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Abstract
Air pollution, specifically PM2.5, has become a significant global concern owing to its detrimental
impacts on public health. Even so, the high-resolution monitoring of air pollution is still a
challenge on a global scale. To cope with this, machine learning (ML) techniques have been utilized
to infer the concentration of air pollutants at a fine scale. In this study, we propose DeepAir, a
learning framework for estimating PM2.5 concentrations at a fine scale with sparsely distributed
observations. DeepAir integrates a pre-trained convolutional neural network with the LightGBM
method. This framework estimates the PM2.5 concentration of a given patch, utilizing a synergy of
geographical information, meteorological conditions, and satellite observations. We select
California as the focal region and train the model with data from 2014 to 2017 provided by 130
PM2.5 observation stations in the state. Upon training, the model can be applied to estimate the
daily PM2.5 concentrations at 1 km resolution across California. Our methodology meticulously
incorporates meteorological variables, with a particular emphasis on wildfire propagation, and
contemplates the complex interplay of various features. To ascertain the efficacy of our model, we
employ the 10-fold cross-validation technique, which confirms that our model surpasses
traditional ML and standalone deep learning methods.

1. Introduction

Air pollution is a global issue that severely affects human health and the ecological environment [1]. With the
acceleration of industrialization and urbanization, it has become an increasingly prominent problem in
many countries and regions. Various pollutants such as particulate matter (PM), nitrogen oxides, sulfur
oxides, and heavy metal ions directly impact vulnerable populations. Prolonged exposure to heavily polluted
environments can lead to various respiratory diseases, cardiovascular diseases, and even malignancies of
grave severity. Among these pollutants, fine PM (PM2.5)—particles less than 2.5 µm in diameter—poses a
particular threat. Due to their small size, PM2.5 particles can be inhaled deeply into the respiratory tract,
irritate and corrode the alveolar wall, and consequently impair lung function [2]. Chronic exposure to PM2.5

is linked to severe health conditions such as asthma, chronic obstructive pulmonary disease, cardiovascular
issues, and increased mortality rates. PM2.5 tend to accumulate more than PM10, propagate long distances,
become stagnant in the atmosphere, stay in the air longer, and travel farther [3, 4]. According to [5], a 10
µgm−3 increment in PM2.5 was associated with a 1.04% increase in the risk of death. Therefore, studying
PM2.5 is crucial for understanding and mitigating its specific health impacts on urban populations. To
combat this problem, governments worldwide are establishing atmospheric pollution monitoring stations to
enable real-time detection of pollutant concentrations, thereby supporting the development of effective
environmental management strategies [6, 7]. Additionally, by making air quality data accessible to the public,
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residents gain a clearer understanding of air quality levels and receive timely warnings about pollution
events. This empowers individuals to make informed lifestyle choices, such as adjusting outdoor activities or
adopting protective measures like wearing masks.

However, air pollution monitors are often sparsely distributed due to the high equipment costs and land
use policy restrictions. This limited coverage necessitates reliable prediction models to estimate pollutant
concentrations across unmonitored areas. To enhance prediction accuracy, researchers have investigated the
causal relationships between air pollution and various environmental factors, including both natural and
built environments [8]. In particular, meteorological data play a significant role in shaping air quality.
Variables such as temperature, humidity, wind speed, and wind direction exert substantial influence on the
dispersion and accumulation of pollutants [9]. Under certain meteorological conditions, pollution levels can
intensify, while in other conditions, these variables aid in dispersing pollutants, reducing their concentration
in the air. In addition to meteorological data, satellite-based observations, such as aerosol optical depth
(AOD), have become invaluable in assessing air quality and quantifying pollution levels [10–12]. AOD
measures the concentration of aerosols in the atmosphere, reflecting the cumulative aerosol content within a
vertical column, which is a critical metric in pollution studies.

Recognizing the strong correlations among air pollution, meteorological factors, and satellite
observations, researchers have increasingly sought to spatially infer pollutant concentrations by integrating
both meteorological and satellite data. By combining these dynamic data sources with static geographic
information, such as elevation and land use types, it becomes possible to estimate pollutant levels across a
broader area, even in locations where direct monitoring is absent. In recent years, machine learning (ML)
techniques have shown great promise in estimating air pollutant concentrations in regions lacking direct
monitoring [13]. Due to their flexibility and adaptability, ML methods are well-suited to this task and have
been widely explored in previous research.

Early studies often rely on traditional statistical approaches, including the land use regression (LUR)
model, which predicts pollutant concentrations by modeling linear relationships between environmental
characteristics and pollution levels [14–16]. Other works employ generalized additive models [11, 17, 18] to
model the relationships among air pollution, meteorological factors, satellite observations, and PM2.5

pollutant concentrations. Non-parametric regression models such as Random forest [19], XGBoost [20], and
LightGBM [21] have also been applied, leveraging meteorological and satellite data to infer pollutant levels.
For instance, Hu et al [22] used a Random forest model to estimate PM2.5 concentrations in the United
States. Additionally, mixed effects models [12, 23, 24] have been employed to incorporate the heterogeneity
in environmental data, enhancing predictive accuracy by incorporating both meteorological and satellite
observations.

With advancements in deep learning, neural network-based models have been developed to predict
spatial PM2.5 concentrations [25–27]. We pay special attention to works utilizing CNNs as
backbones [28–30], which is a key component in our framework. They use more complex modeling
approaches for modeling real photographic data [28] or city-level spatial dependencies [30] using
spatio-temporal attention convolutional neural networks. [29] addresses pollutant concentration prediction
with spatio-temporal attention convolutional neural networks.

Traditional ML models like LUR, Random forest, and LightGBM offer efficient inference and relatively
simple model structures, making them advantageous in terms of computational speed. However, they often
require manual feature engineering and are limited in capturing complex patterns in high-dimensional data.
Furthermore, they solely leverage the features within the target cell when predicting pollutant
concentrations, ignoring the critical role of spatial adjacency in this task. Deep learning models, on the other
hand, can automatically learn intricate relationships among meteorological data, satellite observations, and
pollutant concentrations, making them more accurate in capturing spatio-temporal dependencies.
Nevertheless, deep learning models are computationally intensive, requiring extensive training data and
facing scalability challenges due to slower inference speeds. Existing works [28–30] typically focus on
predicting hourly pollutant concentrations at a limited number of monitoring stations, which fundamentally
differs from our objective of estimating daily average PM2.5 levels across California at a fine spatial
resolution. Given this scope, computational efficiency is paramount, and the complexity of existing
CNN-based methods limits their applicability to large-scale, high-resolution tasks.

To address these limitations and combine the advantages of both approaches, we propose a hybrid model
named DeepAir. As illustrated in figure 1, DeepAir integrates a pre-trained convolutional neural network for
feature encoding with LightGBM to capture valuable spatio-temporal information for fast PM2.5

concentration inference. Compared to existing models, DeepAir offers significant advantages, including finer
spatiotemporal resolution, coverage of a larger study area, and the ability to achieve large-scale inference
using observations from limited monitoring stations. Additionally, the model achieves a notable speedup
through its use of a pretrained architecture and incorporates novel feature engineering, such as integrating
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Figure 1. The pipeline of the DeepAir model. DeepAir’s input variables include satellite observations (e.g. AOD), static geographic
information (e.g. elevation), and meteorological information (e.g. humidity). Trained on PM2.5 data from air quality monitors
across California, DeepAir is capable of inferring PM2.5 concentrations across the entire state at a fine spatial resolution of 1 km.

data from neighboring monitoring stations and leveraging a physical model to simulate wildfire impacts.
These innovations enable DeepAir to provide an efficient and scalable solution for high-resolution PM2.5

estimation, setting it apart from existing approaches. Extensive experiments validate the effectiveness and
efficiency of our approach, with 10-fold cross-validation on real-world data from California. Results show
that DeepAir outperforms both traditional ML models and standalone deep learning models, demonstrating
superior predictive accuracy and inference efficiency.

2. Methodology

2.1. Preliminary
2.1.1. Study domain
This study centers on the state of California in the United States, utilizing daily observed PM2.5

concentrations collected from 130 air quality monitoring stations across California between 2014 and 2017.
In addition, statewide meteorological data and satellite observation data are incorporated into the analysis.
The spatial distribution of air quality monitoring stations in California is depicted in figure 2(a). Figure 2(b)
illustrates the temporal variations in selected meteorological variables (including evaporation, humidity, and
wind speed in specific directions) and satellite observation AOD alongside PM2.5 concentration recorded at a
monitoring station in the San Francisco Bay Area in 2016. Notably, around October 2016, wildfires in the Bay
Area led to anomalous spikes in these observed data. These fluctuations highlight the correlations between
PM2.5 levels, meteorological conditions, and satellite observation data.

2.1.2. Data
The DeepAir model estimates PM2.5 concentrations by integrating meteorological data, satellite
observations, and static environmental data across the entire California region. These data are recorded for
each 1 km× 1 km spatial cells, with a total of 438 619 cells that cover California from 2014 to 2017. For
model training, we utilize daily PM2.5 concentration data from 130 air quality monitoring stations
throughout California. These daily observations are provided by the United States Environmental Protection
Agency 6. Figure 3 visualizes the average value in 2016 of some meteorological data and satellite observation
data used for prediction. In particular, the ‘Emission’ data in the raw dataset is recorded annually, whereas
the other variables are recorded daily. The remainder of this section offers a detailed description of the static
environmental data, meteorological data, and satellite observation data utilized in the DeepAir model.

Static data. This study leverages data from 2014 to 2017. In this time span, the elevation and land use type
(land cover) is assumed to remain constant within each cell in California, constituting static geographical
information fed to the pre-trained CNN module in our model. Additionally, each 1 km× 1 km cell contains
data on the distance to roads and annual average emission data, which are integrated as features for inferring
PM2.5 concentrations in subsequent steps.

6 https://www.epa.gov/outdoor-air-quality-data.
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Figure 2. (a) Locations of PM2.5 monitoring stations in California. (b) Yearly variations in PM2.5 concentrations, meteorological
variables, and satellite observations in the San Francisco Bay Area, California, during 2016.

Figure 3. Example of meteorological data and satellite observation data in California. Emissions are recorded annually and others
are daily averages in 2016.

Meteorological data. As depicted in figure 2(b), meteorological conditions have a marked correlation with
PM2.5 levels. Variables included in the DeepAir model encompass ‘Temperature’, ‘Humidity’, ‘Pressure’,
‘uWind’, ‘vWind’, ‘Evaporation’, ‘Precipitation’, and wildfire data, where ‘uWind’ and ‘vWind’ represent
eastward and northward components of wind vectors. These daily averages, spanning 2014–2017, are
sourced from the North American Land Data Assimilation System 7 developed by NASA, with a spatial

7 https://ldas.gsfc.nasa.gov/nldas.
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resolution of 0.125◦ [31]. During preprocessing, selected meteorological features were refined further, as
elaborated in subsequent sections.

Satellite observation data. For satellite observations, we mainly leverage ‘EVI’ (enhanced vegetation index)
data, ‘SR’ (surface reflection) data and ‘AOD’ data for California. The data were collected and initially
processed by NASA 8. Specifically, EVI data are extracted from the MODIS measurements (MOD13A2) 9,
provided every 16 days at a 1 km spatial resolution and used to monitor vegetation and land cover changes.
SR data, sourced fromMODIS (MOD09A1) 10, provides an estimate of the surface spectral reflectance every
8 days at a 0.5 km resolution. AOD data are extracted fromMCD19A2 (MODIS/Terra+Aqua Land AOD
Daily L2G Global 1 km SIN Grid) 11. The MCD19A2 product is a Moderate Resolution Imaging
Spectroradiometer (MODIS) Terra and Aqua combined Multi-angle Implementation of Atmospheric
Correction (MAIAC) Land AOD gridded Level 2 product produced daily at 1 km pixel resolution. Similar to
meteorological data, preprocessed satellite data are converted to daily averages for each 1 km× 1 km cell
across California, covering 2014–2017.

Land cover data. Land cover significantly influences PM2.5 concentration, as different land types affect the
sources, dispersion, and removal processes of PM [17]. For example, urban areas, characterized by dense
populations and industrial activity, typically have higher PM2.5 emissions from vehicles, factories, and
construction sites. In contrast, forests can act as both sources and sinks for PM2.5—emitting particles
through natural processes while also reducing concentrations via vegetation capturing and deposition on leaf
surfaces. Land cover data is derived from the National Land Cover Database 2016, which provides fine-scale
(30m) land use information, developed by the U.S. Geological Survey (USGS) 12.

Elevation data. Elevation is another factor influencing PM2.5 dispersion. Higher elevations typically exhibit
lower air pressure and density, affecting the dispersion and dilution of PM2.5 particles. We utilize
high-resolution elevation data provided by the U.S. Geological Survey to enhance model accuracy.

CO2 emission data. Vehicle emissions also significantly contribute to PM2.5 concentrations, and on-road
CO2 emissions are therefore considered in our model [32]. The Oak Ridge National Laboratory Distributed
Active Archive Center openly provides annual CO2 emissions data at 1 km resolution for the contiguous
United States [33]. These emissions are calculated based on roadway-level vehicle traffic data and
state-specific emission factors for various vehicle types on both urban and rural roads.

2.1.3. Data preprocessing
In order to better infer PM2.5 concentration spatially, we preprocessed the original meteorological data and
satellite observation data combined with PM2.5 concentration data provided by air pollution monitoring
stations.

AOD imputation. The original satellite observation data primarily comprises AOD values recorded daily
from 2014 to 2017. However, this dataset contains spatial gaps in the coverage of AOD. Missing AOD data
can significantly hinder the model’s ability to accurately predict ground-level PM2.5 concentrations and may
introduce unavoidable biases [34]. In response, previous studies [35] have commonly employed imputation
techniques to fill these gaps before proceeding with PM2.5 predictions. Following this approach, a key
component of our feature engineering process is the imputation of missing AOD values in the original
dataset.

As previously noted, AOD has a high correlation with certain meteorological factors and pollutant
concentrations. Given that our meteorological data is complete and does not contain any missing values
across both temporal and spatial dimensions, we leveraged LightGBM to develop a regression model
specifically for AOD imputation. This model predicts AOD for specific locations by utilizing meteorological
variables, including temperature, humidity, pressure, evaporation, and precipitation, as well as static
geographical information, such as elevation.

The dataset used for training includes about 16 000 spatial cells with AOD records from 2014 to 2017. We
used a 70–30 train-test split to validate the model’s performance. The model achieved an imputation R2

exceeding 94%, demonstrating strong predictive reliability. Subsequently, we applied this trained model to

8 https://data.nasa.gov/.
9 http://doi.org/10.5067/MODIS/mod13a2.006.
10 https://lpdaac.usgs.gov/products/mod09a1v006/.
11 https://lpdaac.usgs.gov/products/mcd19a2v006/.
12 https://www.mrlc.gov/data/nlcd-2016-land-cover-conus.
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Figure 4. AOD imputation. (a) Original AOD data on 1, July 2016. (b) AOD data after imputation.

complete the missing AOD data in the satellite observation dataset. Figure 4 provides a visualization of both
the original and imputed AOD values across California on 1 July, 2016.

Wildfire modeling.Wildfires are significant sources of PM2.5, not only increasing pollution levels within
affected cells but also impacting surrounding regions due to the dispersion of smoke and particles by wind.
The original dataset records wildfire occurrences on a daily basis, using a binary indicator (0 or 1) for each 1
km× 1 km cell. However, this data only documents the initial location and timing of wildfires, without
considering their impact on surrounding cells. Since PM2.5 data originates from cells containing air quality
monitoring stations, where wildfires are relatively rare, directly using this binary wildfire data may limit the
model’s ability to capture the correlation between wildfire events and PM2.5 concentrations. To accurately
model this diffusion effect, we take wind speed and direction into account. The original meteorological
dataset includes ‘uWIND’ and ‘vWIND’ variables, representing wind vectors in the zonal and meridional
directions, respectively. We use these vectorized data to calculate the original wind speed and direction at
each cell, which then serve as inputs for simulating wildfire spread.

To model wildfire propagation, we treat the cell where the wildfire originates as the starting point of a
piriform (teardrop-shaped) curve, representing the theoretical area impacted by the fire. This curve is
defined by:

x=−b× (sinθ− 1) (1)

y= a× (1− sinθ)× cosθ (2)

where parameters a and b control the shape of the curve, and θ determines its orientation. Figure 5(a)
illustrates the simulated spread of a wildfire occurring in the grid at (122.13◦ W, 37.67◦ N).

For cells within the area enclosed by the piriform curve, we further calculate a wildfire impact index
based on restored wind speed vwind and direction data. The wildfire propagation is simulated utilizing the
actual wind direction as the axis, with the wildfire impact index w formulated as follows:

range= vwind × 4/100, (3)

a= 0.6× range, (4)

b= range, (5)

vθ = vwind × cos2 θ, (6)

w=

√
vθ/vbase
edist

× 1− dist

range+ ϵ
× cos2 θ. (7)

In these equations, range is a wind-speed-dependent parameter that determines the extent of the
wildfire-affected area. The angle θ denotes the angle between each cell in the affected region and the wildfire
origin cell, relative to the wind axis. The term vθ represents the wind speed component in this direction,
modulating the wildfire’s spread capability, and dist is the distance between each cell and the cell where the
fire originated (in degree). Finally, the wildfire impact index, w, is calculated for each cell within the affected
area. During preprocessing, only cells with w> 10−4 are retained. The parameter vbase is set to 40 to scale the
wildfire’s influence on adjacent regions. Figure 5(b) displays the computed impact weights for neighboring
cells based on the modeled spread.
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Figure 5.Wildfire spread simulation. (a) Simulation of wildfire spread areas. (b) Distribution of wildfire impact weights.

Figure 6. Results of wildfire simulation on 1 July, 2016 in California. (a) Original records of wildfire occurrences in California. (b)
Distribution of wildfire impact weights derived from simulated wildfire spread.

Following this approach, we processed all wildfire records in the dataset. figure 6(a) presents the raw
wildfire data as binary indicators for California on July 1, 2016. Figure 6(b) shows the computed wildfire
impact weights after diffusion modeling, which effectively captures the influence of wildfires on surrounding
areas.

New feature from the nearby air quality monitoring stations. After processing the original AOD and
wildfire data, we enhance the dataset by creating new features from neighboring air quality monitoring
stations. Given the spatial coherence of PM2.5 concentrations, PM2.5 data from nearby cells provide auxiliary
insights for modeling the concentration in a target cell. Therefore, we construct new features using recorded
data from nearby monitoring stations for better inference. Specifically, we identify the five nearest
monitoring stations for each cell, recording their PM2.5 levels {nb_PM2.5i}i=1,...,5 and distances
{nb_Disti}i=1,...,5 from the target cell. We then construct features [nb_PM2.5i /nb_Disti]i=1,...,5 to quantify
the influence of these nearby monitoring stations.

Additional data preprocessing.We have so far acquired imputed AOD data, simulated wildfire impact
weights and nearby air quality data for each cell following the aforementioned feature processing. Additional
feature transformations and constructions on the original environmental monitoring data are as follows:

• Deleting outliers from the PM2.5 concentration records, specifically, records with daily average PM2.5 con-
centrations less than 0.5 µgm−3 or greater than 400 µgm−3.

• Assigning the corresponding season based on the month of the PM2.5 records.
• Calculating the actual wind speed and direction based on the values of ‘uWIND’ and ‘vWIND’.
• Computing the wildfire impact weights for the five nearest air quality monitoring stations of every cell.

7
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Figure 7. Architecture of the DCNN model.

2.2. Model architecture
Our proposed model, DeepAir, combines a pre-trained deep convolutional neural network (DCNN) and
gradient boosting machine (GBM) for effective and efficient inference of PM2.5 concentrations at scale.
Compared to a simple concatenation of features of the target cell, CNN has the advantage of aggregating
information from spatially adjacent areas. Considering the computation overhead of CNN, we use static
geographical (elevation and land use type data) as its inputs. We first introduce the CNNmodules for feature
encoding, followed by two implementations, namely DCNN and DeepAir.

CNNModule for Feature Extraction Elevation and land use type are two important geographical factors
that can affect the concentration of PM2.5. In this paper, both features are assumed constant during the
studied time span. We design two sub-networks for encoding elevation and land use information
surrounding each cell. The network for encoding elevation information comprises four convolutional blocks
followed by a fully connected layer for dimensionality reduction and output prediction. The input to the
network is a 51× 51 single-channel grid. Each convolutional block consists of a 2D convolution layer with a
5× 5 kernel and padding of 2 to preserve spatial dimensions, followed by a Leaky ReLU activation (α= 0.01)
and a 2× 2 max-pooling operation (stride= 2) to reduce spatial resolution. The number of filters in
successive convolutional layers are 16, 32, 16, and 8, respectively. After the four convolutional blocks, the
resulting 3× 3× 8= 72 features are flattened and fed into the fully connected layers, yielding a final
3-dimensional output. Land cover data are encoded by the pre-trained ResNet18 [36] network.

DCNNModel.We implement DCNNmodel as a baseline, which is a deep learning model with the CNN
module for feature extraction and multilayer perceptrons (MLP) for PM2.5 prediction, as illustrated in
figure 7. It takes the concatenation of CNN outputs and other environmental monitoring data and time
information as inputs, yielding the final prediction of PM2.5 concentrations. There are five MLP layer with
hidden sizes of [512,256,64,16,1], respectively.

DeepAir. For fast inference at scale, we propose DeepAir. It combines the CNN-encoded static features and
other meteorological and satellite observation data to train a GBM , as illustrated in figure 8. We use
LightGBM as the implementation of GBM, and the CNN structure is identical to the one used in DCNN.
The choice of GBM as the back-end regression model balances both efficiency and performance. For one
thing, GBM integrates several base learners into a strong predictive model, offering superior fitting capability
compared to simpler approaches like linear regression or random forests (as shown in the experiments). For

8
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Figure 8. Architecture of the DeepAir model.

Figure 9. Spatial distribution of different groups of monitors for cross-validation. We split air quality monitors in California into
10 different groups and use a 10-fold validation approach to evaluate the model’s performance.

another thing, models such as the support vector machine require considerable computational overhead,
which limits their application in large-scale tasks like ours.

3. Experiments

This study has access to daily average concentration records of PM2.5 from 130 air quality monitoring
stations in California, which are further reorganized as 130 cells with an approximate size of 1 km× 1 km
and serves as the dependent variable. Additionally, corresponding meteorological data, satellite observation
data, and static data are also available for each cell as the independent variables.

3.1. Settings
In the training phase, we employ a 10-fold cross-validation method, similar to previous studies [37–39]. As
shown in figure 9, 130 air quality monitoring stations in California are randomly divided into 10 groups. The

9
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Figure 10. Description of the 10-fold cross-validation approach.

Table 1. Performance of different models. We mainly use R2 to evaluate the model’s performance and MAPElarge focuses on observation
data larger than 10 µgm−3.

Model R2 MAE RMSE MAPE MAPElarge Ttrain (s) Tinference (s)

RF 0.4374 3.5902 5.7366 0.6569 0.2610 397.27 0.81
GBM 0.5409 3.0152 5.1820 0.5146 0.2468 79.96 2.42
DCNN 0.5278 2.9477 5.2558 0.4556 0.2770 16 741.40 4.83
DeepAir 0.5833 2.7664 4.9369 0.4673 0.2301 13.35 0.21

10-fold cross-validation process is described in figure 10. In each iteration, one group of monitor data are
preserved as test data, with the remaining nine groups of data used for training a new model. We compute
the evaluation metrics for each division, and the average results of ten independent models are reported to
evaluate the performance of different methods.

The primary evaluation metrics are R-squared (R2), mean absolute error (MAE), root mean squared
error (RMSE), and mean absolute percentage error (MAPE). Additionally, we compute a specific metric
called MAPElarge, defined as the MAPE for PM2.5 concentration observations greater than 10 µgm−3 in the
original data. This metric is intended to focus on the model’s performance for higher PM2.5 concentrations,
as high levels of PM2.5 are particularly impactful for public health and regulatory standards.

Direct comparison with existing PM2.5 prediction models poses challenges due to differences in data
sources, spatial resolutions, and temporal granularity. For example, [22] uses random forests(RFs) at a 12 km
resolution across the U.S., while [40] employs deep learning for weekly averages at 1 km in California,
making alignment impractical. Additionally, the lack of open-source implementations hinders
reproducibility. To ensure fairness and consistency, we compare our model with two advanced ML methods
and a CNN-based model to our proposed model DeepAir, all tested on the same high-resolution dataset. The
evaluated methods are as follows:

• RF: RF Regression Model [19].
• GBM: GBM Regression Model with LightGBM implementation [21].
• DCNN: Deep neural networks with convolutional neural networks.
• DeepAir: convolutional neural networks combined with GBM.

Random forest and GBMmodel directly utilize preprocessed data in section 2.1.3 as input and conduct the
regression task. The architectures of DCNN and DeepAir are introduced in section 2.2. The hyperparameter
configurations for each model are included in the appendix.

3.2. Results and analysis
The average results of 10-fold cross-validation are reported in table 1, with detailed results of each fold
reported in the appendix. DeepAir achieves the best performance in multiple metrics, including R2, MAE,
RMSE, and MAPElarge. Moreover, the novel combination of a pre-trained CNN and GBM compresses the
training and inference overhead, allowing DeepAir to make the fastest inference among all methods.
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Figure 11. Performance comparison between different models. The dashed line indicates y= x, and the red line is a linear
equation curve fitted to the actual data from the scatter plot. Experimental results prove that the DeepAir model achieves best R2.

Comparing GBM and DeepAir, we conclude that the pre-trained CNNmodule not only accelerates the model
by compressing the dimension of static data but also effectively fuses useful features from surrounding areas.

To intuitively compare the spatial inference performance of different models on PM2.5 concentration, we
present a comparative graph in figure 11. The x-axis shows actual PM2.5 concentrations, while the y-axis
represents model predictions. Using least squares, we fit a linear function (red line) between the ground truth
and predicted values for each method, treating ground truth concentrations as independent and predictions
as dependent variables. As shown in figure 11, the DeepAir model exhibits the flattest regression slope,
indicating predictions closest to actual values. Furthermore, the DeepAir model achieves the highest R2,
demonstrating high accuracy in spatial PM2.5 concentration inference.

Furthermore, we visualize the prediction data distribution of the proposed DeepAir model using violin
plots, shown in figure 12. First, we group the test data by month to compare the distribution differences
between the model predictions and actual data. Figure 12(a) reveals that the overall predicted distribution
aligns well with the observed data, although the model shows a tendency to slightly underestimate
low-concentration PM2.5 levels. This can be attributed to our treatment of data below 0.5 µgm−3 as outliers,
emphasizing higher concentrations that are more relevant to public health.

The original PM2.5 data shows seasonal and monthly trends, with February, March, and April exhibiting
more low-concentration data, while December and January show relatively higher concentrations. To further
examine these trends, we group the test data by season, as shown in figure 12(b). Here, the PM2.5

observations display a long-tail distribution, with higher concentrations more prevalent in winter. Our
model effectively captures these seasonal distribution trends, particularly the variance in high-concentration
data during winter. The predicted data closely mirrors the real data distribution across different seasons,
demonstrating our model has robust predictive capability in spatial PM2.5 inference.

11



Mach. Learn.: Sci. Technol. 6 (2025) 015057 W Guo et al

Figure 12. Performance comparison by months and seasons. (a) Comparison of observed and predicted monthly average PM2.5

concentrations. (b) Comparison of observed and predicted seasonally average PM2.5 concentrations.

Figure 13. Prediction performance in different years. We calculated the yearly R2 for every monitor based on its observed PM2.5

concentration and the predicted PM2.5 concentration generated by our model. Darker colors indicate better predictions on this
monitor. The results show that monitors that are close to other monitors usually have higher R2.

To further examine the influence of nearby air quality monitoring station data on pollutant
concentration inference, we group the test data by their associated monitoring stations and record the
model’s predictions for each group. Next, we categorize the data by year and calculate the R2 values between
the actual and predicted PM2.5 concentrations for each monitoring station as a measure of the model’s
performance across locations and time periods. As presented in figure 13, the R2 values show little variation
in the model’s performance on data from the same air quality monitoring stations across different years,
suggesting consistent predictive accuracy over time. Spatially, the model achieves higher R2 values for
monitoring stations with dense spatial clustering, indicating that predictions align more closely with actual
values in these areas. This outcome highlights the benefits of incorporating data from nearby monitoring
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Figure 14. Estimation of PM2.5 concentration on typical days Sample days in the California region. (a) Inferred PM2.5

concentration for the winter season. (b) Inferred PM2.5 concentration for the summer season. (c) Inferred PM2.5 concentration
during wildfire events.

stations during preprocessing, as pollutant concentrations in adjacent areas tend to be similar. Leveraging
spatially consistent information from surrounding monitoring stations enhances the model’s ability to infer
PM2.5 concentration in spatial cells.

3.3. Inferring PM2.5 in California
After validating the effectiveness of the DeepAir model, we apply it to estimate the daily average PM2.5

concentration for each 1 km× 1 km cell across California from 2014 to 2017. Figure 14 presents
visualizations of inferred PM2.5 levels on three representative dates-January 12, 2016 (winter), 4 June, 2016
(summer), and 1 July, 2016 (during wildfire activity). As shown in figure 14(a), on 12 January, 2016, typical
of winter, the PM2.5 concentrations are relatively high. In contrast, on 4 June, 2016, corresponding to
summer, the overall PM2.5 levels are significantly lower, as illustrated in figure 14(b). For 1 July, 2016,
figure 14(c) aligns with the wildfire diffusion simulated in figure 6(b), showing elevated PM2.5 levels in areas
impacted by wildfire. This pattern demonstrates the model’s ability to accurately capture the influence of
wildfire events on PM2.5 concentration distribution.

4. Possible extensions

The DeepAir framework offers a versatile solution for air pollution-related tasks and can be adapted to
predict other pollutants, such as PM10, provided suitable observational data are available. In U.S., PM10, as a
criteria pollutant, is observed at ambient monitoring networks similarly as PM2.5. However, since PM10

originates from different sources compared to PM2.5, additional feature engineering would be necessary to
tailor the model for such a transfer task. In contrast, applying the methodology to PM0.1 is more challenging
due to the lack of widespread ambient monitoring data. PM0.1 is not regulated as a criteria pollutant by the
EPA and thus is not commonly measured at monitoring stations. This limitation underscores the need for
alternative data collection strategies, should the prediction of PM0.1 be pursued in future research.

5. Conclusion

This paper presents a novel model that combines a pre-trained convolutional neural network with a GBM to
infer spatial distributions of PM2.5 concentrations. The CNN module encodes static geographic information
from surrounding spatial cells, which is then integrated with meteorological data and satellite observations to
train a LightGBMmodel for spatial PM2.5 inference. The proposed model demonstrates high accuracy and
efficiency in both training and inference. Trained on PM2.5 concentration data from 130 air quality
monitoring stations across California from 2014 to 2017, the model can be applied to 438 619 1 km× 1 km
cells statewide, enabling large-scale, high-resolution inference of daily average PM2.5 concentrations. By
effectively fusing diverse data sources-including meteorological data, satellite observations, and geographic
information-our model provides enhanced spatial PM2.5 estimates that supplement existing monitoring
station data. These estimates support researchers in analyzing PM2.5 distribution patterns and offer a more
detailed foundation for air quality assessment and public health applications.
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Appendix. Configuration and performance of models

In this section, we present the detailed results of the 10-fold cross-validation. All experiments are conducted
on an Intel Xeon Gold 6226 R CPU with 64 cores and NVIDIA GeForce RTX 3090 GPU. The CPU operates
on x86-64 architecture and the GPUs run CUDA version 12.1.

A.1. Random forest
Some hyperparameters of the random forest model are specified as follows: the maximum depth of each tree
is limited to 256, the random seed is fixed at 0, and the number of trees in the forest is set to 256. Table A1
presents the performance of the random forest model in inferring PM2.5 concentration in California.

Table A1. The performance of the Random forest model.

Division R2 MAE RMSE MAPE MAPElarge

0 0.4403 3.5295 5.0591 0.6429 0.2497
1 0.6203 3.3890 5.5276 0.5375 0.2516
2 0.3225 3.5323 6.1018 0.5503 0.2910
3 0.3131 3.4390 4.7569 0.7624 0.2685
4 0.5438 3.4021 5.5977 0.6448 0.2381
5 0.1646 3.5438 5.2167 0.8115 0.2650
6 0.4680 4.0264 7.1311 0.5753 0.2739
7 0.3871 3.6178 5.1554 0.6738 0.2698
8 0.4307 3.6082 6.1379 0.6175 0.2282
9 0.3828 3.8241 6.4096 0.7566 0.2682
Average 0.4374 3.5902 5.7366 0.6569 0.2610

A.2. GBM
We use the LightGBM Python package as an implementation of the GBMmodel, with the following
hyperparameters. The random seed is set to 123. The model’s evaluation metrics are defined as the MAE and
Huber loss. The number of leaves in each tree is set to 512, with a maximum of 512 bins. The maximum
depth of the tree is 256, and the learning rate is set to 0.01. During training, the model randomly samples
80% of the features for each iteration and uses 80% of the available data. Bagging occurs every 20 iteration.
Training stops if there is no improvement in the validation set score after 100 iterations. Table A2 presents the
specific experimental results of the GBMmodel.

A.3. DCNN
Table A3 presents the experimental results of the DCNNmodel. Compared to vanilla regression models that
only utilize static geographic information of the current grid, the DCNNmodel employs a CNN structure to
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Table A2. The performance of the GBMmodel.

Division R2 MAE RMSE MAPE MAPElarge

0 0.5968 2.8093 4.2937 0.4855 0.2340
1 0.7034 2.8821 4.8858 0.4245 0.2224
2 0.4011 3.1675 5.7370 0.4470 0.2827
3 0.4965 2.8329 4.0723 0.5827 0.2653
4 0.6262 2.8154 5.0668 0.485 0.2375
5 0.2515 3.2141 4.9381 0.6869 0.2731
6 0.5466 3.4697 4.2304 0.4256 0.2677
7 0.5873 2.8207 4.2304 0.5063 0.2221
8 0.5678 2.8487 5.3477 0.4465 0.2199
9 0.4253 3.2632 6.1849 0.6516 0.2462
Average 0.5409 3.0152 5.1820 0.5146 0.2468

extract static geographic information from neighboring regions, generating embedded representations of
static geographic features corresponding to the grid. With a substantial number of training instances, the
subsequent multilayer perceptron structure can effectively learn the relationships between various input
features and the targeted PM2.5 concentration. Therefore, this model outperforms vanilla regression models
in certain evaluation metrics.

Table A3. The performance of the DCNNmodel.

Division R2 MAE RMSE MAPE MAPElarge

0 0.6170 2.6834 4.1848 0.4188 0.2471
1 0.6750 2.9288 5.1141 0.4009 0.2516
2 0.3238 3.3162 6.0957 0.4204 0.3404
3 0.4741 2.7888 4.1619 0.5457 0.3161
4 0.5270 3.0059 5.6995 0.4613 0.2869
5 0.4431 2.8215 4.2594 0.5492 0.3071
6 0.5587 3.3594 6.4948 0.4214 0.2610
7 0.5705 2.7342 4.3155 0.4302 0.2544
8 0.5667 2.7101 5.3548 0.3639 0.2379
9 0.3803 3.1716 6.4227 0.5619 0.2891
Average 0.5278 2.9477 5.2558 0.4556 0.2770

A.4. DeepAir
Table A4 presents the inference results of the DeepAir model proposed in this paper for the spatial inference
of PM2.5 concentration in California. The hyperparameters of the LightGBMmodule are identical to those
described in section A.2.

Table A4. The performance of the DeepAir model.

Division R2 MAE RMSE MAPE MAPElarge

0 0.6740 2.5397 3.8611 0.4232 0.1981
1 0.7622 2.4659 4.3746 0.3662 0.1958
2 0.4360 2.9089 5.5671 0.4098 0.2599
3 0.4575 2.9454 4.2272 0.5870 0.2820
4 0.6463 2.5707 4.9285 0.4161 0.2242
5 0.4831 2.5305 4.1034 0.5399 0.2347
6 0.4667 3.6061 7.1397 0.5175 0.2542
7 0.6024 2.6602 4.1525 0.4753 0.2189
8 0.7181 2.4191 4.3191 0.3789 0.1937
9 0.4555 3.1483 6.0202 0.5820 0.2659
Average 0.5833 2.7664 4.9369 0.4673 0.2301

15



Mach. Learn.: Sci. Technol. 6 (2025) 015057 W Guo et al

ORCID iDs

Wenxuan Guo https://orcid.org/0000-0001-6336-3819
Yanyan Xu https://orcid.org/0000-0001-5429-3177

References

[1] Feng S, Gao D, Liao F, Zhou F and Wang X 2016 The health effects of ambient PM2.5 and potential mechanisms Ecotoxicol. Environ.
Saf. 128 67–74

[2] Xing Y-F, Xu Y-H, Shi M-H and Lian Y-X 2016 The impact of PM2.5 on the human respiratory system J. Thoracic Dis. 8 E69
[3] Wang L, Luo D, Liu X, Zhu J, Wang F, Li B and Li L 2021 Effects of PM2.5 exposure on reproductive system and its mechanisms

Chemosphere 264 128436
[4] Thangavel P, Park D and Lee Y-C 2022 Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: an overview

Int. J. Environ. Res. Public Health 19 7511
[5] Atkinson R W, Kang S, Anderson H R, Mills I C and Walton H A 2014 Epidemiological time series studies of PM 2.5 and daily

mortality and hospital admissions: a systematic review and meta-analysis Thorax 69 660–5
[6] Wang L et al 2018 Taking action on air pollution control in the Beijing-Tianjin-Hebei (BTH) region: progress, challenges and

opportunities Int. J. Environ. Res. Public Health 15 306
[7] Xiao Hui C, Dan G, Alamri S and Toghraie D 2023 Greening smart cities: an investigation of the integration of urban natural

resources and smart city technologies for promoting environmental sustainability Sustain. Cities Soc. 99 104985
[8] Liu H, Cui W and Zhang Mi 2022 Exploring the causal relationship between urbanization and air pollution: evidence from china

Sustain. Cities Soc. 80 103783
[9] He J et al 2017 Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese

cities Environ. Pollut. 223 484–96
[10] Buchholz R R et al 2021 Air pollution trends measured from terra: Co and aod over industrial, fire-prone and background regions

Remote Sens. Environ. 256 112275
[11] Ma Z, Hu X, Sayer A M, Levy R, Zhang Q, Xue Y, Tong S, Bi J, Huang L and Liu Y 2016 Satellite-based spatiotemporal trends in

PM2.5 concentrations: China, 2004–2013 Environ. Health Perspect. 124 184–92
[12] Ma Z, Liu Y, Zhao Q, Liu M, Zhou Y and Bi J 2016 Satellite-derived high resolution PM2.5 concentrations in yangtze river delta

region of china using improved linear mixed effects model Atmos. Environ. 133 156–64
[13] Grant-Jacob J A and Mills B 2022 Deep learning in airborne particulate matter sensing: a review J. Phys. Commun. 6 122001
[14] Eeftens M et al 2012 Development of land use regression models for PM2.5, PM2.5 absorbance, pm10 and pmcoarse in 20 european

study areas; results of the escape project Environ. Sci. Technol. 46 11195–205
[15] Huang L, Zhang C and Bi J 2017 Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China

Environ. Res. 158 542–52
[16] Shi T, Hu Y, Liu M, Li C, Zhang C and Liu C 2020 Land use regression modelling of PM2.5 spatial variations in different seasons in

urban areas Sci. Total Environ. 743 140744
[17] Liu Y, Paciorek C J and Koutrakis P 2009 Estimating regional spatial and temporal variability of pm2.5 concentrations using

satellite data, meteorology and land use information Environ. Health Perspect. 117 886–92
[18] Xiao Q, Geng G, Liang F, Wang X, Lv Z, Lei Y, Huang X, Zhang Q, Liu Y and He K 2020 Changes in spatial patterns of PM2.5

pollution in China 2000–2018: impact of clean air policies Environ. Int. 141 105776
[19] Breiman L 2001 Random forestsMach. Learn. 45 5–32
[20] Chen T and Guestrin C 2016 Xgboost: a scalable tree boosting system Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery

and Data Mining pp 785–94
[21] Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q and Liu T-Y 2017 Lightgbm: a highly efficient gradient boosting decision

tree Advances in Neural Information Processing Systems vol 30 (https://doi.org/10.5555/3294996.3295074)
[22] Hu X, Belle J H, Meng X, Wildani A, Waller L A, Strickland M J and Liu Y 2017 Estimating PM2.5 concentrations in the

conterminous united states using the random forest approach Environ. Sci. Technol. 51 6936–44
[23] Fu D, Xia X, Duan M, Zhang X, Li X, Wang J and Liu J 2018 Mapping nighttime PM2.5 from VIIRS DNB using a linear

mixed-effect model Atmos. Environ. 178 214–22
[24] Li L, Zhang J, Meng X, Fang Y, Ge Y, Wang J, Wang C, Wu J and Kan H 2018 Estimation of PM2.5 concentrations at a high

spatiotemporal resolution using constrained mixed-effect bagging models with maiac aerosol optical depth Remote Sens. Environ.
217 573–86

[25] Wang W, Zhao S, Jiao L, Taylor M, Zhang B, Xu G and Hou H 2019 Estimation of PM2.5 concentrations in china using a spatial
back propagation neural network Sci. Rep. 9 13788

[26] Park Y, Kwon B, Heo J, Hu X, Liu Y and Moon T 2020 Estimating PM2.5 concentration of the conterminous united states via
interpretable convolutional neural networks Environ. Pollut. 256 113395

[27] Yan X, Zang Z, Jiang Y, Shi W, Guo Y, Li D, Zhao C and Husi L 2021 A spatial-temporal interpretable deep learning model for
improving interpretability and predictive accuracy of satellite-based PM2.5 Environ. Pollut. 273 116459

[28] Luo Z, Huang F and Liu H 2020 PM2.5 concentration estimation using convolutional neural network and gradient boosting
machine J. Environ. Sci. 98 85–93

[29] Zhang L, Na J, Zhu J, Shi Z, Zou C and Yang L 2021 Spatiotemporal causal convolutional network for forecasting hourly PM2.5
concentrations in Beijing, China Comput. Geosci. 155 104869

[30] Zhang K, Yang X, Cao H, Thé J, Tan Z and Yu H 2023 Multi-step forecast of PM2.5 and PM10 concentrations using convolutional
neural network integrated with spatial–temporal attention and residual learning Environ. Int. 171 107691

[31] Thornton P E, Thornton MM, Mayer B W, Wei Y, Devarakonda R, Vose R S and Cook R B 2016 Daymet: daily surface weather data
on a 1-km grid for north america, version 3 ORNL Distributed Active Archive Center (https://doi.org/10.3334/ornldaac/1328)

[32] Li C and Managi S 2021 Contribution of on-road transportation to PM2.5 Sci. Rep. 11 21320
[33] Gately C, Hutyra L R and Wing I S 2019 DARTE annual on-road CO2 Emissions on a 1-km grid, conterminous USA, V2,

1980-2017 ORNL Distributed Active Archive Center (https://doi.org/10.3334/ORNLDAAC/1735)

16

https://orcid.org/0000-0001-6336-3819
https://orcid.org/0000-0001-6336-3819
https://orcid.org/0000-0001-5429-3177
https://orcid.org/0000-0001-5429-3177
https://doi.org/10.1016/j.ecoenv.2016.01.030
https://doi.org/10.1016/j.ecoenv.2016.01.030
https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
https://doi.org/10.3978/j.issn.2072-1439.2016.01.19
https://doi.org/10.1016/j.chemosphere.2020.128436
https://doi.org/10.1016/j.chemosphere.2020.128436
https://doi.org/10.3390/ijerph19127511
https://doi.org/10.3390/ijerph19127511
https://doi.org/10.1136/thoraxjnl-2013-204492
https://doi.org/10.1136/thoraxjnl-2013-204492
https://doi.org/10.3390/ijerph15020306
https://doi.org/10.3390/ijerph15020306
https://doi.org/10.1016/j.scs.2023.104985
https://doi.org/10.1016/j.scs.2023.104985
https://doi.org/10.1016/j.scs.2022.103783
https://doi.org/10.1016/j.scs.2022.103783
https://doi.org/10.1016/j.envpol.2017.01.050
https://doi.org/10.1016/j.envpol.2017.01.050
https://doi.org/10.1016/j.rse.2020.112275
https://doi.org/10.1016/j.rse.2020.112275
https://doi.org/10.1289/ehp.1409481
https://doi.org/10.1289/ehp.1409481
https://doi.org/10.1016/j.atmosenv.2016.03.040
https://doi.org/10.1016/j.atmosenv.2016.03.040
https://doi.org/10.1088/2399-6528/aca45e
https://doi.org/10.1088/2399-6528/aca45e
https://doi.org/10.1021/es301948k
https://doi.org/10.1021/es301948k
https://doi.org/10.1016/j.envres.2017.07.010
https://doi.org/10.1016/j.envres.2017.07.010
https://doi.org/10.1016/j.scitotenv.2020.140744
https://doi.org/10.1016/j.scitotenv.2020.140744
https://doi.org/10.1289/ehp.0800123
https://doi.org/10.1289/ehp.0800123
https://doi.org/10.1016/j.envint.2020.105776
https://doi.org/10.1016/j.envint.2020.105776
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.5555/3294996.3295074
https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1021/acs.est.7b01210
https://doi.org/10.1016/j.atmosenv.2018.02.001
https://doi.org/10.1016/j.atmosenv.2018.02.001
https://doi.org/10.1016/j.rse.2018.09.001
https://doi.org/10.1016/j.rse.2018.09.001
https://doi.org/10.1038/s41598-019-50177-1
https://doi.org/10.1038/s41598-019-50177-1
https://doi.org/10.1016/j.envpol.2019.113395
https://doi.org/10.1016/j.envpol.2019.113395
https://doi.org/10.1016/j.envpol.2021.116459
https://doi.org/10.1016/j.envpol.2021.116459
https://doi.org/10.1016/j.jes.2020.04.042
https://doi.org/10.1016/j.jes.2020.04.042
https://doi.org/10.1016/j.cageo.2021.104869
https://doi.org/10.1016/j.cageo.2021.104869
https://doi.org/10.1016/j.envint.2022.107691
https://doi.org/10.1016/j.envint.2022.107691
https://doi.org/10.3334/ornldaac/1328
https://doi.org/10.1038/s41598-021-00862-x
https://doi.org/10.1038/s41598-021-00862-x
https://doi.org/10.3334/ORNLDAAC/1735


Mach. Learn.: Sci. Technol. 6 (2025) 015057 W Guo et al

[34] Chen Z-Y, Jin J-Q, Zhang R, Zhang T-H, Chen J-J, Yang J, Ou C-Q and Guo Y 2020 Comparison of different missing-imputation
methods for maiac (multiangle implementation of atmospheric correction) aod in estimating daily PM2.5 levels Remote Sens.
12 3008

[35] Huang K, Xiao Q, Meng X, Geng G, Wang Y, Lyapustin A, Gu D and Liu Y 2018 Predicting monthly high-resolution PM2.5

concentrations with random forest model in the North China plain Environ. Pollut. 242 675–83
[36] He K, Zhang X, Ren S and Sun J 2016 Deep residual learning for image recognition Proc. IEEE Conf. on Computer Vision and

Pattern Recognition pp 770–8
[37] Zhai B and Chen J 2018 Development of a stacked ensemble model for forecasting and analyzing daily average PM2.5

concentrations in Beijing, China Sci. Total Environ. 635 644–58
[38] Chen Z-Y, Zhang T-H, Zhang R, Zhu Z-M, Yang J, Chen P-Y, Ou C-Q and Guo Y 2019 Extreme gradient boosting model to

estimate PM2.5 concentrations with missing-filled satellite data in china Atmos. Environ. 202 180–9
[39] Zamani Joharestani M, Cao C, Ni X, Bashir B and Talebiesfandarani S 2019 PM2.5 prediction based on random forest, xgboost and

deep learning using multisource remote sensing data Atmosphere 10 373
[40] Li L et al 2020 Ensemble-based deep learning for estimating PM2.5 over California with multisource big data including wildfire

smoke Environ. Int. 145 106143

17

https://doi.org/10.3390/rs12183008
https://doi.org/10.3390/rs12183008
https://doi.org/10.1016/j.envpol.2018.07.016
https://doi.org/10.1016/j.envpol.2018.07.016
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1016/j.scitotenv.2018.04.040
https://doi.org/10.1016/j.scitotenv.2018.04.040
https://doi.org/10.1016/j.atmosenv.2019.01.027
https://doi.org/10.1016/j.atmosenv.2019.01.027
https://doi.org/10.3390/atmos10070373
https://doi.org/10.3390/atmos10070373
https://doi.org/10.1016/j.envint.2020.106143
https://doi.org/10.1016/j.envint.2020.106143

	DeepAir: deep learning and satellite imagery to estimate high-resolution PM2.5 at scale
	1. Introduction
	2. Methodology
	2.1. Preliminary
	2.1.1. Study domain
	2.1.2. Data
	2.1.3. Data preprocessing

	2.2. Model architecture

	3. Experiments
	3.1. Settings
	3.2. Results and analysis
	3.3. Inferring PM2.5 in California

	4. Possible extensions
	5. Conclusion
	Appendix. Configuration and performance of models
	A.1. Random forest
	A.2. GBM
	A.3. DCNN
	A.4. DeepAir

	References


