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Abstract—The completion of sparse Location-Based Service
(LBS) data for modeling urban-scale origin-destination (OD) flow
is of great importance to transportation planning applications.
Sparse trajectories lack realistic human mobility patterns. Only
with completed trajectories one can derive urban-scale OD flow
that resembles complete travel diaries as those gathered by
surveys or actively collecting phone applications. We present
DeepTimeGeo (DTG), a transformer encoder-only model that
reconstructs complete trajectories from sparse LBS inputs. We
adopt a rank-based representation of locations to preserve
individual-level heterogeneity and take a sequence-to-sequence
approach to address the issue of gradient back-propagation
blockage when it comes to regulating human mobility patterns.
We devise human mobility distribution-based loss functions and
leverage auxiliary learning to model the dynamics of explo-
ration versus returns in users’ spatial choices. Experimental
results show the superiority of DTG in trajectory reconstruction
compared to other start-of-the-art generative models for human
mobility trajectories. We conducted a case study with LBS data
in the city of Coral Gables, Florida. The case study reveals that
DTG leads to a reduction of more than 15% (1.35 vs. 1.60), when
compared to the state-of-art model, in the cross-entropy loss that
measures the deviation from the ground truth departure time
distribution. We further demonstrate through SUMO simulation
that DTG-generated trip demand captures both morning and
evening rush hours, enabled by the more accurate distribution
of trip departure time with important implications for traffic
estimates.

Index  Terms—Trajectory Reconstruction, Sequence-to-
Sequence Transformer, Self-Supervised Learning, Auxiliary
Learning, Human Mobility.

I. INTRODUCTION

Apid advances in mobile communication technology

over the past few decades have paved the way to a

new understanding of the movement of people, that is, human
mobility, in urban regions. Compared to traditional methods,
such as travel surveys, Location-Based Service (LBS) data
provide a cheaper and more efficient alternative to gather
people’s travel history. However, LBS data are collected pas-
sively. The intermittent use of cell phone applications results
in sparse datasets that are inadequate to recover the complete
time-varying origin-destination (OD) travel flow within urban
regions [1-3]. At the same time, to leverage human mobility
datasets in various applications such as infrastructure planning
[4, 5], traffic analysis [6], and contingency management [7],
a complete travel history of individuals is needed [8, 9]. The
partial observation and the passive collection of users’ travel
history obscures the underlying human mobility laws that
govern when people travel and where they travel to [10, 11].
Challenges emerge when one attempts to reconstruct com-
plete trajectories from a sparse input. First, reconstructed tra-
jectories must comply with universal human mobility patterns,

characterized by metrics such as circadian rhythm, character-
istic distributions of travel distances and of the number of
visited locations per day [12]. One can choose to model only
the active users, whose trajectories are complete, to extract
these governing distributions, but disregarding the inactive
users leads to a loss of geographical information contained
in their trajectories [13, 14].

We present DeepTimeGeo (DTG), a transformer-based
model that reconstructs complete trajectories from sparse LBS
data. We want to emphasize that DTG is not a predictive
model. The purpose of DTG is to generalize and characterize
the travel flow pattern in an urban region using static data.
That is, we perform a one-time reconstruction on the input
data set to recover a characteristic travel demand in an urban
region. We do not use dynamically updated LBS data to predict
future travel flow. The main task of the model is to accurately
recover the observed stay points. The remaining unobserved
entries are then generated under the guidance of mobility-
informed regularizers. Our main contributions are summarized
as follows!.

« We propose a sequence-to-sequence transformer encoder-
only model to reconstruct sparse trajectories. We incor-
porate mobility-informed regularizers by exploiting the
sequence-to-sequence architecture to jointly regulate the
mobility patterns in completed trajectories.

o We introduce a rank-based representation of the locations
in the input space. The rank-based representation not
only reduces the dimension of the output space but also
preserves the individual location history in the sparse
input data. This generalized representation of locations
allows the model to be expanded to more users.

o We use auxiliary task learning to model the dichotomy
between explorations and returns. The ablation study
shows that the use of an auxiliary task improves the
performance of the model.

o We tested the model on two separate real-world LBS
datasets against state-of-the-art benchmarks, showing su-
perior results in creating completed trajectories that re-
semble the mobility patterns documented in travel sur-
veys. We also include a case study in the city of Coral
Gables, FL, to showcase the application of DTG in es-
timating the time-varying urban-scale OD flows (Section
VI). The case study reveals that, compared to the state-
of-the-art model, DTG excels at generating flow patterns
that match the distribution of travel by time of the day
and by travel purpose.

'We release our code and the model for Los Angeles at https:/github.com/
humnetlab/DeepTimeGeo
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The remainder of the paper is organized as follows. Section
II provides a review of the literature on the existing trajectory
reconstruction methods. Section III defines the relevant termi-
nology. Section IV explains the architecture of DeepTimeGeo.
Section V validates DeepTimeGeo and compares it with 7
other state-of-the-art baselines. Section VI demonstrates the
use of DeepTimeGeo with a case study in Coral Gables, FL.

II. RELATED WORK

While Pappalardo et al. [15] categorizes human mobility
tasks into generation and prediction, methods for trajectory
reconstruction can be categorized into Generation or Comple-
tion. Generation learns the dynamics of people’s travel behav-
ior, represents the dynamics as latent probability distributions,
and then generates a separate set of realistic trajectories, while
Completion seeks to retain the information contained in the
raw data and complete the missing observations.

Generation. One can find a wealth of work in the gen-
eration approach. Many tackled the generation task with
stochastic processes such as Markov chains and temporal
point processes to model users’ spatial and temporal decisions
[14, 16-19]. Some of these methods leverage existing para-
metric models that describe the dynamics of human mobility,
including density exploration and preferential return (d-EPR)
models [17] and ranked exploration and preferential return (r-
EPR) models [14]. Others use temporal point processes such as
the Poisson and Hawkes process to model the duration of stay
between consecutive movements and spatial choices [18, 20].
However, many of the stochastic process-based methods are
Markovian, which means that the generated locations are
independent of each other. It has been pointed out that the
probability distribution of visiting a certain location is not only
conditioned on the user, which has been assumed in models
such as d-EPR and r-EPR, but also on previous locations the
user has visited. These models may suffer from the inability to
capture the long-term correlation among the locations visited
by the user [21].

Generative Adversarial Networks (GANs) have also been
widely adopted for trajectory generation [20-26]. GANs con-
sist of a generator and a discriminator, and the two networks
play a Min-Max game [21] [27]. The generator learns the
latent representation of the input features and the complex
sequential transitions between different locations to generate
synthetic trajectories [13, 21]. Meanwhile, the discriminator
performs binary classification to distinguish fake trajectories,
which are synthetic trajectories, from the real ones in the input
data set. Many use Recurrent Neural Networks (RNNs) to
capture the sequential correlation between locations and the
regularity in human mobility patterns in the generator [22-
24, 26, 28-30]. More recently, attention blocks and trans-
formers have also been embraced by the trajectory generation
community due to their ability to capture long-term correla-
tions between tokens within sequences [21, 31-34]. Features
such as location, time, and mode [31] are projected to a
high-dimensional space, in which the key, query, and value
matrices compute the similarity scores among the various input
tokens to inform the next location prediction for autoregressive

generation. The attention mechanism allows the model to focus
on tokens that are significant and effective in predicting the
location of the next timestamp [29].

Completion. The completion approach uses the sparse
trajectory as the skeleton on which the fitted model imputes
the missing entries to complete the trajectory. A common
approach is to identify anchor points on the user’s trajectory
[1, 35] and then fill in the missing positions using heuristics
such as interpolation [36] or machine learning algorithms.
The completion task has also been formulated as a low-rank
matrix factorization problem, in which the difference between
the sparse input and and the low-rank reconstructed output
is minimized [2, 37]. Transformer and attention-based models
have also been developed for completing sparse trajectories;
however, these models are trained on the masked tokens on
small, relatively complete GPS datasets [38, 39].

Completion differs from generation in that existing com-
pletion models reconstruct trajectories on a per-user basis.
While this allows for personalized outputs, it significantly
limits scalability and hinders transferability across users, as
a separate model is often required for each individual [2, 35].
In contrast, generation models learn a shared latent distribution
that characterizes the overall trajectory patterns across users.
These models incorporate user identity as an input attribute,
which is then used in the training of a single, generalizable
model [21, 29]. However, this approach can struggle with
user-level heterogeneity. Since activity types such as home
and work are highly user-specific, generation models may fail
to accurately reproduce personalized activity classifications
within the generated trajectories [40].

Nonetheless, a few key research gaps exist in the current lit-
erature. First, there is a lack of systematic integration of human
mobility-informed loss functions into models’ training process.
The autoregressive sampling action that is required to generate
trajectories from the learned distributions in GANs blocks the
back-propagation of gradients [8, 21, 25, 41]. As a result, one
cannot evaluate the human mobility patterns of the generated
output during the training process, and therefore unable to tune
the model accordingly. While some resorted to reinforcement
learning (RL) algorithms and used the reward function of
the Markov Decision Process to regulate the human mobility
distributions [21, 42, 43], others explored variational inference
and incorporated a separate neural network to approximate
the latent features based on the generated results [41]. Our
approach uses sequence-to-sequence generation, which allows
us to directly incorporate human mobility-informed loss func-
tion into the training process. Human mobility distributions
are defined on a set of trajectories rather than a set of single
points. Because the sequence-to-sequence approach directly
outputs trajectories, we can update the learnable parameters in
the model directly with loss functions that characterize human
mobility patterns.

While the majority of the existing learning-based methods
adopt global location encoding, that is, each stay point is
defined by a pair of latitude and longitude [21, 34, 41, 42],
many Markovian model use user-specific location encodings
[14, 17]. Often characterizing a location by its rank in the
number of visits specific to a particular user, user-specific
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location encoding better preserves individual-level heterogene-
ity, as the set of locations that a user can explore is much
smaller. It is important to emphasize that the choice of the
encoding method should align with the intended application
of the model. For many models that employ global location
encoding, primary objective is to preserve and enhance user
privacy [21, 22, 43]. Consequently, retaining user-specific
information in the generated trajectories is less desirable. In
these cases, the trajectory generation task is framed not as
recreating plausible trajectories for each individual user, but
rather as producing a dataset of synthetic trajectories that
are statistically indistinguishable from the original dataset as
a whole [22]. However, contextual information about trips,
such as whether or not a trip is commute, depends on user-
specific home and work locations. Therefore, it is still crucial
to retain user-level information for applications beyond the
realm of privacy enhancement. We introduce user-specific,
rank-based encoding to a learning-based method, which retains
both individual-level heterogeneity and leverages the ability of
the transformer architecture to capture short- and long-term
correlations between tokens in a dataset.

III. PRELIMINARIES
A. Definitions

LBS Dataset is a set of spatial-temporal observations.
Each observation is a tuple r = (i,¢,2,y), where i is the
user identification (ID) number, ¢ is the timestamp, x is the
longitude and y is the latitude.

Stay Point is a tuple s = (4,1, ), where i is the user ID, [ is
the location ID, and § is the stay duration. To convert an LBS
dataset into a set of stay points, we adopt the method outlined
in Zheng et al. [44], where observations in the LBS dataset
are first filtered based on a set of spatial-temporal criteria.
Consecutive observations that are less than 5 minutes apart
in time and 300 meters apart in space are merged into one
candidate stay point, of which the duration is the difference
in time between the two consecutive observations in the same
location. Then, a hierarchical mapping algorithm is applied to
further cluster the candidate stay points and map the results
to a square or hexagonal grid system to obtain a discrete
representation of the locations [44].

Trajectory, L; = {ll|[t € T}, is a sequence of locations
for user ¢ within the observation time window. In this paper,
we discretize the observation time window into hours, with
T being the number of hours in the dataset. I! denotes the
location ID of the location user ¢ visited in hour ¢. If no record
is found, ! is an empty set.

Sparse Trajectories, 2; UQ° = L;, are trajectories that are
not fully observed. That is, 3t € T such that I! = @, I € L;.
We use ; = {l! € L;|l! # &} to denote the observed portion
of a trajectory L; and use Q5 = {I! € L;|l! = &} to denote
the unobserved portion of the trajectory L;. We can then define
the sparsity, Ci, of a set of trajectories M = {Lq,...,Ly}
belonging to N users as:

N
1955
Co =3 (M)

B. Problem Statement

The sparse trajectory reconstruction problem is defined as
the task of building complete trajectories from sparse inputs.
Shown in Fig. 1, while both result in complete trajectories,
the completion approach finds an approximation L; of L;
such that Zf # @Vt € T. Although we want the reconstructed
trajectories L; to resemble the observed portion of the sparse
trajectory €); to the greatest extent, a reconstruction solely
based on €2; could distort human mobility patterns. Therefore,
the challenge is to develop a method for reconstructing trajec-
tories such that we can preserve as much information in 2;
as possible, while ensuring that the reconstructed trajectories
follow human mobility patterns.

In contrast, generation-based models output a probability
distribution over a set of potential locations or trajectories.
By sampling from this distribution, we can obtain trajectory
realizations G; that serve as a complete trajectory. In this
paper, we formulate the training process of our model as a
trajectory completion task. Meanwhile, the trained model can
also be used as a zero-shot generator for inference, effectively
bridging the gap between completion and generation.

Completion
N g L Genﬁration
S ((
L; L N
N— /
— M G

Fig. 1. Completion models fill in the missing stay points in a trajectory
whereas generation models builds a probability space from which generated
trajectories are sampled.

IV. DEEPTIMEGEO

In this section, we present DeepTimeGeo (DTG) for sparse
trajectory reconstruction. Fig. 2 illustrates the overall frame-
work of our approach. We first encode stay points in trajec-
tories through four features that characterize the stay points.
We then apply a sequence-to-sequence transformer encoder to
learn the spatial-temporal correlation among the stay points.
The sequence-to-sequence model structure allows us to di-
rectly control the mobility patterns in the final output. This
addresses the issue of gradient back-propagation blockage in
conventional auto-regressive generation. The loss function of
the main task is designed to reflect the mobility patterns. We
introduce auxiliary learning to model exploration and returns
to assist in the training process.

A. Rank-Based Input Representation

The main advantage of using the sequence-to-sequence
transformer is that such a design gives us direct control over
the mobility patterns implied by the completed trajectories.
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Fig. 2. The overall framework of DeepTimeGeo.

The parameters in the model are directly updated on the basis
of the goodness of the mobility patterns evaluated by the
loss function. However, instead of sampling one realization
from the distribution over a set of locations, as is the case in
auto-regressive generation, the sequence-to-sequence approach
requires sampling multiple realizations that subsequently leads
to the explosion of the size of the model. To address this issue,
we adopt a rank-based representation of the candidate loca-
tions from which the completed trajectories are sampled. The
rank-based representation significantly decreases the number
of candidate locations, allowing us to retain the sequence-to-
sequence structure.

Research in human mobility over the past decade has found
the applicability of Zipf’s law in modeling the number of
visits to different locations, where the number of visits is
inversely related to the rank of the location [33, 45]. The entire
trajectory of a user over a period of time can be explained
by some of the most frequently visited locations. Therefore,
instead of sampling from all potential locations, which can
reach hundreds of thousands in a large metro area, the model
learns on the rank-based representation that is unique to each
user.

Fig. 3A) shows that a mere number of 10 locations can
account for more than 70% of all observed stay points in
sparse trajectories. We adopt a rank-based representation of
the locations for each user where the function R;(!) maps a
location [ = (z,y) to the rank-space for user i. After complet-
ing a user’s trajectory using DTG, we then apply the inverse
function, R~(r), to obtain the geographical coordinates. As
users can have varying numbers of visited locations, in the
implementation of DTG, we set a threshold of L., the upper
bound of the rank of the locations we consider. We do not
consider locations with a rank greater than L..

We extract four features from the sparse input trajectories:
(1) time of visit ¢ (as in hour of the day), (2) rank of the
location r, (3) the category of Point of Interest (POI) of
the location p, and (4) a binary indicator of whether or not
a user is commuter c. DTG does not rely on external POI
information. The locations are categorized into home, work,

or other locations. Details on the home and work detection
process, as well as the identification of commuters are outlined
in Appx. A.

We concatenate the four features into a dense representation:

x; = [Witi, Wery, Wppi, Weei] @

where Wy, W,., W, and W, are the respective learnable
weights of the embedding matrix. The embedding matrix, z;,
has a dimension of D x T', where D = dtime + dioc + dpoi +
dcomm 18 the embedding dimension.
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Fig. 3. Rank representation. A) The percentage of stay points in the Coral
Gables dataset that can be explained with rank r locations. B) A sample of
10 users and the probability distribution, p(r), of the number of stay points
observed at their respective rank 7.

B. Sequence-to-Sequence Transformer Encoder

Sequence-to-sequence transformer models such as BART
have been proven to be effective in various tasks such as
language translation [46], audio transcription [47], and con-
versation modeling [48]. One key advantage of this approach
is that it provides a self-contained, end-to-end training process
that enables the evaluation of a differentiable loss function em-
bedded with patterns in the generated output [47]. We leverage
the sequence-to-sequence transformer encoder and tackle the
trajectory reconstruction problem with self-supervised learn-
ing.

Because the objective is reconstructing complete trajectories
rather than predicting, we adopt an encoder-only model where
self-attention has access to both the stay points that come
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before and after the current sth stay point in a length trajectory
T. Therefore, when computing the attention values, we sum
all tokens, j, on the trajectory instead of those that appear
only after the ith token, as proposed in the masked attention
scheme [33, 49]. The attention score between two input tokens
is calculated as

exp(qi - k;/v/dk)

Qij = T 3)
> exp(qi - kj/Vdy)
where dj, = ﬁ is the dimension of the query matrix in
a single attention block.
The transformer encoder outputs a matrix A =

TransformerEncoder(X) and A € RP*T where D is the
dimension of the embedding across the four input features
and T is the sequence length. We train both the main task and
the auxiliary task from A. The main and auxiliary tasks attend
to specific components of A, where A = [A,,, A,], with A,,
the rows in A that attend the main task and A, the rows in A
that attend the auxiliary task. Then,

4)

P(i,t) = Softmax(Linear(Ay,))
P,(i,t) = Softmax(Linear(A,))

where P,(i,t) is the probability distribution for selecting
the location rank [ at time ¢ for trajectory ¢ and P,(¢,t) is the
binary probability distribution for the auxiliary task, in which
the model is asked to classify if the location is an exploration.
Details on the auxiliary task are explained in sec. IV-D.

To create complete trajectories from the probability distri-
bution over locations, we apply the following:

L; = argmax P,(i,t) ®)
1

C. Main Task

DTG is a self-supervised learning model. The objective is
to train a function, f(L;) = L;, that maps a sparse trajectory
to a complete output. The main task of the model consists
of two parts: learning to recover the observed entries in the
trajectory and regulating the complete output trajectory with
respect to the human mobility laws. We define the overall loss

function of the main task as follows:

3
‘Cmain = Esp + Z ezﬁz (6)
i=1
where L, is the “single-prediction” loss, in which we
evaluate the prediction for the set of observed stay points
in the trajectories and £;s are the human mobility-informed
regularizers.
1) Lgp: Recovery of Observed Stay Points: We used the
cross-entropy loss function to evaluate the recovery of ob-
served stay points in the trajectories. We define L, as:

s L.

['sp = - Z Yil IOg(pil) (7)
i1

where S = (J, . €2 is the set of observed stay points in the

number of trajectory samples N. y;; is a binary indicator that

takes the value 1 if stay point ¢ contains the stay location rank
l. p;; is the probability of selecting location [ for stay point i.
The matrix characterizing p;; is the output of the transformer
encoder model.

2) Lq: Controlling Location Ranks: We use L1 to account
for the distribution of the number of visits to locations of
various ranks, which can subsequently affect the number of
daily visited locations. From the output probability matrix,
A € RT*Le we derive an explicit expression to regulate the
distribution of location ranks. We define £ as:

0

Qi)
where P;(l) is the ground truth probability distribution of
the number of stay points in location rank [ as observed in the
input data. To introduce heterogeneity among the samples, we
calculate P; (1) for each individual user in the input data, shown
in Fig. 3 B). When evaluating the loss, we select the ground-
truth distribution specific to the user. The predicted distribution
as recovered from the output matrix A is subsequently:
T Ai
_ 2 Al

(1) = 9
Q1) = =t ©)

N
Ly =Y Pi(l)log

where A;z is the probability of selecting location rank [ at
time ¢ for sample ¢. T is the length of the trajectory.

3) Ly: Controlling Departure Time: To obtain a realistic
time-varying OD flow on an urban scale, a crucial aspect
is the distribution of departure time. The departure time can
only be calculated autoregressively; that is, the distribution of
departure time is a function of both the time and the location of
the user. However, as mentioned in the introduction, neither
the sampling action nor the argmax operator used in DTG
is differentiable, resulting in no closed-form expressions for
controlling the distribution of departure time. Hence, we use
the following function to approximate the departure time loss:

N T—-1 L

Ly = Z Z Z(Aiz - Aét+1)l)2 : ]ﬁ
1

i t=0

(10)

By comparing the difference in the probability distributions
between two consecutive time slots, we can approximate the
likelihood of moving. Because in the reconstruction process,
the location with the highest probability is selected, two
probability distributions that are vastly different imply a higher
chance of changing location. We then divide the loss by p(t),
which is the ground truth probability of moving in time slot
t. p(t) can be extracted either internally from the sparse input
dataset, or imported from an external source.

4) L3: Modeling Circadian Rhythm: The travel behavior
of individuals is largely driven by commutes, reflected by
stay points at home and work locations. The probability of
being at home follows a circadian rhythm [50]. Individuals
are more likely to be observed at the home location at night
and on weekends. To reflect such a pattern, we compute the
probability of being at home and work locations to reflect the
commuting pattern. We define commute loss, L3, as the sum of
the KL-Divergence of being at and home and work locations:



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Pl | = Py (t)
Qu) T 2 e0og oG e

where Pj(t) and P; (t) are the ground truth distributions
of being at home and at work, and I. is the binary indicator
variable mentioned in Sec. IV-A that takes the value 1 if the
user is deemed a commuter. As a result, while the loss on the
distribution of being at home applies to all users, the loss on
the distribution of being at work applies only to commuters.
To obtain the ground truth distributions, we first recover the
probability of being at home and at work locations, P, (t) and
P, (t), from the observed stay points in the sparse input. The
process of detecting home and work locations is explained in
Appendix A. We then apply a linear transformation to obtain
the ground truth distributions with P (t) = ay, + BrPr(t)
and P, (t) = ay + BuwPw(t). We use the findings in Song et
al. [50] to calibrate the parameters, oy, auy,, Bp, and 5, for
the transformation. Fig. 6 shows the probability distributions
before and after the transformation.

T
Ly = Pj(t)log (11)
t

10 Input
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Fig. 4. Distribution of input and the transformed probability of being at home
and work locations. We set aj, = 0.55 and [, = 0.4 while keeping oy = 1
and B, = 0. The work and home distributions in the transformed plot are
respectively Py () and @, (t).

The probability distribution of appearing at home and at
work can be recovered from the output matrix A as:

N 1

Q)= A4 (12)
Yo

Qut) =D AL, (13)

where h and w is the location rank of the home and work
location of sample 1.

D. Auxiliary Task

Auxiliary task is a task learned simultaneously along with
the main task to improve a model’s overall performance [34].
Auxiliary task learning has been adopted for human mobility
prediction in helping with predicting POI by considering the
location prediction task as an auxiliary task [34]. Inspired by
previous models such as TimeGeo [14] and empirical findings
in Pappalardo et al. [51], we formulate the auxiliary task as a

module that predicts whether or not a given observed stay point
is an exploration or return. We define a visit as an exploration
if the number of stay points at a location in the entirety of a
user’s trajectory is less than n., a threshold of the number of
visits. We then define the auxiliary loss, Lqqq, as:

S
Louz ==Y ei-log(pi) + (1 —e;) - log(1—p;)  (14)

where e; is a binary indicator of whether or not an observed
stay point ¢ is an exploration. p; is the predicted binary
probability mass function of exploration for the observed stay
point 7. To ensure that the auxiliary task improves the model
performance, we then project the gradient of L, onto L, 4in
with weighted cosine [52]:

VL = max(0,c08(VLmain, VLauz)) * VLauz + VLnain
5)
A summary of all the loss terms can be found in Appx. E.
The mobility regularizers can either source the ground truth
from the sparse input or use external distributions, depending
on the input data quality.

V. EXPERIMENTS

In this section, we compare the performance of DTG with
other state-of-the-art models. We include an ablation study
that measures the effectiveness of the different components
of DTG, including the auxiliary task and the three human
mobility-informed regularizers.

A. Datasets

We tested our model and the benchmarks on two real-world
datasets. We apply the stay point detection algorithm discussed
in Sec. III-A to convert the raw LBS datasets into trajectories.

o Coral Gables, FL: The Coral Gables dataset is obtained
from Cuebiqz, with 46,952 users whose activities span
from 9/1/2022 to 10/31/2022. We use the home detection
algorithm explained in Appx. A to select users whose
residence is identified as within the limit of the city of
Coral Gables. We then select all of the identified users’
stay points in the Miami-Dade County.

o Los Angeles, CA: The Los Angeles dataset is obtained
from an anonymous provider, with 11,804 users whose
activities span from 1/1/2019 to 1/31/2019.

A summary of the datasets can be found in Tab. 1. The
difference in the number of locations is attributed to the
difference in the number of users. As we only consider
locations that appear in the set of observed stay points as

2 Aggregated mobility data is provided by Cuebig, a location intelligence
and measurement platform. This first-party data is collected from anonymized
users who have opted-in to provide access to their location data anonymously,
through a CCPA and GDPR-compliant framework. Through Cuebiq’s Social
Impact program, Cuebiq provides mobility insights for academic research and
humanitarian initiatives. Cuebiq’s responsible data sharing framework enables
Social Impact partners to query anonymized and privacy-enhanced data, by
providing access to an auditable, on-premise sandbox environment. All final
outputs provided to partners are aggregated in order to preserve privacy.
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candidates, the number of locations is correlated with the
number of users. In general, the data are very sparse. Given an
hourly representation of the trajectories, the sparsity of both
datasets exceeds 80%, which means that more than 80% of
the hourly slots are not observed.

TABLE I
SUMMARY STATISTICS OF THE CORAL GABLES AND LOS ANGELES LBS
DATASET
Dataset # Users # Loc # Stay Points (),
Coral Gables 46,952 106,853 8,139,004 0.882
Los Angeles 11,804 88,315 1,546,008 0.824

B. Training

To train DTG, we set L., = 45, which means that we
consider the top 45 locations that each user visits. As shown in
Fig. 3A), the top 45 locations cover more than 95% of all the
stay points of the users. We set the sample length 7" = 336,
which covers a two-week period. We obtain at most 4 samples
from each user in the Coral Gables dataset because the time
span of the dataset is 61 days. We obtain at most 2 samples for
training from each user in the Los Angeles dataset because the
time span of the dataset is 31 days. We set a, = 0.55, o,y = 1,
Brn = 0.4, and B,, = 0. The remaining hyper-parameters of
the model can be found in Appx. B. Due to the sparsity of the
dataset, we import the ground truth departure time distribution,
p(t), from the American Time Use Survey (ATUS). Details on
how we obtain p(t) can be found in Appx. DI.

C. Baseline and Metrics

We include the following baselines in our comparative
study: Semi-Markov [16], Hawkes Process [53], SeqGAN
[25], TrajSynVAE [18], LSTM [28], MoveSim [21], TrajGDM
[13] and TimeGeo [14]. Details on the benchmark models can
be found in Appx. C. As the objective of DTG is to complete
sparse trajectories for mimicking reality, we extract the ground
truth distributions of the following metrics from travel surveys:
DailyLoc, Departure, Duration and Distance.

o DailyLoc: DailyLoc is the probability density function
(PDF) of the number of unique daily visited locations.
Every 24-hour trajectory is treated as a sample in the
calculation.

o Departure: Departure is the PDF of moving. The time
of appearance at the new location is deemed the time of
departure.

o Duration: Duration is the PDF of stay duration. Stay
duration is the time elapsed between consecutive stay
points at two different locations.

« Distance: Distance is the PDF of the haversine distance
between two consecutive locations during a move.

To account for regional differences, we use the 2022
National Household Travel Survey (NHTS) and the 2017
NHTS for the Coral Gables and Los Angeles experiments,
respectively [54]. For the Coral Gables experiment, we use
surveys collected in the South Atlantic Census Region due
to the small sample size in Florida and in Miami-Dade. For
the Los Angeles experiment, we use surveys collected in the

Los Angeles-Long Beach-Anaheim Core Base Statistical Area
(CBSA). We chose to use the 2017 survey for Los Angeles
because we assume that people’s travel behavior in 2019
is more consistent with the 2017 patterns rather than 2022,
which is post-COVID-19. Details on how we compute the
ground truth distributions from the travel surveys can be found
in appx. D2. We compute the Jensen-Shannon Divergence
(JSD) in the aforementioned metrics between the ground truth
distribution, p, recovered from the travel surveys, and the
distributions, ¢, from the completed trajectories. The JSD is
defined as:

ptq P+q) (16)

2 2
where K L(+||-) is the Kullback-Leibler divergence.

1 1
JSD(p,q) = 5K LGP0 + SK L]

D. Results

Tab. II details the performance of DTG and the benchmarks
on the four metrics in the two datasets. We separate TimeGeo
from the rest of the benchmark models, as it makes strong
assumptions about the duration of work and the start time
of work for commuters [14]. DTG excels in modeling the
distribution of the number of daily visited locations. Except for
TrajGDM in the Los Angeles dataset and TimeGeo, all other
benchmarks demonstrate a high JSD between the generated
output and the ground truth. Consistent with what has been
documented in previous findings [41], TimeGeo performs well
in Departure on the Coral Gables dataset because it explicitly
uses the circadian rhythm to model the temporal decision of
individual users. TimeGeo can still suffer from poor departure
time distribution in the input dataset. As illustrated in Fig.
6B), the Los Angeles dataset lacks the early morning rush
hour peak in departure time, leading to worse performance
compared to DTG. For Distance, NHTS does not contain
the spatial information of the locations that people visit. The
surveys only provide the trip distance on the road instead of
the haversine distance between the two locations, leading to
a biased mismatch in the computation of Distance. Combined
with the fact that we do not explicitly embed distance between
stay points as a feature in DTG, models such as TrajSynVAE
yield better results. Nonetheless, the JSD between the best
performing models and DTG is within the same order of
magnitude.

In addition to DTG and TimeGeo, two recently released
models also demonstrate strong performance. TrajSynVAE and
TrajGDM performs well in Duration and Distance. In both
datasets, the two models closely trail the performance of DTG
and TimeGeo. Unlike models such as MoveSim that adopt
autoregressive generation, TrajSynVAE and TrajGDM sample
an entire trajectory from a continuous latent presentation of
the set of all potential trajectories [13]. This suggests that
a sequence-to-sequence approach better regulates the human
mobility patterns in the generated output compared to models
that rely on autoregressive generation. In general, across the
two datasets, DTG has the lowest average rank (AVG) of the
four metrics.



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

A) B)
2 101
o) 0.05
o 1072
3

-3
x 10 0.00

1 357 911
N

—— Sparse Input

12am 8am 4pm 12am O 6

C)

1071

1072

12
t At

18 24

—— Completed

Fig. 5. Human mobility patterns in Los Angeles. A) The probability distribution of the number of daily visited locations. B) The probability distribution of

departure time. C) The probability distribution of stay duration in hours.

TABLE 11
EVALUATION OF MODELS BASED ON THE TWO LBS DATASET. THE BOLD NUMBERS INDICATES THE BEST (LOWEST SCORE) MODEL AND THE
UNDERLINED NUMBERS INDICATE THE SECOND BEST MODEL FOR THE GIVEN METRIC. AVG IS THE AVERAGE RANK OF THE MODEL ACROSS THE 4
METRICS. A LOWER AVERAGE RANK INDICATES A BETTER MODEL. THE GROUND TRUTH IN DISTANCE™* IS LACKING IN SURVEYS, WE USE THE
DISTRIBUTION OF TRIP DISTANCE AS THE GROUND TRUTH INSTEAD OF THE HAVERSINE DISTANCE.

Dataset | Coral Gables | Los Angeles
Metrics (JSD) \ DailyLoc  Departure  Duration  Distance* AVG \ DailyLoc  Departure  Duration  Distance*  AVG
SMM 0.6277 0.1113 0.2624 0.0138 5.5 0.2970 0.0999 0.2098 0.0116 5.75
Hawkes 0.4242 0.4339 0.2779 0.0157 6 0.2722 0.2013 0.2295 0.0101 5.5
SeqGAN 0.4376 0.1867 0.1783 0.0507 5.75 0.1960 0.1064 0.068 0.1776 5.75
TrajSynVAE 0.4755 0.0904 0.2073 0.0154 4 0.3866 0.0234 0.1518 0.0107 425
LSTM 0.5644 0.1037 0.2386 0.0159 5.25 0.3606 0.0926 0.2568 0.0112 6
MoveSim 0.6639 0.1117 0.3924 0.1689 8.5 0.4334 0.0922 0.3798 0.2145 8
TrajGDM 0.4117 0.0886 0.2494 0.0647 5 0.0648 0.0483 0.0439 0.1755 375
TimeGeo 0.0563 0.0182 0.0171 0.0432 2.5 0.0934 0.0318 0.0284 0.0301 3.25
DeepTimeGeo 0.0321 0.0492 0.1144 0.0213 2.5 0.0615 0.0161 0.1296 0.0287 2.75

Fig. 5 illustrates DailyLoc, Departure, and Duration in the
Los Angeles dataset. As indicated in Fig. 5A), DTG recovers
the distribution of the number of daily visited locations due
to the implementation of the regularizer £, that controls the
percentage of visits to locations of different ranks. Fig. 5B)
shows that DTG augments the distribution of departure time by
introducing the early morning rush hour that is missing from
the sparse input. By modeling commutes, DTG completes the
sparse input by creating stays with duration around 6-10 hours
as shown in Fig. 5 C), which corresponds to the number of
hours for a typical work day.

To further demonstrate the value of a rank-based approach,
we computed the Jaccard index between the set of unique
locations in the training data and in the generated output. We
define the Jaccard index for a user 7 as:

U(L;) NU(L;)

viyouidy 7

J(U(Li),U(Li)) =

where the function U(-) returns the set of unique locations
given a trajectory. We compute the average Jaccard index on
the users and report them in Tab III. We see that DTG, by
definition, results in a Jaccard index of one, but other models
based on global encoding, including TrajSynVAE, MoveSim,

and LSTM result in extremely low Jaccard index. This means
that a user cannot be characterized by the set of locations he
or she visits. Instead, the trajectories are generated for a global
population that shares a homogeneous set of potential locations
to visit. In other words, although global encoding methods
can be good at generating trajectories that follow mobility
distributions globally, they have a low level of individual-level
characterization.

TABLE IIT
THE JACCARD INDEX MEASURING THE AVERAGE PERCENTAGE OVERLAP
OF THE UNIQUE LOCATIONS OBSERVED IN THE TRAINING AND
GENERATED TRAJECTORIES OVER USERS. WE EXCLUDE SEQGAN AND
TRAJGDM, THE OUTPUT OF WHICH DO NOT INCLUDE USER

IDENTIFICATION.
Model \ Coral Gables Los Angeles
TrajSynVAE | 0.010 0.000
MoveSim 0.002 0.001
LSTM 0.075 0.059
SMM 0.899 0.899
Hawkes 0.900 0.896
DTG 1.000 1.000

However, DTG, Hawkes, and SMM sampled from a fixed
and individualized set of candidate locations, which yielded a
much higher Jaccard index. This means that the generated tra-
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TABLE IV
ABLATION STUDY

Metrics (JSD) \ DailyLoc  Departure Duration Distance*
Case 1 0.0675 0.0140 0.1377 0.0290
Case 2 0.0629 0.0205 0.1275 0.0289
Case 3 0.2797 0.0463 0.2514 0.0194
Case 4 0.4223 0.0421 0.0995 0.0252
DTG | 0.0615 0.0161 0.1296 0.0287

jectories are in fact specific to individuals. Because individual-
level heterogeneity is inherently captured in the training data,
these models effectively transfer individual-level heterogeneity
from the training data to the generated output. This is not to
say that the generated output from models with a low Jaccard
index is produce inaccurate results; instead, the Jaccard Index
can be used as a simple surrogate to measure how well the
model performs for the reconstruction task, of which the goal
is to complete a user’s trajectory rather than generating a
distinctively new one.

E. Ablation Study

To understand the compartmental contribution of each de-
sign in DTG, we construct the following case studies:
e Case 1: We retain all loss terms in the main task but
exclude the auxiliary task.
o Case 2: We cease to control the probability of being at
home and work locations, i.e. #3 = 0.
o Case 3: We cease to control the distribution of departure
time, i.e. 65 = 0.
o Case 4: We cease to control the distribution of the number
of stay points at locations of different ranks, i.e. #; = 0.
Tab. IV shows that all components of DTG are essential
to replicating the ground-truth human mobility patterns in the
finished output. Turning off the auxiliary task leads to poorer
performance in DailyLoc, Departure, and Distance. Setting
f1 = 0 leads to a significant degradation in DailyLoc, as
the JSD increases from 0.0615 to 0.4223. Controlling the
distribution of number of visits to different ranks helps regulate
the number of locations users visit on a daily basis. Turning
off the departure time regulaizer leads to an increase in the
metric Departure and turning off the commuting regularizer
leads to an increase in DailyLoc, Duration, and Distance.

F. Sensitivity Analysis

We perform a sensitivity analysis on the departure time loss
weight, 02, to demonstrate the sensitivity of the completed
output to the loss function. Fig. 6 shows that as we increase
the weight, the distribution in the generated output becomes
more aligned with the ground truth. With such a design, the
generated distribution takes both the input distribution and the
ground truth distribution into account when completing the
trajectories.

VI. CASE STUDY: CORAL GABLES, FL

To showcase the capability of DTG in generating urban-
scale time-varying OD flow, we present a case study set in the

Fig. 6. Sensitivity analysis on the distribution of departure time.
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city of Coral Gables, Miami-Dade County, Florida. We com-
pare our model to TrajSynVAE [18], which has demonstrated
strong performance in Sec. V-D. We use the Southeast Florida
Regional Planning Model (SERPM) to obtain the ground truth
time-varying OD flow in the region [55]. We divide a day
into four different time periods, AM [7 a.m.-10 a.m.], MD
(10 am.-3 p.m.], PM (3 p.m.-7 p.m.) and RD (the rest of the
day). We compute the OD flow as generated by the two models
at three spatial resolutions. Levels 5 to 7 hexagons, as defined
by the Uber h3 package, have respective areas of 252.9 square
kilometers (km?), 36.1 km?, and 5.2 km? [56]. We compute
the coefficient of correlation r between the generated flow and
the SERPM flow as the evaluation metric.

Fig. 8 reveals that both DTG and TrajSynVAE perform well
at low resolution. As the resolution increases, both models
see a decreasing coefficient of correlation. DTG outperforms
TrajSynVAE at resolution levels 5 and 6. Specifically, DTG
records a higher coefficient of correlation in the early mornings
compared to TrajSynVAE. The ability of DTG to model
morning commutes can be attributed to the fact that we
actively regulate both the distribution of departure time (Ls)
and, more importantly, the probability of going to work and
staying at home (L3), during the training process. As Tab.
V shows, DTG demonstrates a more reasonable break down
of the time of move. TrajSynVAE only records around 3.
31% of trips between 7 am and 10 am, which is clearly
an underestimation that affects the resulting ODs for traffic
planning.

The strong correlation between the two models, DTG and
TrajSynVAE, and SERPM is also illustrated in Fig. 7. Both
models successfully identify areas with high travel flow. Edges
with dense flow in the SERPM are also reflected in the
respective generated flows. The figure also explains the de-
creasing correlation coefficient between the completed results
and SERPM as we increase the resolution of the hexagons.
Because we select trajectories of users who reside in Coral
Gables as training input, parts of the northeast of Miami-Dade
county are not covered by the training data.

Except for the early morning, the performance of DTG
lags behind that of TrajSynVAE at resolution level 7. While
the rank-based representation in DTG reduces the number
of candidate locations for each user to at most L, = 45,
TrajSynVAE samples from a global representation of locations
[18] during the generation process. The generated trajectories
of individual users can include stay points from any location
on the grid map, which contributes to the modeling of flow at
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A) SERPM OD Flow

B) DeepTimeGeo OD Flow

C) TrajSynVAE OD Flow
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Fig. 7. Comparing spatial distribution of flow generated by the three models. A) The SERPM OD flow is a single-day model consisting 1.8 million trips
[55]. B) The DeepTimeGeo OD flow is aggregated over completed trajectories in a 14-day period, consisting 1.2 million trips. C) The TrajSynVAE OD flow
is computed based on the generated trajectory of 1,660 users on a single-day, consisting of 646,000 trajectories. The difference in time span is attributed to
the fact that both SERPM and TrajSynVAE are both single-day models whereas DTG performs mutli-day generation due to its sequence-to-sequence nature.
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Fig. 8. Coefficient of correlation at 3 different spatial resolutions during
different time periods of the day.

TABLE V
PERCENTAGE OF TRIPS RECORDED ON DIFFERENT TIMES OF THE DAY AND
TRIPS OF DIFFERENT TYPES. TRIPS ARE CLASSIFIED INTO ONE OF THE
THREE CATEGORIES: HOME-BASED WORK (HBW) WHERE A USER
TRAVELS BETWEEN HIS home AND work LOCATION, HOME-BASED OTHER
(HBO) WHERE A USER TRAVELS BETWEEN HIS home AND other
LOCATION, AND NON-HOME-BASED (NHB), TRIPS NOT COVERED BY
HBW AND HBO.

Time | AM MD PM RD
TrajSynVAE | 0.0331 02469 03433 03767
DTG 02076  0.4083  0.2900  0.0944
SERPM | 0.1808 0.3645 02949  0.1598
Type | HBW  HBO  NHB
TrajSynVAE | 0.0039  0.1560  0.8398
DTG 0.1962  0.5174  0.2865

a finer resolution.

DTG outperforms TrajSynVAE in modeling individual
travel patterns. Tab. V shows that with DTG, HBW trips ac-
count for around 20% of all trips and NHB trips only account
for around 29%. In comparison, 0.3% of all trips generated
by TrajSynVAE are HBW. NHB trips account for more than
83% of all trips. Such a breakdown of trip types does not
align with the fact that most people’s travel revolves around
the home location. The disparity in the ratios of the trip types
between DTG and TrajSynVAE shows DTG’s superiority in
modeling individual mobility history. Although TrajSynVAE
generates trajectories that demonstrate good mobility patterns,

as shown in Sec. V-D, and realistic OD flow, shown in Sec. VI,
it suffers from the inability to generate trajectories that could
incorporate user-specific patterns. The advantage of DTG also
lies in its ability to generate OD flow that matches the temporal
distribution of the travel flow. For example, MD contains more
than 36% of the total number of trips according to SERPM.
While DTG arrives at 41%, TrajSynVAE records 25% of the
trips being in MD. The difference in the percentage of trips at
different times of the day between SERPM and DTG is much
smaller than between SERPM and TrajSynVAE. This result
further showcases DTG’s superiority in modeling realistic
urban-scale OD flow.

We further demonstrate using the trajectories generated
by DTG can reflect morning and evening rush hours when
used as inputs to traffic simulation. We employ software
Simulation of Urban Mobility (SUMO) version 1.12.0 on a
Linux machine with x86_64 architecture and 24 CPUs to
simulate traffic congestion using the generated output of DTG
and TrajSynVAE. We obtained the Miami-Dade road network
from OpenStreetMap (OSM). To address the difference in the
number of users captured by the TrajSynVAE and DTG output,
we applied different expansion factors to the two datasets. The
2020 census reports that Coral Gables has a population of
49,248. The expansion factor is defined as the ratio between
the number of residents in Coral Gables and the number of
users in a given dataset. In the process of creating trip demand
for the SUMO simulation, we multiplied each trip by the
expansion factor to ensure that the number of trips derived
from the two datasets reflects the travel demand of the same
level of population in Coral Gables. The expansion factors for
the DTG and TrajSynVAE datasets are 3 and 30, respectively.

Figure 9A) illustrates the road conditions at 9 AM using the
trip demand generated by DTG. The speed ratio is defined as
the ratio between the average travel speed on a particular link
and the speed limit of that link. Trip demand generated by
DTG lead to both a morning and evening rush hour, as shown
in Fig. 9B), where drastic increases in the fraction of congested
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edges can be observed between 7 AM and 8 AM, as well as
between 4 PM and 6 PM. The ability of DTG to control the
departure time distribution as a part of the loss function is well
translated to real-world applications in congestion estimation,
in which departure time is one of the most crucial factors.
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Fig. 9. SUMO simulation results. A) Simulated congestion at 9 AM using trip
demand derived from DeepTimeGeo. Speed ratio is defined as ratio between
the average speed observed in simulation and the speed limit of the road link.
B) The fraction of edges that are congested, which describes road links in
which the average density exceeds the critical density of the link.

VII. CONCLUSION

In this paper, we address the trajectory reconstruction prob-
lem by bridging Generation and Completion. By defining the
main task of the model as a self-supervised stay point recovery
problem, we seek to retain the original sparse trajectory
with the Completion approach. Incorporating Generation, we
design mobility-informed regularizers that control the proba-
bility distribution of locations for the unobserved stay points.
Numeric experiments demonstrate that DeepTimeGeo not only
preserves the mobility patterns found in travel surveys in
the reconstruction of sparse trajectories, but also generalizes
to realistic time-varying urban-scale OD flows. For future
research, the model can benefit from more individual-level
input representation. Although DTG embeds whether or not
a user is a commuter and uses a rank-based representation,
the model can still benefit from embedding the activity types
in training. Different sequence of activity types can explain
a user’s travel motif, thus leading to more individual-level
heterogeneity that can be captured by the trained model.
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APPENDIX
A. Commuter Detection

The home location is defined as the most frequently visited
location between 7 pm and 7 pm for each user. The work
location is defined as the most frequently visited location
between 7 am and 7 pm on weekdays only. After obtaining a
candidate work location, we compute the distance between
the home and the work location. To model commutes, we
assume that the work location of an individual is more than
500 meters away from the home location. A threshold is also
implemented. We conclude the work location of a user if
the number of visits to this work location during the day on
weekdays over the entire period of observation is more than 24
for the Coral Gables dataset or 8 for the Los Angeles dataset.
The difference in the thresholds is due to the difference in the
time-span of the two datasets. We label users with a valid work
location found as commuters and the rest as non-commuters.
While all users have home locations, those labeled as non-
commuters do not have work locations.

B. Hyperparameters

The hyperparameters used in training DTG for the Coral
Gables and Los Angeles datasets are summarized in Tab. VL.

C. Benchmark Models

We include the following models in the comparative exper-

iment:

o Semi-Markov [16]: The Semi-Markov process models
the dwell time between consecutive stay points as an
exponential distribution. The probability transition matrix
among various locations is estimated using Bayesian
inference.

o Hawkes [53]: Hawkes processes are temporal point
processes that model the occurrence of an event as

TABLE VI
HYPERPARAMETERS USED IN TRAINING DTG

Dataset \ Coral Gables Los Angeles
Number of Epochs 30 30
Learning Rate 0.0005 0.0005
Batch Size 128 128
Nheads 8 8
Dimension of FNN Layers 1024 1024
Number of Encoder Layers 2 2
Ne 4 4
01 10 25
02 0.4 0.1
03 0.15 0.05
dioc 26 24
dtime 8 6
dpoi 8 6
dcom'm 8 4

a probability density function that depends on both a
background intensity and observations collected in the
past time period.

e SeqGAN [25]: SeqGAN is a Generative Adversarial
Network (GAN) that has been adapted for sequential data.
SeqGAN uses Reinforcement Learning (RL) to address
the gradient differentiation problem. The generator is
updated directly with the policy gradient computed in the
RL network.

o TrajSynVAE [18]: TrajSynVAE models the stay duration
at a location as a temporal point process and uses
Variational Auto-Encoder (VAE), in which the difference
between the latent representations of the trajectories in
the encoder and the decoder is minimized, to address the
gradient differentiation problem.

e LSTM [28]: This model uses the LSTM network to
predict the next location in a trajectory and uses autore-
gressive generation to reconstruct complete trajectories.

o MoveSim [21]: MoveSim uses GAN and RL to update
the parameters in the generator. It incorporates regularity
in human mobility patterns during the training process.

o TrajGDM [13]: TrajGDM is a diffusion model for
trajectory reconstruction. Gaussian noises are added at
each step during the process of encoding the sparse
trajectories.

o TimeGeo [14]: TimeGeo is a model-based mechanistic
framework for generating complete trajectories. We used
the official implementation of the 2016 paper, which
is not used in benchmark studies in other trajectory
completion papers.

D. Survey Data

1) American Time Use Survey: The American Time Use
Survey (ATUS) is an annual survey conducted by the U.S.
Bureau of Labor Statistics about people’s time use throughout
the day [57]. It interviews a demographically representative
sample of the U.S. population and details information about
each activity participants engage in from 4 a.m. Day 1 to
4 a.m. Day 2, including location types and start/end times.
We use ATUS for model training and to calculate departure
time distributions p(t) on weekdays and weekends with hourly
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TABLE VII
SUMMARY OF SURVEYS.
# Users Temporal Resolution ~ Temporal Coverage Spatial Resolution Spatial Coverage  If Complete
ATUS 2019 1 Minute 1 Day usS usS Yes
(7,779)
NHTS 2017 1 Minute 1 Day Los Angeles-Long Beach-Anaheim uUsS Yes
(5,534 out of 219,194)
NHTS 2022 1 Minute 1 Day South Atlantic usS Yes
(2,126 out of 10,592)
TABLE VIII
SUMMARY OF THE LOSS FUNCTIONS EMPLOYED IN DTG
. Sources .
Name | Purpose Function Loss Type of Labels Resolution
Recover Observed . ..
Lsp Stay Points Main Task Cross-Entropy Internal Individual
Ly Control PDF KL-Divergence Internal Individual
of Location Ranks L
Regularization
Control PDF Internal .
Lo of Departure Time Mean Squared Error or External Population
L3 Control Commutes KL-Divergence Internal Population
or External
Lax | Exploration Classification | Auxiliary Task | Cross-Entropy | Internal | Individual

resolution. A move is defined as a reported change in location
type.

2) National Household Travel Survey: The National House-
hold Travel Survey (NHTS) is a periodic survey conducted by
the U.S. Department of Transportation about people’s daily
travel behavior, with the latest available data from 2017 and
2022 [54]. NHTS details each trip made by an individual
between 4 a.m. Day 1 and 4 a.m. Day 2, including trip purpose,
visited location type, travel time and distance. We use NHTS
for model validation by calculating the ground-truth DailyLoc,
Departure, Duration, and Distance. We use hourly and 30-
minute resolutions for Departure and Duration, respectively.
Since NHTS documents types but not coordinates of locations,
we adopt the following assumption in our calculation: When
an individual reports multiple visits to the same location type,
we record one home and one work location but take each
visit under other types (shopping, recreation, etc.) as a unique
location. For example, with a daily location chain ‘“home -
work - home - shopping - shopping,” we derive four visited
locations, “home, work, shoppingl, shopping2.” As doing so
results in a long-tail distribution of visitation frequency with
single-visit non-home/work locations, we do not derive ground
truth on location rank from NHTS. A summary of the surveys
used can be found in tab. VII. The metrics are calculated at the
level of the core base statistical area (CBSA) for Los Angeles
using the 2017 NHTS and at the level of the census division
for Florida using the 2022 NHTS, due to the smaller survey
samples [58].

E. Summary of Loss Terms

Tab. VIII provides a summary of all loss terms. ”Sources
of labels” represents the source from which the labels are
extracted. Labels can be recovered from either the sparse LBS

input or obtained from an external source. Ideally, all labels
should come from the input dataset; however, due to sparsity,
which distorts human mobility patterns, external labels could
provide correction. Resolution is the level at which the loss
is evaluated. Individual means that the loss is performed
individually in which both the labels and the prediction are
specific to a particular user. Population means that the loss is
evaluated after we aggregated the completed trajectories across
all users.



