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Fire spread models (FSMs) are used to reproduce fire behavior and can simulate fire propagation over 
landscapes. As wildfires have emerged into a global phenomenon with far-reaching impacts on the 
natural and built environments, FSM simulations provide crucial information to better understand 
and predict fire behavior in various landscapes. In this study, we tested Cell2Fire, a recently developed 
cellular automata-based FSM, against benchmarking models used in the U.S., Canada, and Chile. 
We experimented on synthetically generated landscapes (homogeneous and heterogeneous mix of 
fuels), applying Cell2Fire for the first time on U.S. landscapes, and found a high level of agreement 
between Cell2Fire and existing FSMs. However, FSMs may not always produce realistic simulations. In 
response, we used two optimization methods to improve the simulation’s accuracy. First, we adopted 
a multi-objective optimization algorithm that scales the elliptical shape of the Cell2Fire’s output based 
on rate of spread (ROS) and eccentricity. Second, we optimized four adjustment factors related to 
the fire spread (head ROS, back ROS, flank ROS, and eccentricity) using blackbox optimization (i.e., 
derivative-free optimization), minimizing the discrepancy of the output with respect to real burn 
data. We assessed the effectiveness of the optimization on the 2001 Dogrib Fire in Alberta, Canada 
and found that the optimized Cell2Fire result more accurately predicted the real burn in comparison 
to Prometheus (standard Canadian FSM), increasing F1-score from 0.74 to 0.83. Further, Cell2Fire 
exhibited better computational efficiency, with simulation runtime increasing linearly compared to 
Prometheus’ runtime increasing exponentially. From these results, users can adjust Cell2Fire and 
simulate more realistic burns and surpass the capabilities of benchmark FSMs, integrating local or 
custom-made FSM data to expand the simulator’s application.
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Climate change has exacerbated fire-conducive weather conditions1,2, while urbanization and fuel accumulation 
from decades of fire exclusion have exposed our communities and environments to a greater risk of catastrophic 
wildfires3,4. The risk of these wildfires poses an immediate and direct impact on our communities, destroying 
buildings and property, damaging and irrevocably altering ecosystems, and claiming human lives and assets. The 
far-reaching devastation of wildfires serves as a reminder that we still need to better predict, mitigate, and fight 
against these hazards. As wildfires continue to occur worldwide5–7, there is a pressing need to better understand 
the potential behavior and effects of fire8.

In light of these trends, we explore Cell2Fire9 a cellular automata fire growth simulator, which has been 
applied in Canada9, Spain10 and Chile11. This study presents the first application of the Cell2Fire in the U.S., 
simulating fire spread across both synthetic and real landscapes. In addition, we adopt an ellipse optimization 
algorithm12 that helps scale the elliptical shape of Cell2Fire’s simulated outputs to resemble those of existing 
simulators more closely. We also use BlackBox Optimization (BBO)13 (i.e., derivative-free optimization) which 
optimizes adjustment factors for rate of spread (ROS) needed to fine-tune the simulation output with respect to 
real burn scars.

In fire management, FSMs can be used to simulate and predict wildfire propagation, which helps to better 
plan and mitigate against wildfire risk8,14. These models are often integrated into spatial decision support 
systems8,15 and are essential computational tools for operational wildfire management applications such as 
burn probability and wildfire risk mapping9,16–19, fire suppression19–21, landscape management9,22, forest tactical 
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management9,10,16,17, fuel management17,23, prescribed fire allocation24 and fire evacuation modeling25,26. Semi-
empirical FSMs are often used in operational fire management, which are based on simplified abstractions of 
complex fire physics and use empirically modeled relationships tested with local fuel, topography, and weather 
conditions15,27. However, some semi-empirical FSMs are non-spatial and simulate only a single fuel type under 
constant input parameters (e.g., Behave28 and the Canadian forest Fire Behavior Prediction (FBP) system29). 
To spatially simulate fire spread over heterogeneous landscapes, semi-empirical models can be integrated 
with a spread simulator to propagate fire growth in a spatially-explicit manner. In particular, FarSite20 and 
Prometheus30 are two FSMs that can simulate 2D fire spread used in the U.S. and Canada, respectively, and 
are considered to be the best-performing in their regions31. FarSite uses Behave28 and Prometheus uses FBP29 
to compute fire behavior outputs like rate of spread (ROS). Both FarSite and Prometheus, then, simulate fire 
growth based on Huygens’ principle of elliptical propagation, which assumes that fire propagates as a wave of 
independent elliptical wavelets, where every point on the edge of the fire front acts as an independent source of 
secondary wavelets32. This theory has been extended to a set of partial differential equations to model fire growth 
across a heterogeneous landscape33 like in FarSite20. Despite their usage in operational wildfire management20,34, 
however, vector-based models can become computationally expensive for larger areas and longer time periods, 
in addition to causing fire crossovers and unburned islands in the simulations35. The computational efficiency 
of these models scales poorly for large-scale fires and simulations can significantly underestimate real burns. 
Post-processing would be required to address accuracy issues in the simulations but would require manual 
adjustments and expert judgment. For instance, FarSite struggles with prolonged fires under changing 
environmental conditions36 and Prometheus relies on adjustments to calibrate to different geographic locations, 
which further increases computational burden. Alternatively, Cell2Fire was initially developed based on the 
Canadian FBP system, enabling efficient simulations and the integration of decision-making models9. Fire 
spread in Cell2Fire occurs via cellular automata growth based on the head ROS (HROS), back ROS (BROS), 
and flank ROS (FROS) computed by the integrated FSM (i.e., FBP). Cell2Fire carries numerous advantages 
over existing models, including computing efficiency via parallel processing and its modular nature to allow the 
integration of different FSMs in the processing pipeline. In comparison to Prometheus, Pais et al. (2021) found 
that Cell2Fire can simulate up to 30 times faster and at a comparable accuracy (above 90% accuracy)9.

In this study, we first test Cell2Fire in the U.S. by evaluating against FarSite (i.e., benchmark FSM used in the 
U.S.) on homogeneous (i.e., single fuel model type) and heterogeneous fuels under constant weather conditions. 
Testing on heterogeneous landscape shows how well Cell2Fire can simulate spatially explicit fire spread over 
a diverse set of fuel types. While FSMs can reproduce expected fire behavior, the simulated outputs may not 
follow the actual propagation of real wildfires. Real wildfires pose multiple challenges including complex fuel 
mixes, variable weather, and large-scale fire spread, which are relevant to evaluate FSM performance. To address 
this discrepancy, we use the 2001 Dogrib Fire (Alberta, Canada) as a case study to apply BBO and enhance 
the accuracy of Cell2Fire simulations with respect to the real burn scar. We selected this case study due to the 
availability of high-quality, preprocessed datasets, which would be critical for evaluating Cell2Fire and BBO 
under realistic conditions.

Results
Fire spread simulations on homogeneous landscapes
We simulated fire spread on homogeneous landscapes for different wind speeds over a five-hour duration. We 
selected the four most common fuel model types found in Northern California (GR1: Short, sparse, dry climate 
grass; GR2: Low load, dry climate grass primarily grass; GS2: Moderate load dry climate grass-shrub; TU5: 
Very high load, dry climate timber-shrub). In Fig. 1, we show results from two fuel types (GR1 and TU5) under 
three different wind speeds (10, 30, 50 mph). The temporal evolution of the fire for Cell2Fire (colored) and 
FarSite (black outlines) is shown on the left panel, and the amount of under and over-estimation computed as 
a difference of FarSite and Cell2Fire on the right panel. Cell2Fire’s outputs were similar to those of FarSite at 
lower wind speeds, as expected due to the low eccentricity and minimal impact of elliptical distortion. At high 
wind speeds (i.e., 50 mph), however, Cell2Fire tended to overestimate over time in fuels with high expected ROS 
like GR1. This overestimation trend is also visible in GR2 and, to a lesser extent, GS2 (See Supplementary Fig. 
S4). This result may be explained by how FarSite can cause severely elongated elliptical shapes due to the high 
eccentricity at high wind speeds12,20.

To better understand the differences in the Cell2Fire and FarSite simulations, the amount of under and 
overestimation in conjunction with error and accuracy metrics are depicted in Fig. 2 to show the difference 
between the simulations over different wind speeds, highlighting the amount of Cell2Fire’s underestimation 
(blue) and overestimation (red). Figure 2B and D display the error (ΔBurned pixels and RMSE) and accuracy 
metrics (F1-score and structural similarity index (SSIM)) over different wind speeds. In more detail, the 
accuracy assessment revealed a high level of agreement between Cell2Fire and FarSite as demonstrated by how 
F1-score and SSIM exceeded 0.9 and 0.95, respectively, for all fuel models and wind speeds. In general, F1-
score continuously improved to 30 mph wind speed and plateaued or decreased at higher wind speeds. SSIM 
decreased slightly with higher wind speeds, while error metrics, RMSE and ΔBurned pixels, reflected this trend 
and tended to increase.

We also applied Cell2Fire on homogeneous landscapes in Canada and Chile. Fire spread simulation results 
and error metrics are provided in Supplementary Figs. S5 and S6 for Cell2Fire-FBP results, as well as Table 
S9 for Cell2Fire-FBP error metrics, while Supplementary Figs. S10-S12 and Supplementary Table S10 show 
Cell2Fire-KITRAL results and error metrics. For Cell2Fire-FBP, all fuel models returned high F1-scores (F1-
scoreavg=0.95) and low RMSE (RMSEavg=0.21); however, SSIM was relatively lower (SSIMavg=0.78) compared to 
Cell2Fire-Behave results. This can be explained by the smaller homogeneous landscape grids used for Cell2Fire-
FBP, and the simulated fire’s extent would exceed the defined grid. The exception is fuel model D2 (Green Aspen 
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with BUI Thresholding), which yielded a very high SSIM (0.91), thus suggesting that Cell2Fire is capable of 
highly accurate simulations, regardless of the completion of the fire ellipse. Notably, Cell2Fire-FBP tended to 
overestimate the back of the ellipse and underestimate the front. For Cell2Fire-KITRAL, the majority of fuel 
models returned high accuracy and low error (F1-scoreavg=0.91, SSIMavg=0.92, RMSEavg=0.15). One exception 
is represented by the PCH1 fuel type (Dense mesomorphic grassland), where simulation led to less accurate 
results (F1-score = 0.83, SSIM = 0.61). Visualization of the simulation result shows severe underestimation at the 
back of the ellipse, which is likely due to the rigid shape, rather than being rounded and elliptical. Furthermore, 
simulations for PCH1 and PCH2 (Sparse mesomorphic grassland) exceeded the grid’s defined size, which can 
explain the relatively high error and low accuracy results.

Fire spread simulations on heterogeneous landscapes
We tested Cell2Fire on heterogeneous landscapes from Santa Barbara, California (U.S.) under constant weather 
conditions without topography, and Fig. 3 displays the study area and fire spread simulation results with accuracy 
and error metrics. We selected this landscape because of the numerous fuel types (16 types) including the most 
common types found in California (GR2, GS2, TU5)37 and the heightened risk of wildfires occurring in this 
region of the U.S. Figure 3A is a Landsat-8 satellite image of the study area. Figure 3B shows the fuel map (30 
m spatial resolution) and Fig. 3C plots the spatial distribution and pixel proportion of each fuel model types. 
Figure 3D displays the fire’s hourly propagation over the 10-hour time period with FarSite’s final fire perimeter 
(10 h-simulation). The difference between the two fire spread simulation results is shown in Fig. 3E and plotted 
as a measure of the total burned area over elapsed time in Fig. 3F overestimated the front and underestimated 
the flank and back of the final fire spread perimeter. The under and overestimation mostly occurred during the 
final few hours. For quantitative assessment, accuracy and error metrics were plotted and displayed in Figs. 3G-
J. F1-score and SSIM were found to consistently be high (F1average = 0.92 and SSIMaverage=0.98), while RMSE 
increased proportionally with elapsed time, thus indicating that Cell2Fire simulations burned a similar area but 
tended to deviate over time. To enhance the robustness of the simulations, we conducted an uncertainty analysis 
by running various combinations of adjustment factors (HROS, BROS, FROS, eccentricity) to assess Cell2Fire’s 
performance. We use refined search bounds for each adjustment factor and find that the simulated result ranges 
between F1 scores of 0.75 to 0.94 (See Supplementary Fig. S14). We add error bars to Figs. 3G-J for all recorded 
evaluation metrics. Details on the uncertainty analysis are provided in Sect. 6 of the Supplementary Materials.

Fire spread simulations on real landscapes
We tested Cell2Fire on real landscapes in west central Alberta (Canada) under real weather conditions from 
the Dogrib Fire in 2001. We selected the Dogrib Fire because of its detailed fire behavior data and weather 
stream data provided as an open-source sample dataset with the Prometheus software download30. Simulation 
outputs based on real landscapes in Portezuelo, Chile under variable weather conditions are also provided in 
Supplementary Section S5. Figure  4A displays the landscape’s FBP fuels, elevation, slope, and aspect. Then, 

Fig. 1. Fire spread simulation outputs on homogeneous landscapes under constant wind speeds comparing 
Cell2Fire and FarSite simulations. Panels A to C represent simulation outputs for fuel type GR1, while panels 
D to F for fuel type TU5. For each fuel type, three wind speed scenarios are considered: 10 mph (panels A, D), 
30 mph (panels B, E), and 50 mph (panels C, F). The colored regions represent the fire spread simulated by 
Cell2Fire over five hours. The black-line ellipses represent the corresponding final fire perimeter simulated by 
FarSite (i.e., perimeter at the 5th hour). The difference maps adjacent to each fire spread simulation illustrate 
the discrepancy between the final burn area of the two models. Red indicates overestimation by Cell2Fire, blue 
indicates underestimation, and white indicates no difference.
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Fig.  4B shows the final fire spread outputs from Prometheus, Cell2Fire, and Cell2Fire optimized with BBO 
together with the actual burn scar’s perimeter. In Fig. 4C, the differences between each simulation output from 
Fig. 4B is show in terms of under and overestimation with respect to the actual burn scar. Lastly, in Fig. 4D, 
accuracy and error metrics were computed for the three instances (Cell2Fire, Prometheus, Cell2Fire with BBO) 
against the actual burn scar.

Similar to the previous experiments on homogeneous and heterogeneous landscapes, Cell2Fire was able to 
accurately emulate Prometheus (F1-score = 0.88) with low deviation (RMSE = 0.178 m/min) (See Supplementary 
Fig. S7A). However, merely mimicking benchmark FSMs is not sufficient to accurately predict the burn scar, as 
shown by the large underestimation in the instances “Prometheus vs. Real” and “Cell2Fire vs. Real” in Fig. 4C. 
Comparing Cell2Fire with the real burn scar, the accuracy drops considerably (F1-score = 0.74, RMSE = 0.11 m/
min). To address this issue, Cell2Fire was optimized using BBO and the ROS adjustment factors helped improved 
the simulation’s accuracy considerably with respect to the real burn scar (F1-score = 0.83, RMSE = 0.079 m/min), 
which is also reflected by a reduction in underestimation in the northeast corner of the burn scar.

We also conducted uncertainty analysis for the Dogrib fire. First, we created 1,000 different weather stream 
files with randomly perturbed wind speed, relative humidity, and temperature values (perturbation range 
between 0 and 2). We started with weather parameters9 reflecting severe weather conditions in accordance with 
the Canadian Forest Fire Weather Index (FWI) System (See Sect. 6 in Supplementary Materials). To note, this 
is the same weather data used for simulations shown in Fig. 4. We discover that F1-scores for Cell2Fire ranges 
between 0.65 and 0.75, while Cell2Fire with BBO ranges between 0.74 and 0.83 (See Supplementary Fig. S15 in 
Supplementary Materials).

We also conducted sensitivity analysis to determine the influence of input parameters on Cell2Fire’s 
simulations (See Sect. 7 in Supplementary Materials). To assess the relationship between adjustment factors 
and model performance, we analyze the Spearman correlation coefficient on the evaluation metrics for each 
adjustment factor (HROS, BROS, FROS, eccentricity). We find that eccentricity has the strongest influence on 
improving accuracy. HROS adjustment is weakly correlated while BROS and FROS have no significant influence. 
Furthermore, we computed feature importance using Shapley values38 on machine learning models trained on 
BehavePlus data and FBP data (See Supplementary Fig. S16 and Fig. S17, respectively, for SHAP summary plots). 
We filter the prepared input datasets for the US and Canada and train an XGBoost regression model to predict 

Fig. 2. Accuracy and error assessment of fire spread simulations on homogeneous landscapes for fuel types 
GR1 and TU5. Panels A and B correspond to GR1 while panels C and D correspond to TU5. (A) Comparison 
of burned area in number of pixels over time between Cell2Fire (solid red line) and FarSite (dashed blue 
line) for GR1. Shaded red regions indicate overestimation by Cell2Fire, and shaded blue regions indicate 
underestimation. (B) Quantitative accuracy metrics for GR1 under varying wind speeds including difference 
in burned pixels, Root Mean Square Error (RMSE), F1-Score, and Structural Similarity Index (SSIM). (C) 
Comparison of burned area (in number of pixels) over time between Cell2Fire (solid red line) and FarSite 
(dashed blue line) for TU5. (D) Quantitative accuracy metrics for TU5 under varying wind speeds including 
difference in burned pixels, RMSE, F1-Score, and SSIM.
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HROS, BROS, and FROS (See Supplementary Figs. S18 and S19 for train and test loss curves). The SHAP values 
reveal that wind speed, 1 H moisture content, and 1-hour fuel load was most influential on HROS predictions. 
For BROS and FROS predictions, 1-hour moisture content, fuel bed depth, and wind speed were the most 
important. For FBP, the fuel model type and wind speed were the most important features for HROS and FROS 
predictions. For BROS, fine fuel moisture code (FFMC) and fuel model type were the most important.

Discussion
In this study, we applied Cell2Fire to simulate fire spread on homogeneous, heterogeneous, and real landscapes 
in various geographic regions (U.S., Canada, Chile). We generated accurate fire spread simulations comparable to 
the best-performing FSMs31 and enhanced Cell2Fire’s simulated outputs to better reproduce real burn scars via 
data-driven optimization. In more detail, we optimized Cell2Fire by using BBO and found optimal adjustment 
factors for HROS, BROS, FROS, and eccentricity to generate more realistic fire spread simulations of historical 
burn scars, surpassing the capability of conventional benchmark models like Prometheus.

We confirmed that Cell2Fire can emulate benchmark FSMs accurately in homogeneous landscape scenarios. 
In the heterogeneous landscape scenario, the simulated output tended to be underestimated at the back and 
flanks as well as overestimated at the front of the burned area. This result can be explained by the homogeneous 
landscape examples at a wind speed of 10 mph (See Fig. 1), where we can see underestimation at the back and 
overestimation at the front of the fire ellipse. Nevertheless, we note that Cell2Fire recorded high F1 and SSIM 
scores, and the over and underestimation regions may appear to be magnified due to the input data’s resolution 
(30-m resolution) and the figure’s scale. We also confirmed that Cell2Fire was very effective in heterogeneous 
landscapes as well as even under variable weather and complex terrain in the 2001 Dogrib Fire instance. In 

Fig. 3. Fire spread simulation on a real landscape in Santa Barbara county, U.S. (A) Landsat-8 satellite 
image (acquired July 13, 2015) with ignition point. Image downloaded from the Monitoring Trends in Burn 
Severity platform and plotted using Python libraries Matplotlib (v. 3.5.2) and matplotlib-scalebar (v. 0.8.1). (B) 
Distribution of fuel model types from 2016 LANDFIRE dataset based on the 40-class Scott and Burgan fuel 
model classification14. (C) Relative proportion of fuels color-coded by their representation in the fuel map. (D) 
Cell2Fire’s simulation is shown in varying colors to display fire propagation over time, while only the final burn 
perimeter for FarSite’s simulation is presented by the black-colored perimeter. (E) Difference between FarSite 
and Cell2Fire’s final simulation outputs (after 10 h) showing underestimation at the back of the fire (blue) in 
contrast and overestimation at the front of the fire (red). (F) Comparison of total burn area progression over 
time. (G-J) Error (∆ Burned pixels and RMSE) and accuracy (F1-score and SSIM) assessment for burned area 
over time. Error bars are included based on uncertainty analysis of adjustment factors (HROS, BROS, FROS, 
eccentricity) for each hour (See Sect. 6 in the Supplementary Materials).
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particular, the accuracy improvements via optimization in the 2001 Dogrib Fire (F1-score increase from 0.74 to 
0.83) reflects a significant reduction in underestimation (false positives and false negatives) with respect to the 
real burn scar. From a fire management perspective, the consequences of underestimation can be more severe 
than overestimation. Underpredicting can expose critical areas to heightened levels of uncertainty, thereby 
escalating risk to life and infrastructure in the unprotected areas. As a result, optimization helps Cell2Fire 
produce more reliable and realistic predictions to better inform decision-making.

Cell2Fire can help facilitate the development and experimentation of FSMs by fitting the models to updated 
ROS data and optimizing the simulator with more recent historical burn data. This opens the opportunity 
for users to use locally created fuel maps and FSM data, providing the flexibility to apply any existing FSMs, 
experimental FSMs, and even custom rule-based FSMs. To this end, the optimization option can be used as 
a computational tool for practitioners to find appropriate adjustments as they keep their fire management 
systems up-to-date by collecting new data such as records of wildfire burn areas. Furthermore, Cell2Fire can be 
combined with FSMs from different regions to expand the fire spread simulation framework on a global scale. 
Data democratization together with open-source code such as Cell2Fire help make fire spread simulations more 
globally applicable and more accessible to a greater diversity of users. For instance, many other countries have 
also developed their own FSMs such as Australia39, South Africa40, Portugal41 and other countries in Europe42. 
Some FSMs have been developed to work at a global scale43. Recent works attempted to map fire behavior data at 
a global scale, collecting 6,000 individual entries from 33 countries including Australia (25.6%), the U.S. (17.2%), 
Canada (8.1%), and South Africa (21.1%) as of May 201840. In particular, open-source datasets on cloud-based 

Fig. 4. Fire spread simulation on a real landscape based on the Dogrib Fire (2001), Canada. (A) Spatial 
distribution of fuel mapped based on FBP along with topographic information (elevation, slope, aspect) from 
a Digital Elevation Model (DEM). (B) Comparison of fire spread simulations from Prometheus, Cell2Fire, and 
Cell2Fire enhanced using BBO overlaid on the real burn scar (black outline). (C) Comparison of Prometheus 
and Cell2Fire enhanced with BBO, difference between Prometheus and the enhanced Cell2Fire simulations, 
and the difference between the actual Dogrib fire’s burn perimeter and the enhanced Cell2Fire’s simulation. 
(D) Comparison of error metrics for three FSM instances: Cell2Fire, Prometheus, and Cell2Fire with BBO 
(Cell2Fire-BBO) versus the real burn scar.
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platforms such as Google Earth Engine can be used as proxy measurements to substitute for complex input 
features needed to compute FSMs. Future works should exploit these rich data inventories in conjunction with 
novel, multimodal remote sensing sensors. To note, FSMs can have inherent limitations since semi-empirical 
models are based on simplified physics (e.g., Rothermel) and are recorded from relatively mild, steady-state 
environmental conditions15. Hence, there is a need to develop more sophisticated FSMs that can reliably reflect 
extreme fire behavior8.

Applying Cell2Fire with BBO is effective for strategic fire management but may be limited for operational 
real-time applications. For instance, during wildfire operations, data needed for BBO may not be available (e.g., 
burn perimeter). One alternative option is to find optimal BBO parameters in advance by running simulations 
on past fires under similar geographic and environmental conditions. While this may help fine-tune Cell2Fire 
for specific cases, further analysis would be required to adapt Cell2Fire to different ecosystems and wildfire 
scenarios.

Methods
We provide a flowchart of the methodology used in this study in Fig. 5. In the following sections, we explain input 
datasets used to compute ROS in FSMs, input grids needed to run Cell2Fire, fire growth logic, and optimization 
techniques.

Preparing input data for FSMs
We first computed HROS, BROS, and FROS outputs from each FSM (i.e., Behave, FBP, KITRAL). We detail 
the parameter spaces in Supplementary Tables S6–S8. We then combined the input features and the three ROS 
outputs in tabular form, such that each row represents data obtained from a single simulated run of the FSM. 
For Behave, we used the open-source Rothermel package in R44 to calculate ROS45. Input features included the 
fuel model type, fuel loads (1-hour, 10-hour, 100-hour, woody, herbaceous), moisture of extinction, surface area/
volume ratios (1-hour, woody, herbaceous), fuel bed depth, wind speed, wind direction, slope. We also included 
fuel moisture content based on scenarios (D1L1 (very low dead and live fuel moisture), D2L2 (low dead and live 
fuel moisture), D3L3 (moderate dead and live fuel moisture), D4L4 (high dead and live fuel moisture)) from 
Scott and Burgan (2005)14. In total, we used 19 input features with varying combinations based on four features 
(fuel model, wind speed, wind direction, slope, moisture content scenario) to create 218,880 samples (40 fuel 
models, 19 wind speeds, 4 wind directions, 18 slope values, and 4 moisture content scenarios). Surface ROS 
using Behave is calculated using the Rothermel equation:

 
R =

IRξ (1 + φ wind + φ slope)
ρ bulkϵQig

 (1)

.
where R is the ROS at the flame’s front, IR is the reaction intensity, ϕwind is the dimensionless wind factor, ϕslope 

is the dimensionless slope factor, ρbulk is the bulk density, ϵ is the effective heating number, and Qig is the heat 

Fig. 5. Overview of study’s workflow using Cell2Fire with optimization. Input variables for the FSMs of 
interest (e.g., Behave, FBP, KITRAL) are used to compute HROS, BROS, FROS. The FSM is integrated in 
Cell2Fire, where fire growth occurs via cellular automata and FSM logic. The FSM data can also be fitted (e.g., 
curve fitting, surrogate modeling using machine learning) for sensitivity analysis or ported into Cell2Fire to 
create custom FSMs. Users can apply ellipse optimization (i.e., multi-objective optimization of elliptical shape 
factors) to scale simulated outputs with respect to existing simulators like FarSite. Blackbox optimization can 
also be used to find optimal ROS adjustment factors when a reference shape is available (e.g., real burn scar).
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of pre-ignition45. For FBP, input features included fuel model code, wind speed, FFMC, Buildup Index (BUI), 
and slope factors29. Fuel model codes are associated with a set of parameters used to estimate the ROS, which 
is calculated by a combination of basic ROS derived from experimental results (i.e., extrapolation from field 
measurements for each fuel type), slope effects, moisture using the FFMC, and accounting for the amount of 
fuel available for combustion (BUI)29. In practice, we varied five main input variables (fuel model, wind speed, 
FFMC, BUI, and slope), obtaining a total of 180,000 samples (18 fuel models, 16 wind speeds, 5 FFMCs, 5 BUIs, 
25 slope values). When computing ROS in the heading direction, the FBP system involves three steps: Calculate 
ROS using initial spread index and fuel type; modify ROS for slope factor; and modify ROS according to BUI. 
KITRAL was developed in Chile based on data collected from the previous 30 years. Input features included fuel 
model type, wind speed, moisture content, heat, fuel load, propagation factor inherent to each fuel, moisture 
content factor, slope factor, and wind factor. Surface ROS using the KITRAL system is estimated as:

 R = FF M × FMC × (Fslope + Fwind) (2) 

where R represents surface ROS; FFM denotes a fuel model factor for no-wind, no-slope ROS conditions; FMC 
corresponds to a moisture content formula where humidity of the fine and dead particles as estimated from 
relative humidity and ambient temperature; Fslope is a slope factor [%] based on an empirical equation that 
considers terrain slope spacing; and Fwind is a dimensionless wind factor. In total, 10 input features were used 
and four features (fuel model, moisture content, wind speed, slope) were varied to generate 110,019 samples (31 
fuel models, 21 moisture content scenarios, 13 wind speeds, and 13 slope values).

Preparing input data for Cell2Fire
For homogeneous landscapes, we selected four of the most common fuel models from the 40-class Scott and 
Burgan fuels14 found in California, namely, GR1, GR2, GS2, TU537. Homogeneous grids for Cell2Fire-Behave 
were cropped to either 100 by 100 or 500 by 500 pixels – the latter grid size for higher wind speeds and fuels 
with a higher expected ROS. Homogeneous grids for Cell2Fire-FBP and Cell2Fire-KITRAL were set to 20 by 
20 pixels and 80 by 80 pixels, respectively. All homogeneous grids were set to a 100-meter spatial resolution. 
For the heterogeneous landscape scenario, we used the LANDFIRE 2016 landscape file, which includes a 
30-meter resolution fuel map based on the 40-class Scott and Burgan classification14. For this study area, we 
tested constant topographic and weather conditions. We set a constant wind speed of six mph heading southeast 
and simulated the fire spread for 10 h. Lastly, we set the moisture content to the most extreme weather scenario 
(“D1L1” scenario in Scott and Burgan (2005)14 which corresponds to very low dead fuel moisture with fully 
cured herbaceous vegetation). For the real landscape scenario, the fuel map was acquired based on the Canadian 
FBP system at a 100-meter resolution. Topography was set based on the acquired elevation, slope and aspect at 
the same resolution. Weather stream data was acquired from the Yaha Tinda weather station situated nearby, and 
the ignition point was set at the coordinate (51.652876, −115.477908) as in Pais et al. (2021b)9. The simulation 
burned for eight hours starting from October 16, 2001, such that the fire spread would capture the major burned 
area (i.e., 90% of the total burn).

Integrating FSM logic into Cell2Fire
To run Cell2Fire in different regions, we first fitted ensemble models using input data from an FSM (i.e., Behave, 
FBP, KITRAL) and integrated the model as a binary executable file into Cell2Fire, where HROS, BROS, and 
FROS are predicted at each time step for each cell of interest. The input data and ROS outputs can be used to build 
custom fitted FSMs that can be created in Python and ported into C + + where Cell2Fire runs natively. Cell2Fire 
intakes regularly-sized grids of fuel, topography (elevation, slope, aspect), and canopy (canopy height, canopy 
base height, canopy bulk density, canopy cover), as well as a weather stream file defined at regular temporal 
intervals (wind speed, wind direction). Each cell contains attributes including the fuel type, elevation, slope, 
location as coordinates, and status for simulation logic (“Available”, “Burning”, “Burned”, “Treated”, or “Non-
Fuel”). “Available” cells are burnable, “Burning” cells denote where fire can spread during the time step, “Burned” 
cells experienced previous burns, “Treated” cells are defined for harvest treatments, and “Non-Fuel” cells are 
non-burnable and do not ignite. See Supplementary Fig. S1 for a visualization of Cell2Fire’s fire spread process.

• Ignition: Given an ignition point (ignition can also be pre-defined point(s) or randomly selected), the coin-
cident cell is ignited, and the fire’s growth may spread to its eight neighboring cells during the time step. In 
Cell2Fire, this cellular automata growth is modeled as an ellipse emanating from a burning cell to its eight 
neighbors. The geometry of this ellipse is determined by the HROS, BROS, and FROS, which is then used to 
compute ROS along each axis to its eight neighboring cells. In more detail, we compute the semi-major axis, 
semi-minor axis, and eccentricity of the ellipse as a function of ROS (See Sect. 3 Supplementary Materials for 
a more comprehensive explanation of the elliptical fire spread). We assume that the distance from the centroid 
of an ignited cell to the centroids of neighboring cells is computed as the straight distance influenced by a 
slope factor.

• Fire spread: Fire spread from a “Burning” cell can reach any of its eight neighboring pixels if the fire reaches 
the center of the adjacent, available pixel and exceeds a given ROS threshold based on the pixel’s environ-
mental conditions. Once the fire ignites the adjacent pixel(s), the status of the affected pixels is updated (i.e., 
“Available” to “Burning”), and the fire propagates until the specific ending criterion is reached (e.g., specified 
time, maximum simulation time, or no more fuel available). Hence, successful fire spread occurs when the 
ROS along an axis reaches the center of a neighboring cell, thus creating a new ellipse with the neighbor’s cell 
as the focus.
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• Stopping criteria: Fire spread ceases when the spread reaches a non-burnable fuel (e.g., Non-Fuel) or the 
input grid edge and there are no more neighboring cells available, the spread fails to successfully reach neigh-
boring cells, or the simulation time period (defined in the weather stream file) has passed.

Ellipse optimization and ROS adjustments
Simulated outputs from cellular automata growth model may exhibit an angular elliptical shape in the fire’s 
heading direction46–48 (See Supplementary Fig. S2 for a visual explanation). To emulate existing vector-based 
FSMs and predict real burn scars more accurately, we adopted a two optimization approaches: (1) Multi-
objective optimization using shape correction factors to enhance the ROS distributions at multiple angles12 by 
minimizing the mean squared error and (2) BBO methods13 to find optimal parameters of ROS and eccentricity 
adjustment factors by minimizing the Frobenius norm (i.e., computed between the reference burn and simulated 
output). Since the optimization algorithm depends on the eccentricity of the simulated output’s elliptical shape 
(a function of wind speed), the optimization process can be applied universally to any fuel model type and 
geographic region.

For the ellipse optimization, we used five correction factors designed from ROS-based equations (K1,., K5), 
as proposed by Ghisu et al. (2015)12. In more detail, K1 increases the maximum ROS, K2 modifies the ellipse’s 
eccentricity (Ebar), K3 modifies the dependency of ROS on the angle from effective wind direction in the head 
direction, K4 modifies the dependency of ROS on the angle from effective wind direction in the back direction, 
and K5 modifies propagation speed in the back direction.

 ROS′ = ROS × K1 (8) 

 
E′

bar =
√

1 − 1
LBK2

 (9)
 

 
tanθ ′ = tanθ

LBK3
 (10)
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A multi-objective optimization algorithm was used to optimize these K factors and update the elliptical shapes 
based on eccentricity (a function of wind speed). In this study, we used the open-source Optuna hyperparameter 
optimization package49 to find optimal shape correction factors for different eccentricity values, starting from a 
circle (i.e., no wind conditions where eccentricity equals zero) up to the corner case when the eccentricity of the 
ellipse approaches a unit value and mimics a thin line in the main wind direction. We optimized the correction 
factors using mean squared error with the following logic and parameter spaces:

Minimize λs

Subject to 1 ≤ K1 ≤ 2

1 ≤ K2 ≤ 2

0 ≤ K3 ≤ 1

0 ≤ K4 ≤ 1

1 ≤ K5 ≤ 2
 

where λs is the shape factor and Ki corresponds to correction factors for i = 1 to 5.
For the BBO, we incorporated four adjustment factors for HROS, FROS, BROS, and eccentricity50. We 

initialize the optimization by setting all adjustment factors to a value of 1. Optimal factors are found via a 
simulator-optimization scheme using BBO13 algorithms to test a new set of factors until an ϵ-tolerance equal 
to 1e−6 between ten consecutive solutions is achieved or if the algorithm reaches the maximum number of 
iterations. To obtain robust results, we repeated this process across all fuel types. For the 2001 Dogrib Fire, the 
best results in terms of the objective function and convergence time of the solution were obtained with the Bound 
Optimization BY Quadratic Approximation algorithm51. We used Frobenius norm as the objective function, 
which is computed between the real Dogrib Fire’s burn scar and Cell2Fire’s simulated burn scar generated using 
the updated set of adjustment factors during the optimization. These implementations are available as part of 
Cell2Fire for future or custom adjustments as needed by researchers and practitioners.

Data availability
The data that supports the findings of this study are openly available. For the U.S., fuel maps and associated 
landscape file data are available via LANDFIRE (https://www.landfire.gov). For Canada, the Cell2Fire Github 
repository provides ready-made samples for simulation, including the Dogrib Fire example shown in this study 
(https://github.com/cell2fire/Cell2Fire). For Chile, the Cell2Fire-KITRAL adaptation provides ready-made  s a 
m p l e s for simulation, including the Portezuelo Fire shown in this study (https://github.com/fire2a/C2FK). The 
simulator used in this study is Cell2Fire, which is available as open-source software. Software Name: Cell2Fire; 
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Developer: David L. Woodruff, Cristobal Pais, Jaime Carrasco; First year available: 2019; Software requirements: 
Python, C++; Program language: Python, C++; Availability: https://github.com/cell2fire/Cell2Fire. The  i m p l e m 
e n t a t i o n of this work and sample data are available at: https://github.com/humnetlab/Cell2Fire.
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