, empty tiles cannot be ignored and extreme forms of

dependence like mutual exclusion may occur. In this case the generator is
better modeled as a β-cascade, in which a tile is either filled or empty. The
generators WðiÞ= ½WDðiÞ,WSðiÞ� of a bivariate β-cascade have a discrete dis-
tribution with probability masses concentrated at four (wD,wS) points: mass
P00 at ð0,0Þ, mass PD0 at ð1=PD, 0Þ, mass P0S at ð0, 1=PSÞ, and mass PDS at
ð1=PD, 1=PSÞ. PD = PD0 + PDS, PS = P0S + PDS, and PD0 + PDS + P0S + P00 = 1. Thus, a
tile is either filled or empty. The correlation between the supply and de-
mand is ρβi .
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