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 A B S T R A C T

Vehicle emissions pose a significant challenge for cities worldwide, yet a comprehensive analysis of the 
relationship between mobility metrics and vehicle emissions at scale remains elusive. We introduce the Mobile 
Data Emission System (MODES), a framework that integrates various sources of individual mobility data on an 
unprecedented scale. Our model is validated with direct measurements from a network of high-density sensors 
analyzed before and during the COVID-19 pandemic. MODES is used as a laboratory for scaling analysis. 
Informed by millions of individual trips at a metropolitan scale, we estimate the traffic 𝐶𝑂2 emissions with 
3 accessible metrics: vehicle kilometers traveled (VKT), congestion, and fuel economy. This formulation is 
valuable because it is based on precise calculations reflecting variations in speed and acceleration. Across 
their ranges, VKT plays the greatest role in amplifying vehicular emissions up to 500%, followed by fuel 
economy that ranges from 20% to 300% of the average passenger vehicle. Comparatively, congestion amplifies 
emissions up to 50%. We confirm that cities in the Bay Area with high population density consistently show 
low per-person VKT. However, this density also increases congestion. Since VKT is the governing factor, urban 
densification reduces transportation emissions despite its impacts on congestion.
1. Introduction

Transportation is a sector that is difficult to decarbonize while it 
represents 29% of the greenhouse gas (GHG) emissions in the United 
States (U.S. Environmental Protection Agency (EPA), 2019), making it 
a critical barrier to achieving sustainable urban environments. Policy 
efforts to date have focused on improving fuel economy, alternative fuel 
technologies, and expanding the range of electric vehicle batteries. De-
spite progress in supply-side solutions, per-capita VKT and transporta-
tion CO2 emissions have been behind reduction targets globally and are 
rising in most regions (California Air Resources Board, 2018; European 
Environment Agency, 2020; International Council on Clean Transporta-
tion, 2024). Decarbonizing passenger transportation has proven to be 
highly challenging compared to the other sectors (Banister, 2011; Pe-
ters et al., 2019; Shusterman et al., 2016). Recent critiques of the smart 
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cities discourse have pointed out that while transportation systems are 
becoming increasingly ‘‘smarter’’, they are not necessarily becoming 
more sustainable (Yigitcanlar et al., 2019). Efficiency improvements 
through technology alone have not been sufficient to address deeper 
challenges related to emissions reduction, social equity, and unsustain-
able travel patterns. To effectively tackle the challenges, there is an 
urgent need for a comprehensive modeling framework that captures 
the complex relationship between mobility metrics and total vehicle 
emissions. Detailed analysis of these factors can inform more targeted 
interventions, enhance EV infrastructure, and align policies with high-
emission areas contributing not only to climate change mitigation 
but also to healthier and more equitable cities. However, pinpointing 
the high-emission activities, travel demand patterns, and conditions 
that generate emissions remains difficult, given that emissions are 
distributed across travel networks.
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data mining, AI training, and similar technologies. 
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To address diverse evaluation needs, urban transportation emis-
sions modeling uses three main approaches: physics-based, empirical, 
and data-driven models. Physics-based models, centered on vehicle 
specific power (VSP), measure power demand on vehicles, account-
ing for forces like aerodynamic drag, rolling resistance, acceleration, 
and incline (Faris, Rakha, Kafafy, Idres, & Elmoselhy, 2011; Fontes, 
Pereira, Fernandes, Bandeira, & Coelho, 2015). These models integrate 
three key components: travel demand models, which estimate origin–
destination flows using travel surveys, highway counts, fuel sales, and 
land-use data (Bandeira, Coelho, Sá, Tavares, & Borrego, 2011), and 
traffic simulators, which simulate vehicle flow, route choices, and 
speed patterns based on calibrated road network parameters (e.g., road 
types, traffic lights) (Anya, Rouphail, Frey, & Schroeder, 2014). These 
inputs are crucial for emission simulators, which calculate total travel 
emissions in each VSP mode.

While the final step of physics-based models is robust and relies 
on Newton’s laws of motion, significant uncertainty exists in travel 
demand and traffic simulation phases. These components require com-
plex software prone to errors in calibration and data handling, often 
leading to discrepancies in emissions estimates (Abou-Senna, Radwan, 
Westerlund, & Cooper, 2013; Anya et al., 2014). As a result, most 
validated models estimate emissions primarily at the link level, with 
some extending to broader urban areas. These models excel in link-
level analysis, guiding vehicle and road network design (Fontes et al., 
2015) and modeling external traffic losses (Patankar, Lin, & Patankar, 
2021). However, they lack accuracy at larger spatial scales, where data 
requirements and calibration challenges hinder precision. Calibration 
errors can reach up to 16% (Anya et al., 2014), and broader inventories 
underestimate emissions by up to 28.1% (Gurney et al., 2021).

Empirical models, or direct measurement models, use sensing tech-
nologies like traffic sensors, primarily deployed on highways (Kwon, 
Varaiya, & Skabardonis, 2003; McDonald, McBride, Martin, & Harley, 
2014; Wu et al., 2022) and less frequently in city centers (Zhang 
et al., 2018). These sensors provide data on vehicle counts, types, 
and speeds, which is combined with speed-dependent emission factors 
to estimate emissions at zonal and link levels. Additionally, onboard 
vehicle devices create regression-based models (Oehlerking, 2011). 
Dense CO2 sensor networks, combined with Bayesian inversion, at-
tribute emissions to specific source activities like transportation and 
home heating (Caubel, Cados, Preble, & Kirchstetter, 2019; Gurney 
et al., 2009). While monitoring methods are crucial in constructing and 
validating data-driven emission inventories, there are two shortcomings 
that call for individual mobility estimates. First, sensors are expensive 
to deploy and maintain over large regions to directly inform city in-
ventories. Second, sensor-based estimates are not capable of attributing 
emissions to the origin and destinations associated with the travel 
activity. The latter is particularly important for transportation planning 
authorities for measuring carbon emissions by source activity at urban 
scale to achieve decarbonization goals (Ramaswami et al., 2021).

Data-driven models, more user-friendly and accessible than physics-
based or empirical models, integrate multiple data sources on travel 
demand and road conditions. These methods can be further divided 
into three groups based on the mobility data being used: (a) local 
traffic volumes (Gately, Hutyra, & Wing, 2015; Gurney et al., 2012), 
(b) aggregated origin–destination (OD) flows (Gately, Hutyra, Peterson, 
& Sue Wing, 2017), and (c) individual mobility data (Blaudin de 
Thé, Carantino, & Lafourcade, 2020; Böhm, Nanni, & Pappalardo, 
2022; Miller & Ibrahim, 1998; Nyhan et al., 2016). To understand the 
difference between these three approaches, we need to differentiate 
the outputs of these models as local emission estimates and emission 
production estimates. Local estimates quantify emissions within a region, 
route, or road segment. Methods using local traffic volumes estimate 
the emissions in the place where they occur. While these models 
provide accurate estimates locally, they lack information regarding the 
traveler, source, and destination of the trip. This information holds 
significant importance for policy-making and demographic analysis. 
2 
The emission simulation tools used by planning agencies in EU (Ntzi-
achristos, Gkatzoflias, Kouridis, & Samaras, 2009) and US (California 
Air Resources Board, 2017; United States Environmental Protection 
Agency (USEPA), 2023) also fall into the local emission estimates cat-
egory. They report values over regions given the input VKT, speed and 
vehicle type distributions. Performing both road level and individual 
level analysis are possible, yet it can take months to customize and run 
the models. Furthermore, the current models are not generalizable to 
regions other than their context. Emission production estimates quantify 
CO2 emitted across the travel network by the origin of the individual 
travelers and link them to their locations of residence. This type of 
quantification is possible with individual mobility data or OD flows. 
Individual mobility estimates have been developed using acceleration, 
speeds, and car model (Oehlerking, 2011; Panis, Broekx, & Liu, 2006; 
Smit, Ntziachristos, & Boulter, 2010). We refer them as microscopic, 
and our goal is to develop a mesoscopic model that estimates 𝐶𝑂2
emissions with quantities related to the drivers such as percentage of 
congestion, distance of travel and fuel economy of the vehicle used.

Individual mobility data from mobile phones have been used in 
various applications (Pappalardo, Manley, Sekara, & Alessandretti, 
2023). For example, studies on multiple cites have uncovered scaling 
laws relating population to distribution of facilities and socioeco-
nomic activities at macroscopic scale (Barthelemy, 2019a; Bettencourt, 
2013; Bettencourt, Lobo, Helbing, Kühnert, & West, 2007; Depersin 
& Barthelemy, 2018; Newman, 2005; Xu, Olmos, Abbar, & González, 
2020). Universal laws govern the collapse of traffic networks (Olmos, 
Çolak, Shafiei, Saberi, & González, 2018) or traffic management strate-
gies via smart phone applications (Çolak, Lima, & González, 2016). A 
growing body of literature, including recent reviews (Milojevic-Dupont 
& Creutzig, 2020), highlights the potential of combining mobility data 
with machine learning to move beyond generic mitigation strategies 
towards scalable, spatially differentiated climate solutions. Our task at 
hand is to leverage this emerging toolkit of mobility science to inform 
urban sustainability strategies.

This work utilizes mobility science methods in the analysis of 
passenger vehicle emission estimates. With this in mind, we present 
MODES, a portable framework to estimate vehicle emissions using 
various individual data sources. To that end, we integrate, at un-
precedented scale, call detail records (CDR’s) for the Bay Area (Xu, 
Çolak, Kara, Moura, & González, 2018), aggregated Location Based 
Service (LBS) data from SafeGraph (2021) and Uber Movement Speeds 
data (Uber Movement, 2021).

To validate our model, we utilize data from both before and after the 
COVID-19 shelter-in-place (SIP) orders in the San Francisco Bay Area. 
SIP orders significantly altered individuals’ travel behavior, making it 
an ideal opportunity to assess our model’s performance under different 
conditions. Therefore we performed estimates for these two periods 
separately. We estimate the travel behavior and the road congestion 
for six weeks before and after the SIP orders, implemented on March 
16th 2020. We combine the traffic estimates with the StreetSmart fuel 
consumption model (Kalila, Awwad, Di Clemente, & González, 2018; 
Oehlerking, 2011) and convert these values to tail-pipe CO2 emissions. 
We compare our estimates with direct CO2 sensor measurements and a 
hybrid model of highway vehicle counts and emission factors.

To our knowledge, this is the first study that utilizes individual 
mobility extracted from mobile phones in data-driven emissions esti-
mates at the mesoscopic scale. This allows us to link CO2 emissions 
to the home locations of travelers. We further investigate the interplay 
of population density and road network structure on individual travel 
demand and their associated emissions. Confirming that cities with 
high population density are characterized by low per-person VKT, low 
per-person CO2 emissions, and high congestion levels. Yet, based on 
our observations and the ranges of the trip variables (VKT, percentage 
of congestion, and fuel economy) VKT has the strongest effects on 
emissions.



A.T. Öztürk et al. Sustainable Cities and Society 129 (2025) 106421 
We analyze individual trips at varying percentages of congestion, 
to uncover a bottom-up law that incorporates VKT, congestion, and 
fuel economy to estimate emissions from millions of individual trips. 
The parameters we utilize are not specific to a particular study region, 
allowing our analysis to be applicable to trips in any city given the 
data availability. Current scaling laws depend on top down estimates 
of the form 𝑡CO2 ∼ 𝑁𝛽 , where 𝑁 is the population size and its emission 
production in tons (𝑡CO2) (Louf & Barthelemy, 2014b). Our approach 
is an advancement over the existing scaling laws by incorporating pa-
rameters directly affecting vehicular emissions. Since these parameters 
are not context or city specific we also maintain the scalability and 
modularity of the findings.

A critical step is the validation of our estimates. Existing data-driven 
emission estimation frameworks are validated with other data-driven 
emission inventories. These inventories often have similar underlying 
assumptions. In contrast, to validate and test the robustness of MODES, 
we used completely independent measurements from the Berkeley Air 
Quality and CO2 Network (𝐵𝐸𝐴𝐶𝑂2𝑁). We performed a compre-
hensive validation and calculated statistics in regions with different 
characteristics (i.e. highway length, residential road length) and res-
olutions (i.e. from 1 to 25 km2 spatial resolution, averaging from 1 to 
5 measurement days). We validated the results from before and COVID-
19 separately ensuring accuracy under different demand levels. We 
found that at a spatial resolution of 9 km2 and 5 days of measurement, 
the median difference between MODES and 𝐵𝐸𝐴𝐶𝑂2𝑁 is 32%. This is 
advancement over the major inventories in use, that may differ more 
than 100% at lower spatial resolutions (Gately & Hutyra, 2017).

The main contributions of our work include:

(1) We establish a scaling law that quantifies the relationship be-
tween emissions, VKT, congestion, and fuel economy, utilizing 
easily available metrics in diverse urban contexts. This approach 
greatly simplifies the estimation of emissions.

(2) Scaling analysis confirms VKT as the primary parameter influ-
encing emissions. Building upon this foundational finding, our 
analysis quantifies the relative influence of VKT alongside con-
gestion and fuel economy. This enhances our understanding of 
the complex dynamics influencing vehicular emissions in urban 
systems.

(3) MODES represents a significant advancement over local emis-
sion estimates by quantifying emissions at the individual traveler 
level. This capability allows MODES to directly inform sustainable 
urban planning regarding vehicle electrification, equity in air 
pollution exposure, and land use planning.

(4) Unlike other models that lack validation or are validated across 
large metropolitan regions, MODES stands out by being validated 
through direct measurements of CO2 emissions at various spatial 
resolutions.

(5) MODES is the first study utilizing a travel model informed by pas-
sively collected mobile phone activity data in emissions estimates.

This paper is organized as follows. The Introduction provides the 
background, motivation, literature review, and our positioning within 
the emissions modeling landscape. Section 2 presents the main results 
of the study. Section 3 discusses the broader implications of the find-
ings, including policy relevance and sustainability framing. Section 4 
outlines directions for future work, while Section 5 concludes. Finally, 
Section 6 details the data sources, methodological steps, and validation 
procedures. We placed the Methods section at the end to maintain a 
logical narrative flow and to highlight the study’s key insights early.

2. Results

2.1. Congestion estimates and travel behavior

We characterize the typical weekday travel behavior before and 
during the shelter in place (SIP) orders in the Bay Area road network. 
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All Bay Area counties imposed SIP orders starting on March 16th, 2020. 
We defined the before SIP period as six weeks until this date and 
during SIP period as six weeks following this date. The primary purpose 
of utilizing the post-COVID-19 period is to conduct a comprehensive 
validation process.

The travel demand used in this work is based on the urban mobility 
model TimeGeo, a simulation of individual mobility using CDRs (Jiang 
et al., 2016). The individual mobility patterns of the simulated users 
are shown to align well with the 2010–2012 California Household 
Travel Survey (CHTS) and the 2009 National Household Travel Sur-
vey (NHTS) (Xu et al., 2018). Travel surveys, while valid, are costly 
methods of data collection that only capture a limited portion of the 
population and may not encompass all individual trips undertaken. 
TimeGeo presents a comprehensive and valid estimate of the individ-
ual travel demand. This model represents the typical weekday travel 
behavior for the before SIP period. To extend this model to each day 
of the week for before and during SIP periods, we used SafeGraph 
data. We multiply the hourly travel demand between each origin and 
destination pair with a scaling coefficient retrieved from SafeGraph 
(see Supplementary Notes S2). To use the resulting travel demand for 
vehicles, the standard is to estimate vehicle trips from the total trips 
by scaling total trips with the vehicle usage rate of the home census 
tract (see Supplementary Notes S3). The resulting vehicle demand is 
9.6 million vehicle trips out of 13 million passenger trips within the 
Bay Area for a typical weekday. The hourly and weekly distribution 
of the weekday trips for before and during SIP is shown in Fig.  1A. 
We find that due to the SIP orders the total number of trips decreased 
by 52% and 59% during the morning peak. In Fig.  1B, we show the 
number of trips between each origin and destination pair grouped by 
the distance. The variations in number of trips are due to the differences 
in travel demand during different times of the day. Interestingly, while 
the number of trips decreased in total, there was an increase in the 
share of trips above 150 km. The total VKT decreased by 44% from 
234M km∕day to 131M km∕day. The comparison of these findings are 
consistent with the report of the Bureau of Transportation statistics 
COVID-19 travel behavior changes (Bureau of Transportation Statistics, 
2022).

We perform road network analysis within a bounding box formed 
by the locations of mobile phone users. We modeled the San Francisco 
Bay Area road network as a weighted, directed graph where edges 
represent the road segments and the edge weights are the speeds, travel 
times and road lengths. Road geometries are retrieved from Open Street 
Map (OSM) and corresponding hourly speeds are provided by the Uber 
Movement Speeds API. Travel time on each edge is calculated using 
the road geometries and hourly speed values. We identified the free-
flow speed as the 85th percentile of all speed values observed on a 
road segment during a week. Then the congestion level in a region is 
defined as the percentage change in the travel time in comparison with 
the free-flow travel time. Most of network-wide congestion occurs at 5 
PM before the SIP orders and ranges between 30 and 37% depending 
on the day of the week. During the SIP orders, the 5PM’s network-wide 
congestion dropped to 14 to 19%. The study region and the congestion 
level per road segment is illustrated in Fig.  1C and D.

2.2. Fuel economy variations in traffic

In this work, we employed the StreetSmart (Oehlerking, 2011) 
model to estimate each trip’s fuel consumption. This model requires 
the speed profiles on the road segments and accounts for the vehicle 
efficiency variations under different speed and acceleration levels. The 
model requires four variables as shown in Eq.  (1). 

𝐹𝐶𝑔𝑎𝑙 = 𝑘1𝑇𝑖𝑑𝑙𝑒 + 𝑘2𝑇𝑚𝑜𝑣𝑒 + 𝑘3 ∫𝑥
|𝑎|𝑑𝑥 + 𝑘4𝐿 (1)

The first term accounts for the idling energy consumption; the 
second term accounts for the energy depending on the time of the 
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Fig. 1. Travel demand and congestion levels before and during shelter-in-place orders. Congestion level is defined as percentage change in travel time compared to the free-flow 
travel time. Congestion levels are calculated using hourly average speeds for each road segment in the network. (A) Weekday travel demand extracted from CDR and LBS 
data, aggregated hourly. (B) Travel demand between i (origin) and j (destination) grouped by Haversine distance. Congestion level in the road network on Monday 5PM before 
shelter-in-place orders (C) and during shelter-in-place orders (D). Base map OpenStreetMap contributors.
Fig. 2. Vehicle fuel consumption model (A) Validation of the StreetSmart fuel economy estimates with Autonomie vehicle fuel consumption simulations. The fuel economy 
estimations use EPA’s FTP-75 (urban) and HWFET (highway) standard speed profiles. (B) Variations in on-road fuel economy by manufacturers reported fuel economy in the same 
analysis period. The differences between the actual fuel economy and the manufacturers’ value can be as high as 70%, as shown in the distributions, illustrating the impact of the 
road network traffic. Due to a decrease in congestion, before SIP’s order trips have a 6%–7% lower median fuel economy than the during SIP order.
movement; the third term accounts for the acceleration and decel-
eration over a given distance, and the final term accounts for the 
energy use for the distance traveled. The k’s in the model are vehicle 
efficiency-specific multipliers. The model has over 96% accuracy in 
tests performed with vehicles GPS coordinates and output fuel con-
sumption values read from on board diagnostics (OBD-II) devices. To 
use this model for any vehicle in the Bay Area fleet, we calibrated 
the vehicle efficiency constants and further validated the calibrated 
model. For calibration of the constants ks, we used fuel efficiency 
values provided by the Environmental Protection Agency’s (EPA) 2021 
report (U.S. Department of Energy, 2021) and FTP-75 speed profiles 
used in EPAs urban fuel economy testing procedure ((EPA), 2021). 
(see Supplementary Notes S4 for a list of calibrated coefficients). We 
validate our calibration by comparing them with the results of the 
software Autonomie, a fuel consumption simulator developed by the 
Argonne National Laboratory (Yao & Moawad, 2019). We tested the 
model for five vehicles in the software under EPA’s FTP-75 and HTP-
75 drive cycles (see Supplementary Note S4). We recorded the mean 
absolute error of all tests, obtaining 5% on average, as shown in Fig. 
2A.

To use this model to estimate city-wide fuel consumption, we as-
signed each vehicle trip a route on the network, based on the edges with 
the shortest travel time. Each trip’s travel time, speed, and distance is 
calculated from the edge weights. The idling time is imputed only if 
a stop sign, traffic light, or crossing is present at the nodes traversed. 
The acceleration variable in the model is approximated since we do not 
have high-resolution speeds along the edges. We use constant speeds 
4 
along the roads as extracted from the Uber Movement Speeds. We 
then included the acceleration/deceleration if a stop or a speed change 
between edges is present (for details see Supplementary Notes S5). 
For example, on an average Monday, we have 9.6 million daily trips 
before SIP orders and 4.2 million distinct origin and destination pairs. 
We assigned 5.3 million distinct routes and recorded associated speed 
profiles.

The fuel consumption of all the routes are calculated for different 
manufacturer-reported fuel economies with the calibrated StreetSmart 
model. Due to traffic conditions, the average of our estimated fuel 
efficiency of the vehicles varies from the manufacturer-reported fuel 
economy by 17%, and the differences in the actual fuel economy of the 
same car can be as high as 70% as it is shown in the distributions of Fig. 
2B. These variations illustrate the impact of the road network traffic on 
the actual vehicle efficiency. We observe that trips before the SIP orders 
have a 6%–7% lower median fuel efficiency than the trips during the 
SIP orders. The difference arises from the less congested states of the 
roads.

2.3. Emissions comparisons with sensor-based estimates

In urban areas, disagreement between on-road emission inventories 
can be as large as 40%–100% (Gately & Hutyra, 2017). The uncertainty 
arises from the model assumptions and differences in underlying data 
sources such as vehicle efficiency, emission factors, magnitude and 
spatial distribution of VKT, and travel speeds. In MODES, emissions 
are calculated only for the personal vehicles for an average Bay Area 



A.T. Öztürk et al. Sustainable Cities and Society 129 (2025) 106421 
Fig. 3. On-road vehicle emissions validation. Comparison of PEMS + EMFAC estimates and MODES on I-80 highway for (A) an average weekday before the SIP order and (B) for 
an average weekday during the SIP period. (C) Percentage of total emission estimates for each road class before and after SIP estimated by MODES. Highways have the largest 
share of emissions both before and after SIP. (D) Comparison of hourly PEMS + EMFAC and MODES emission estimates on 4 highway segments before SIP. The best-fit line 
𝑦 = 0.8𝑥 (blue) and 𝑦 = 𝑥 (gray) are shown. (E) Comparison of hourly PEMS + EMFAC and MODES emission estimates on 4 highway segments after SIP. The best-fit line 𝑦 = 0.7𝑥
(blue) and 𝑦 = 𝑥 (gray) are shown. (F) Highway segments used in part D. Base map OpenStreetMap contributors.
vehicle with 25 mpg efficiency (Fitzmaurice et al., 2022). Trucks fuel 
consumption is not included due to a lack of data on heavy-duty 
vehicles’ temporal and spatial distribution. In order to get emissions, 
fuel consumption estimates for the personal vehicles are then converted 
to CO2 emissions assuming 8887 [g CO2] is emitted per gallon of 
fuel burned (U.S. Environmental Protection Agency (EPA), 2018) (See 
Supplementary Notes S8).

We compared our resulting emission estimates with the direct mea-
surement of the Berkeley Air Quality and CO2 Network (𝐵𝐸𝐴𝐶𝑂2𝑁) 
and also with the Emissions Factor model (EMFAC2017) of the Califor-
nia Air Resources Board (CARB) (California Air Resources Board, 2017) 
applied to vehicle flows acquired from CalTrans Performance Mea-
surement System (PeMS) (Caltrans Performance Measurement System, 
2021). After COVID-19 SIP estimates are mainly used for validation 
purposes, making the results robust to different travel demand levels 
within the network.

The EMFAC2017 model provides emissions factors for each vehicle 
class and speed level. However, getting the aggregate emissions for road 
segments requires further knowledge of vehicle counts and speeds. We 
followed the method presented in Fitzmaurice et al. (2022) and com-
bined the emissions factors with the vehicle count, truck percentage, 
and speed data obtained from PeMS. The PeMS data is only available 
for highways. Therefore, we first validated our results only on highways 
which account for 73% and 76% of all vehicle emissions before and 
during the SIP. Selected highway segments; I580 I80, I880 and I980 are 
presented in Fig.  3. These segments were selected due to the differences 
in length and average truck percentages. We observe that our estimates 
are within 35% of the PeMS-EMFAC2017 model for daytime emissions 
between 7 am and 9 pm. Before and during SIP emission comparisons 
for a typical weekday for a 5 km stretch of the I80 are presented in Fig. 
3A–B. Emissions comparisons for the rest of the highways are provided 
in the Supplementary Figure S9.

To evaluate the performance of MODES in non-highway emissions, 
we compared the results with the 𝐵𝐸𝐴𝐶𝑂2𝑁 estimates. Comparison of 
data-driven models with the direct emissions estimates is expected to 
5 
have differences as there are uncertainties involved in both processes. 
The CO2 concentration measurements are recorded by a 𝐵𝐸𝐴𝐶𝑂2𝑁 ’s 
dense network of sensors and attributed to a source using a Bayesian 
inversion method (Turner, Kim et al., 2020). We performed analysis on 
transportation emissions in the 40% CO2 influence region (Fitzmaurice 
et al., 2022), shown inFig.  4(D–F). Percentage difference is calculated 
as (CO

𝐵𝑒𝑎𝐶𝑂2𝑁
2 −CO𝑀𝑂𝐷𝐸𝑆

2 )

CO𝐵𝑒𝑎𝐶𝑂2𝑁
2

.

Hourly airflow models at high spatial resolution can vary signifi-
cantly due to uncertainty in wind speed and direction (Lauvaux et al., 
2016). In order to find a good validation resolution, we tested the 
difference between 𝐵𝐸𝐴𝐶𝑂2𝑁 and MODES estimates at varying ag-
gregation levels and highway lengths. Results are shown in Fig.  4. We 
first aggregated the transportation emissions zones from 1 to 25 km2

areas to account for the possible errors in the airflow direction model. 
Spatial aggregation significantly decreased the range and median of the 
difference between the two models up to 9 km2. We further aggregated 
the results temporally for 9 km2 cells. We take the average of the 
weekdays available for each measurement hour based on the sensor 
measurements. Temporal aggregation further reduced the range and 
median of the difference. Finally, we found that MODES underpredict 
regions with fewer highways.

The spatial variation of the emissions for the average 3 PM travel 
behavior before and after the SIP is illustrated in Fig.  4D–G. The results 
shown are for 9 km2 cells and aggregated temporally as described 
above. The cells are colored based on the quantile breaks of each model 
and measurement period. When we compare Fig.  4D and E, MODES and 
𝐵𝐸𝐴𝐶𝑂2𝑁 have a similar spatial distribution of the emissions. MODES 
generally underpredict. The underprediction of MODES is expected 
since we do not account for heavy-duty vehicles (HDV) in our analysis. 
Our high prediction in highways could be due to the high flow values 
assigned to the highways in the vehicle assignment method. When we 
compare Fig.  4D and F, and Figs. E and G, we observe that the model 
captured the decrease in emissions during the SIP order.
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Fig. 4. Comparison of MODES CO2 emissions estimates with 𝐵𝑒𝑎𝐶𝑂2𝑁 measurements. (A) Comparison under different spatial aggregation units. (B) Comparison under different 
temporal aggregation units. The difference between 𝐵𝑒𝑎𝐶𝑂2𝑁 minus MODES is calculated for 9 km2 grids. (C) Comparison in cells with different highway lengths. As the highway 
span increases, our estimates overpredict. (D–G) Local emission estimates within the 𝐵𝐸𝐴𝐶𝑂2𝑁 domain (Gray line indicates the region that contains the largest 40% of the total 
network influence). Emissions are spatially aggregated into 9 km2 cells and temporally aggregated within the 6 weeks before and after the SIP analysis period. Quantile breaks are 
adopted to demonstrate the spatial distribution of emission hot spots.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
Mesoscopic model of vehicular emissions

This section investigates the relationship between vehicular emis-
sions and urban metrics. We analyze the role of urban form and travel 
patterns. Scaling laws in urban systems have been studied widely 
in various domains. Response of the quantity Y to a change in the 
independent variable, X, is represented in the form of a power law: 

𝑌 = 𝛼𝑋𝛽 (2)

Data from cities present scalings of the form of Eq. (2) where 𝑋
is population and 𝑌  various socio-economic indicators (Bettencourt, 
2013; Bettencourt et al., 2007; Bettencourt, Samaniego, & Youn, 2014). 
In the urban domain, scaling of emissions over a region with its popula-
tion size has attracted significant attention (Fragkias, Lobo, Strumsky, 
& Seto, 2013; Mohajeri, Gudmundsson, & French, 2015). Yet no consen-
sus has been reached on the relationship. The value of the exponent 𝛽
differs for the same data set with different urban borders (Arcaute et al., 
2015; Cottineau, Hatna, Arcaute, & Batty, 2017; Louf & Barthelemy, 
2014b). The presence of noise and lack of enough orders of magni-
tude on axes can pose a problem in establishing a significant scaling 
relationship (Barthelemy, 2019b).

Street length, congestion, and VKT are other scaling relationships 
explored (Louf & Barthelemy, 2014a; Mohajeri et al., 2015). Yet these 
existing studies lack reliable emission estimates or the resolution of 
the data is too low to establish a relationship with trips over the road 
networks.

We investigate scaling relationships between the daily emissions 
(𝑔CO2∕day) production within the network in relation to VKT and pop-
ulation. The daily emissions are calculated based on the home locations 
and the trips extracted from the TimeGeo model (Xu et al., 2018). CO2
emission production by travelers across the Bay Area are aggregated 
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into the home cities as defined by the US Census Bureau. There are 162 
cities in the analysis region. The CO2 emission production calculations 
were made based on an average vehicle efficiency of 25 mpg in the Bay 
Area.

To calculate the local scaling exponent, we generated scaling tomog-
raphy plots suggested by Barthelemy et al. for noisy data (Barthelemy, 
2019b) (see Supplementary Figure 5A). This method allows us to 
identify threshold effects and multiple scaling exponents that are not 
detectable by classical least squares fitting. A super-linear scaling with 
𝛽𝑒𝑓𝑓 = 1.12 ± 0.13 is found between the city population and the CO2
emissions produced by them as shown in Fig.  5C.

As shown in Fig.  5D, we find a linear relationship between the 
total VKT and the total CO2 emissions produced by the city residents. 
We observe a clear linear relationship and no threshold effect in the 
tomography plots (see Supplementary Figure 5B). The slope of the best-
fit line is the emission efficiency (𝑔CO2∕km) of a trip and it varies 
among different cities. We find 209 𝑔CO2∕km as the mean emission 
efficiency of the cities in our domain and the value can range between 
175 to 225 𝑔CO2∕km. The difference between the cities arises from the 
different congestion levels experienced and the stop and go traffic.

We also analyze the population density as a function of 𝑉 𝐾𝑇 ∕
𝑝𝑒𝑟𝑠𝑜𝑛. Cities cluster into four groups within the Bay Area travel 
network in the analysis region, as shown in Fig.  5A–B using K-means 
clustering. We observe that high population density is associated with 
low VKT per person, but in low population density zones, VKT per 
person varies. Also, high population density results in high congestion 
levels experienced by their residents (see Supplementary Figure 6). In 
cluster 2 in Fig.  5A–B, we can observe that low population density 
cities are uniquely characterized by a lower VKT/person. Yet, when 
we extend the analysis from individual cities to metropolitan-level 
interactions, we see that a dense urban core can drive longer commutes 
for residents of peripheral cities. This core–periphery dynamic is likely 
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Fig. 5. Scaling of on-road vehicle emissions (A–B) 162 Cities in the analysis region are clustered into four groups (different colors) based on population density and per-person 
VKT within the travel network. In cluster 2, we can observe that low VKT/person uniquely characterizes high population density. (C) The power-law relationship between the 
local population and the network-level vehicle emissions produced in the Bay Area. A super-linear scaling with 𝛽𝑒𝑓𝑓 = 1.12 ± 0.13 is found. (D) The linear relationship between the 
total VKT by the city residents and total emissions produced by them. The inline plot shows the distribution of the slope (𝑔CO2∕km) per city, and the median is at 209 𝑔CO2∕km. 
(E) Emissions of trips at the different congestion levels, keeping everything else (stop time, acceleration, distance) constant. Each line is Eq. (3) (F) Emissions per trip by the law 
presented in Eq. (4) with a vehicle efficiency of 25 mpg (10.6 km∕l). The region within the dotted lines is the one standard deviation confidence interval.  (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)
to be the reason for cities belonging to cluster 3 and 4 to have higher 
VKT/person.

To quantify the impact of congestion and VKT, we further check 
emissions at the trip level for the same route at varying congestion 
levels. Fig.  5E illustrates 1500 trips where each dot represents the trip’s 
emissions for a given congestion level. The best fit of 𝑔𝐶𝑂2 emissions 
(𝑌𝑖) of trip 𝑖 is 

𝑌𝑖 = 𝛼𝑖 exp (𝛽𝑐𝑋) (3)

with 𝛽𝑐 = 0.004 ± 0.001 for all trips. At the same congestion level, 
emissions for a trip can vary significantly due to the VKT. The route 
difference presents itself in the intercept 𝛼𝑖, of each trip’s emissions 
best-fit line. The 𝛼𝑖 is, in turn, a function of the VKT and the fuel 
economy (𝐹𝐸). For trips with a 25 mpg vehicle, 𝛼𝑖 = 𝛾𝑉 𝐾𝑇𝑖, and 
𝛾 = 190.6 ± 33.3[𝑔CO2∕km]

Fig.  5F shows Eq. (3) divided by 𝑉 𝐾𝑇𝑖, where 89.7% of the trips lie 
within the confidence interval. The trips outside this region are short 
in distance and have much longer idling times per VKT. Supplementary 
Figure 8 illustrates the distribution of VKT, idle time per VKT, and 
acceleration per VKT for the trips outside and inside the confidence 
interval. We show that the trips outside the confidence interval have 
a mean idling time per VKT of 60 s, whereas this value is 18 s for the 
rest of the trips.

This relationship can be generalized to any fuel economy when we 
write 𝛼𝑖 as a function of the manufacturer’s reported fuel economy of 
the vehicle. Fitting procedure is described in Supplementary Notes 7. 
Supplementary Figure 9 illustrates that the best fit for this relation is 
𝛾 = 2006.53±314.32[𝑔CO2∕l]∕𝐹𝐸 where 𝐹𝐸 stands for the fuel economy 
in [km/l]. We get the general expression per trip emissions: 

𝑌𝑖 =
2006.53[𝑔CO2∕l]

𝐹𝐸[km∕l]
𝑉 𝐾𝑇𝑖 exp0.004𝑋 (4)

The median vehicle travel distance in the Bay Area is 15 km, and 
95% of the trips are below 70 km. This means VKT can vary emissions 
by 10% to 500%. Vehicle efficiency approximately ranges between 10 
mpg to 119 mpge (mpg equivalent for electric vehicles), that would 
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change the estimates of Eq. (4) from 20% to 300% of the mean 
efficiency for a passenger combustion vehicle. Varying the congestion 
level from free-flow to 100% can increase the emissions by 1.5 times 
or 50%. However, 100% congestion is rarely experienced, 95% of the 
trips in the Bay Area experience congestion levels below 62% which 
corresponds up to 28% enhancement of vehicular emissions.

Eq.  (4) is derived at the individual trip level, independent of specific 
city characteristics. While the above analysis is conducted for the Bay 
Area travel network, the equation can be reproduced for any city. To 
validate its reproducibility, we tested the MODES law using emissions 
data generated through the Simulation of Urban Mobility (SUMO) 
software in Boston, Los Angeles, and Rio de Janeiro. These repro-
ducibility tests demonstrated that 13–15% of the trips fall within the 
defined confidence level, confirming the robustness of the MODES law 
across diverse urban environments. Supplementary Fig. S10 provides 
visual comparisons, and further details of the evaluation process are 
outlined in Supplementary Notes S9. Despite relying on three simplified 
metrics—VKT, congestion, and fuel economy—the MODES law aligns 
closely with the simulated emissions, supporting its generalizability.

The availability of VKT, congestion, and efficiency parameters en-
ables this equation to provide a robust and straightforward estimation 
of transportation emissions with high spatial and temporal granularity. 
The MODES framework can be replicated to conduct in-depth analyses 
and reveal location-specific emission trends. The mobile phone activity 
data used in MODES is readily available in modern cities, and average 
road speeds are obtained through the Uber Movement Speeds API. 
While we rely on average speed data, which is more readily available 
than instantaneous speed values, our validation process confirms the 
robustness of the results.

3. Discussion

3.1. Key findings and interpretation

This study introduces MODES, a data-driven framework for esti-
mating vehicle emissions based on individual mobility data extracted 
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from mobile phones. We quantify the relationship between vehicular 
emissions, congestion, and VKT with a simple and scalable equation. 
The key advantage of this formulation lies in the accessibility of its in-
puts. Congestion levels are available through datasets such as TomTom 
Traffic Index, VKT can be estimated from fuel sales, traffic sensors, or 
travel surveys, and fleet fuel economy is often available from vehicle 
registration databases. Using this equation, we found that VKT is the 
dominant factor influencing aggregate emissions, far outweighing the 
effects of congestion. While there is no clear linear relationship between 
population density and emissions, our clustering analysis reveals that 
high-density cities tend to produce lower per capita emissions, largely 
due to shorter travel distances—even though they experience higher 
congestion levels. In contrast, low-density, peripheral cities often show 
higher emissions per capita as a result of longer VKT.

Reproducibility of the MODES results was tested by comparing 
vehicle emissions results with those obtained from SUMO for Boston, 
Los Angeles, and Rio de Janeiro. The MODES equation accurately 
estimated emissions for 85%–87% of trips.

MODES is validated by direct CO2 measurements of the Berkeley 
Air quality and CO2 Network (𝐵𝐸𝐴𝐶𝑂2𝑁). While both MODES and 
(𝐵𝐸𝐴𝐶𝑂2𝑁) estimates have various sources of uncertainties, they have 
comparable results for 9 km2 spatial aggregation and 5 days of tem-
poral aggregation. MODES estimates are lower than the 𝐵𝐸𝐴𝐶𝑂2𝑁
estimates, mostly because of our use of average passanger vehicles with 
25 mpg efficiency and lack of trucks (on average 7 mpg efficiency in 
the Bay Area) in our model.

Our mobility science informed emissions model is further evalu-
ated against a hybrid model developed with highway vehicle counts, 
highway speeds and truck percentages acquired from PeMS highway 
sensors and emissions factors acquired from the CARB’s EMFAC2017 
model. Different than the validation with 𝐵𝐸𝐴𝐶𝑂2𝑁 data, we used 
PEMS heavy duty vehicle percentage estimates in MODES. We assigned 
a percentage of the mobile phone travelers as trucks and assumed a 7 
mpg efficiency for them. Comparisons of the hourly emission estimates 
on different highway segments showed that results of the two model’s 
are within 35% of each other before and during the SIP orders.

The use of before and after COVID-19 SIP data is crucial for our val-
idation. We show that the framework successfully captures the changes 
in mobility and associated emissions in the San Francisco Bay Area six 
weeks before and during the shelter-in-place order due to COVID-19. 
In our analysis, we show that the work-from-home behavior decreased 
the total number of weekday trips. However, the share of long-distance 
trips increased. Remote working improved the road conditions by 
lowering daily average network-wide congestion from 28% to 15%. The 
impact of the lowered congestion on vehicle efficiency is captured by 
the proposed framework. During the SIP, the median fuel efficiency 
of the trips increased by 6%–7% per vehicle type due to decreased 
congestion. Furthermore, we showed that on-road vehicle efficiency 
can vary by 70% from the manufacturer fuel economy depending on 
the vehicle speeds and stops.

Using individual mobility data allows us to relate emissions pro-
duced across the network to the home locations of travelers. This 
provides valuable insights into sustainable urban forms that local emis-
sion measurements cannot provide. We observe that cities with high 
population density have lower VKT and CO2 emissions per person. Nev-
ertheless, the congestion levels are higher for high population density 
regions. Considering the relationship obtained in Eq. (4), high popula-
tion density is desirable from a climate change mitigation perspective. 
In Fig.  5A–B we also observe that less dense, peripheral cities have 
longer travel distances. For transportation decarbonization, it is key to 
not only shorten trips in dense cores but also tackle long commutes 
from peripheral areas.

Another advantage of the use of individual mobility data in the 
emissions estimates is the ability to quantify the disparities between 
the CO2 production by different location sources. The ability to capture 
origin and destination pairs with the highest emissions has the potential 
to enrich policy interventions.
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3.2. Policy implications

MODES offers actionable insights for multiple policy domains. First, 
it enables more effective environmental justice strategies by linking 
emissions to individual travel patterns and origins, allowing policymak-
ers to identify both the communities generating emissions and those 
disproportionately exposed to them. This can support the design of 
socially equitable and targeted State Implementation Plans (SIPs), low-
emission zones, and clean vehicle incentive programs. For example, in 
our work the residents of San Jose have the highest total emissions. 
Therefore, this region should be prioritized in mobility decarbonization 
efforts.

Second, MODES integrates smoothly into existing urban develop-
ment and transportation project evaluation workflows. Since VKT and 
congestion are routinely computed in project assessments, MODES can 
directly estimate emissions impacts of alternative scenarios, aiding 
decisions about land-use changes, roadway expansions, and transit-
oriented development (TOD). It also facilitates the assessment of poli-
cies such as congestion pricing—for an example combining distance- 
and time-based pricing seec (Zong, Zeng, & Li, 2024)- helping planners 
identify total emissions effects and distributional impacts.

Finally, MODES supports the evaluation of fuel economy policies 
while accounting for the rebound effect, where improved efficiency 
may lead to increased travel. By quantifying this effect, MODES helps 
policymakers design complementary strategies to ensure that fuel effi-
ciency improvements translate into actual CO2 reductions.

Taken together, the findings from MODES contribute to building 
urban mobility systems that are environmentally sustainable, socially 
equitable, and economically practical. By linking emissions to individ-
ual travel patterns and home locations, MODES offers critical insights 
for designing targeted interventions, particularly for addressing envi-
ronmental justice concerns. Its reliance on widely available mobility 
and traffic data makes it suitable for rapid assessments of transportation 
and land-use scenarios, without the need for resource-intensive model-
ing. MODES thus serves as a practical decision-support tool for shaping 
urban environments that are cleaner and fairer.

3.3. Limitations

While MODES provides valuable insights, several limitations should 
be acknowledged. First, the model currently focuses on personal ve-
hicles and does not fully account for heavy-duty vehicles due to data 
limitations. Second, the reliance on mobile phone data may underrep-
resent traveler groups without consistent device usage. Third, transit 
traffic (vehicles passing through the study region) is not explicitly mod-
eled, which could affect estimates in high-throughput corridors. Fourth, 
MODES does not incorporate instantaneous acceleration profiles, which 
may cause some underestimation of emissions, particularly for highly 
dynamic driving patterns. Lastly, while CO2 is well captured, criteria 
pollutants such as PM and NOx require additional modeling steps to be 
integrated into the framework.

4. Future work

Future extensions of this work include incorporating heavy-duty 
vehicles, freight activity, and public transit into the emissions model, 
as well as improving demographic resolution to better capture eq-
uity considerations. We also plan to include trip purpose data and 
explicitly model through-traffic, which may affect high-flow corri-
dors. The framework can be extended to support scenario analysis 
for evaluating the emissions impacts of specific policy interventions, 
such as vehicle electrification, congestion pricing, or low-emission 
zones. In addition, integrating urban metrics—such as land use di-
versity, shape indices, or sprawl indicators—into the analysis could 
provide insights into how urban form influences emission generation, 
strengthening the landscape-level analyses on local emissions in Li, 
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Table 1
Definitions of key terms and abbreviations.
 Term/Abbreviation Definition  
 CBG Census Block Group, a geographical unit used in census data 

collection.
 

 Congestion Percentage deviation from the free-flow travel time on a 
road network (%).

 

 Fuel Economy Distance traveled per unit of fuel, measured in kilometers 
per liter (km/l) or miles per gallon (mpg).

 

 SIP Shelter-in-place orders.  
 VKT Vehicle kilometers traveled (km).  

Wang, Zhang, Zhu, and Yang (2024). Finally, incorporating dispersion 
modeling and expanding beyond CO2 to include criteria pollutants 
like PM and NO𝑥 would allow for a more complete assessment of 
transportation’s environmental and public health impacts.

5. Conclusions

MODES provides a scalable, transferable, and data-efficient frame-
work for estimating vehicular CO2 emissions using individual-level mo-
bility data. Its ability to relate emissions to VKT, congestion, and fleet 
fuel economy makes it suitable for rapid policy evaluation and scenario 
analysis. The model demonstrates good agreement with both bottom-
up and top-down validation methods and offers practical insights into 
emissions patterns across different urban forms. Importantly, MODES 
highlights the potential for reducing per-capita emissions through VKT 
reduction strategies and identifies spatial disparities in emissions gen-
eration. This work contributes a valuable tool for transportation decar-
bonization and supports the design of equitable and effective climate 
and mobility policies.

6. Methods

6.1. Definitions

This section defines key terms used throughout the paper (see Table 
1).

6.2. Individual mobility model

Mobile phone activity data and call detail records (CDR’s) have been 
widely adopted in mobility modeling studies. In this work we utilized 
two datasets developed by mobile phone activity analysis: (1) TimeGeo 
urban mobility model (2) SafeGraph mobility data (SafeGraph, 2021).

The TimeGeo mobility model is a simulation framework designed 
to model urban travel demand by combining call detail records (CDRs) 
with individual mobility patterns. For this study, CDR data covering 
approximately 1.39 million users and over 200 million calls across 
the Bay Area over six weeks serve as the primary input. Each CDR 
entry includes anonymized user IDs, timestamps, call duration, and 
the geographic location of the connecting cell tower. The data is 
spatially refined to 892 distinct cell tower service areas, providing the 
granularity necessary to capture individual mobility choices. TimeGeo 
uses this data to simulate individual travel behavior by dividing each 
day into 144 discrete 10 min intervals and determining whether each 
individual remains at their current location or moves to another based 
on a probabilistic Markov chain model. The model’s output is a sim-
ulated travel demand of approximately 13 million trips daily across 
3.9 million individuals with known home locations (based on census 
tract data). Each trip is labeled with a purpose, aligning with typical 
urban mobility motifs, and the spatial and temporal distribution of 
trips aligns closely with observed urban commuting patterns. Further 
methodological details are presented in (Xu et al., 2018).

TimeGeo model in the San Francisco Bay Area built and validated 
against NHTS and CHTS (Xu et al., 2018) for a typical weekday. We 
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adopted the trips in this model as the base scenario for the travel 
behavior before the shelter in place decisions. Each trip is associated 
with a user ID, home census tract for the user, trip purpose, timestamp 
and origin–destination coordinates.

To extend this model to the each day of the week for before and after 
shelter in place decisions we followed a simple scaling process using 
the SafeGraph data. We first extended the average weekday behavior 
before SIP to 5 days of the week. Then a daily-hourly flow change as a 
percentage between each OD is calculated.

SafeGraph, a data company that aggregates anonymized location 
data from numerous applications in order to provide insights about 
physical places, via the SafeGraph Community. To enhance privacy, 
SafeGraph excludes census block group information if fewer than five 
devices visited an establishment in a month from a given census block 
group (SafeGraph, 2021). Due to the aggregation steps towards meeting 
privacy requirements hourly origin–destination (OD) flows are not 
provided in any of the SafeGraph data products. We retrieved data 
from Neighborhood Patterns and Social Distancing Metrics between 
Jan 1–May 31, 2020. In our study area, SafeGraph data includes 
approximately 315,000 to 365,000 active devices per day, which corre-
sponds to 4.4%–4.6% of the total population (7.95 million). To ensure 
representativeness, we normalized trip counts by the number of active 
devices and applied population-based scaling factors at the Census 
Block Group level. We inferred the hourly OD flows for each day of 
the week before and after shelter in place decisions combining these 
two datasets. Neighborhood Patterns data is one of the main products 
of the company which provides monthly analysis of census block group 
and point of interest visits. We used the stops_by_each_hour variable 
reporting the number of stops starting at each hour throughout the 
month for a CBG. Social Distancing Metrics product has been released 
following the COVID-19 confinements. For each origin CBG, destination 
CBG counts aggregated over a day is provided. We created the hourly 
OD matrix M as using the daily hourly origin–destination matrix D and 
the total hourly stops matrix S for each destination as following: 
𝑀𝑖,𝑗,𝑡,𝑑 = 𝐷𝑖,𝑗,𝑑𝑆𝑗,𝑡,𝑑 (5)

where i’s are origin CBGs, j’s are destination CBGs, t is the hour of the 
day and d is the day of the month. The inferred daily hourly OD flows 
between CBGs are separated as before and after shelter in place flows. 
The OD flows then averaged for each weekday and hour pair to infer a 
representative behavior.

6.3. Road network and speeds

We obtain the San Francisco Bay Area road network as a directed 
graph where each edge is the road and each node is an intersection. 
Road and intersection geometry is acquired from Open Street Map 
(OSM). OSM provides road type, maximum speed and number of lanes 
associated with each road. For the intersections we retrieved traffic 
signals, stops, crossings, and junctions to model the stop and go traffic. 
To retain this information no simplification is performed on the final 
graph.

The hourly speed values are retrieved from the Uber Movement 
Speeds API which provides hourly mean speed values of the street seg-
ments in several metropolitan areas starting from 2018. In this project, 
the data between 06/2019 and 4/2020 is retrieved. Its important to 
note that, Uber Movement API stopped reporting data after 4/2020. 
Due to Uber’s data collection and reporting protocol, we do not have 
hourly speed values on all of the streets. Only the road segments that 
attracted enough traffic in each hour are included to protect customer 
privacy. Therefore to get the missing speed values, we applied a K-
nearest neighbors (KNN) data imputation method to have a network 
with complete information. (see Supplementary Notes S1)

Uber Movement Speeds values are based on averaged and
anonymized GPS data from Uber’s ride-hailing vehicles, which gen-
erally follow typical traffic patterns, though they may not capture all 
aspects of general vehicle flow.
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6.4. Fuel consumption and vehicle emissions model

Fuel consumption of the trips is estimated with the regression based 
model StreetSmart. This model is developed using the OBD-II and GPS 
data collected from 600 miles of driving. Authors included 4 variables 
in the final model after testing a range of parameters. The final model 
with a mean accuracy of 96% in the tested scenarios is presented in Eq. 
(1).

The model predicts the fuel consumption in US gallons. 𝑇𝑖𝑑𝑙𝑒 is the 
stopping time, 𝑇𝑚𝑜𝑣𝑒 is the moving time in seconds, 𝑎 is acceleration 
in ms2  integrated over the distance and 𝐿 is the distance driven in km. 
The 𝑘’s in the model are vehicle efficiency specific constants and they 
are calibrated for different vehicle efficiency bins. The model presented 
is detailed enough to capture the efficiency changes due to the speed 
variations and stop-and-go traffic. We further validated this model 
with Autonomie simulations and EPA speed profiles. The results are 
presented in Fig.  2.

We converted the gallons of fuel consumption to CO2 emissions in 
grams using the CO2 intensity of the fuel. We take the fuel density as 
0.75 g

ml  and carbon intensity of the fuel by weight as 0.86
𝑔𝐶

𝑔𝐹𝑢𝑒𝑙 . Carbon is 
converted into carbon dioxide in the combustion process with a weight 
ratio of 12 to 44.

6.5. CO2 sensor measurements

We use hourly CO2 observations from the Berkeley Air quality and 
CO2 Network (𝐵𝐸𝐴𝐶𝑂2𝑁). The CO2 observations are converted to 
hourly emissions with Stochastic-Time Inverted Lagrangian Transport 
(STILT) model, coupled with a Bayesian inversion (Turner, Kim et al., 
2020).

The inversion process requires meteorology data and prior emission 
estimates from different sources. Prior emissions sources included in 
the 𝐵𝐸𝐴𝐶𝑂2𝑁 − 𝑆𝑇𝐼𝐿𝑇  inversion are home heating data distributed 
spatially according to population density, fuel sales data distributed 
spatially according to vehicle counts (McDonald et al., 2014) and bio-
genic inventory derived using Solar Induced Fluorescence (SIF) satellite 
data (Turner, Köhler et al., 2020). The resulting posterior emissions 
are stored in 1 km2 grid cells. Transportation emissions are estimated 
by subtracting the non-transportation priori sources from posterior 
emissions. 𝐵𝐸𝐴𝐶𝑂2𝑁 − 𝑆𝑇𝐼𝐿𝑇  inversion is estimated to be precise 
to at least 30% for a line source (Turner et al., 2016).

The influence region of the sensors are the regions that the emis-
sions are likely to be originated from. In this work we followed Fitz-
maurice et al. (2022) and included the 40% influence region in the 
analysis.
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