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ABSTRACT Detection of road or lane is indispensable for the environmental perception of advanced driver
assistance systems. It has been an active field of research with a wide application prospect. However, due to
the complex illumination and interferences, such as vehicles and shadows in the real driving environment,
lane detection is still a challenging task today. To address these issues, a robust method for road segmentation
and lane detection based on a normal map is proposed. The first step of this approach is to generate the
normal map by using the depth information and then extract a segmented road pavement without vehicles
and buildings based on the normal map. Second, we improve an adaptive threshold segmentation method
and denoising operations to enhance the lane markings. Third, the combination of Hough transform and
vanishing point makes it more accurate to determine the starting points of host lanes, and then the lanes in
the following image sequence can be detected in the adaptive region of interest. Compared with the state-
of-the-art methods, the experimental results on the data sets in two countries demonstrate that our approach
produces more credible performance under various light conditions or dense traffic.

INDEX TERMS Advanced driver assistance systems, complicated road environment, lane detection, road
segmentation, normal map.

I. INTRODUCTION
With the rapid development of transportation, the traffic
safety has aroused people’s great attention. Hence, intelligent
transportation is an inevitable trend to avoid or reduce the
occurrence of traffic accidents. So advanced driver assistance
systems (ADAS) [1], [2] which are designed to help drivers
in driving process emerge as the times require.

Lane-mark detection is one of the most important parts
of ADAS and autonomous driving cars, and it’s also a pre-
condition for lane departure warning (LDW) [3]–[5]. The
objective of lane detection is to locate and track the lane
boundaries in road images so that the vehicle can be main-
tained to run along the host lane. We focus on the geomet-
ric computer vision-based approaches as they are cheaper
in computational cost for lane detection. In the past two
decades, researchers have made considerable progress in
the vision-based approaches [2], [3], while facing several
major challenges, especially in attaining robustness under
complex lighting conditions and dense traffic. There are

many studies of lane detection, we concentrate on reviewing
related literature in the recent years, especially on methods of
preprocessing.

Generally, visual-based lane detection approaches mostly
follow this major pipeline: image preprocessing, feature
extraction, lane model fitting, and lane tracking. The lane
itself can be expressed in a simple model or analytical
formula, like linear [4], [6], [7], parabolic [8], [9], hyper-
bolic [10], spline-based [7], [11] and so on. And for lane
tracking, Kalman filter [6], [11]–[15] and particle filter
[9], [16], [17] are the two tools widely adopted. Among
the four steps in the pipeline, image preprocessing is the
most basic and crucial step, which directly determines the
quality of the follow-up lane feature extraction. The image
preprocessing can be further subdivided into the following
three steps:
1) Generation of the region of interest (ROI). Extracting

the ROI is a simple but effective method to reduce redun-
dant image data quantity, and some works select the bottom
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side of the image as a rough ROI [4], [11], [12], [18],
while some others generate the ROI based on vanishing
point detection techniques [5], [10], [14]. After the ROI is
confirmed, some of these methods apply warp perspective
mapping (WPM) [16] or inverse perspective mapping (IPM)
[10], [13], [17], [19], [20] to yield the bird’s eye view of
the road image based on the assumptions of parallel lane
boundaries and flat roads. In this way, most of the noises
can be eliminated and lanes can be extracted conveniently.
However, the ROI generated by above methods may still
contain noises. For instance, once the host lane is covered
by a large area of interferences, like vehicles or road signs,
the methods are likely to detect the lane incorrectly [10], [18].
2) Enhancement of lane information. It is a necessary

yet challenging step to preserve and enhance the lane infor-
mation. According to different feature extraction methods,
compatible preprocessing of images should be performed
accordingly. There are variant features, such as color, edge,
and geometric shape can be used to represent and separate the
lanes from the background pixel by pixel. For the color-based
methods, in order to extract the bright white or yellow lanes,
some researchers perform a variety of color-space transfor-
mations, e.g., YCbCr [5], [21], HSI [17], [22], LAB [23],
and others. However, most color models are sensitive to
the varying illumination, while edges-based methods seem
to be more robust against challenging light conditions. For
the edge-based methods, some classical edge detectors, like
Sobel detector [9], [24], [25] and Canny detector [12], [18],
[21], [26], [27], are commonly adopted to enhance the lane
edge. For the hybrid-based methods, color, edge, and width,
as well as the vehicle speed, are taken into consideration
to extract the lane marking information [18]. After edge
detection, threshold segmentation methods can be used to
reduce computational time and improve the result of the lane
detection algorithm, among them, the Otsu’s method [6], [18]
and local adaptive threshold segmentation [12] are widely
used. However, they can only accommodate traffic scenes
with good or single lighting conditions.
3) Elimination of non-lane information. The aforemen-

tioned generation of ROI has removed some of the non-lane
information, but the noises, like vehicles, shadows, and stains,
still need to be further eliminated. To this end, somefilters and
other denoising methods have been introduced [15], [7], [27].
Nan et al. employed the crossing point filter and the struc-
ture triangle filter [7], which introduce spatial structure con-
straints and temporal location constraints into lane detection,
to filter out the noisy line segments. Wu et al. proposed a new
lane-mark extraction algorithm to divide the boundary image
into sub-images to calculate the local edge-orientation of each
block [12], while the edges with abnormal orientations are
removed to eliminate noise edges efficiently by defining a
scope of the direction of lane edge. All of the above methods
are disturbed by complex illumination and noises in the same
direction as the lane edges.

By surveying most of the literature related to vision-
based lane detection methods and testing the commonly used

preprocessing approaches, we observed that the accuracy of
lane detection mainly depends on whether the lane can be
completely preserved during the image preprocessing stage.
Therefore, this paper targets at a robust image preprocessing
method. Our major contributions are in the following three
aspects: (1) The road is segmented as the ROI by merg-
ing the normal map with the raw image; (2) A modified
local adaptive threshold segmentation method is presented,
which is able to binarize the image under various light con-
ditions. In addition, the proposed denoising operation plays
an important role in removing mostly non-lane information;
(3) The position of the initial lane is determined accurately
by using Hough transform in combination with the vanishing
point.

The remaining sections of this paper are organized as
follows. Section 2 presents the details of our lane detection
method, including road segmentation, lane feature enhance-
ment, and identification of the lane. In Section 3, the optimal
configuration of parameters, experimental results, and the
limitations of our method are presented. Lastly, conclusions
are given in Section 4.

II. PROPOSED METHOD
For vision-based lane detection algorithm, images are ini-
tially captured with road-facing camera and then the pre-
processing is carried out to extract valuable features. Images
recorded with binocular cameras preserve not only lane lines,
but also the depth information. Therefore, many middle and
high-end cars are equipped with binocular cameras to deter-
mine the distance between the obstacles and the vehicles
using the inferred depth information. In the lane detection
problem, to effectively remove the interferences of vehicles
and other non-lane information, we take full advantage of
this depth information to segment the road pavement. The
lane detection algorithm of this paper can be divided into
three functional modules: road segmentation, lane feature
enhancement and identification of the lane. The flowchart is
shown in Fig. 1.

FIGURE 1. Flowchart of proposed lane detection method.

A. ROAD SEGMENTATION
Images recorded from road often contain lots of useless
information considering lane detection, such as the sky, trees,
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vehicles, buildings, etc, namely non-lane information.
To reduce the influence of such non-lane information, nor-
mal map inferred from the stereo image pair is utilized to
segment the road based on the knowledge that the pixels of
pavement have the same normal vector as they are in the same
plane. Specific steps of road segmentation are presented as
follows.

1) ACQUISITION OF DEPTH MAP
Stereo vision can obtain the disparity map from two or more
images with different viewpoints. An accurate disparity map
is fundamental to better reconstructing the normal map.
In this paper, the depth image dataset is provided from KITTI
dataset. For our dataset, the stereo matching algorithm [28]
is used to acquire the disparity map, as it is reliable and
easy implemented. Then, the depth map can be calculated
according to the relationship between disparity and depth,
as shown in the following equation,

Z =
B ∗ f
d

(1)

where Z denotes the actual distance from the object in the
scene to the baseline of the camera, namely depth. B denotes
the distance of optical centers of two cameras, namely base-
line. f is the focal length of the camera, and d refers to the
disparity of the object. Two cameras are assumed to be with
the same internal parameters.

2) ESTIMATION OF NORMAL MAP
After 3D information is extracted, the plane normal map
consisting of normal vectors of each pixel in the original
image can be generated with the following steps.

- The intrinsic parameter matrixK of camera is obtained
by camera calibration,

K =

 fx 0 u0
0 fy v0
0 0 1

 (2)

where, fx = f /dx and fy = f /dy, represent the scale
factor of dx and dy directions, respectively. u0 and v0
are the centers of the image planes.

- With the transformation relation between coordinate
systems in the camera model, the points in depth map
can be converted from image pixel coordinates (u, v) to
camera coordinates (XC ,YC ),

XCYC
1

 =


1
fx

0 −
u0
fx

0
1
fy
−
v0
fy

0 0 1


 uv
1

 (3)

- We traverse each pixel in the depth map and search its
N × N neighboring pixels to form vectors (such as −→a
and
−→
b in Fig. 2). Taking the 3 × 3 neighborhood as

an example, the normal vector −→c of this pixel can be

FIGURE 2. Illustration of normal vector estimation.

obtained by a cross product, as follows,

−→c = −→a ×
−→
b (4)

−→a = [XC − XCi,YC − YCi,ZC − ZCi]
−→
b = [XC − XCj,YC − YCj,ZC − ZCj]
i, j ∈ (1, 8) , i 6= j

(5)

To avoid the interference of noises, we traverse the
pixels in the depth map. For each pixel, we find two
clockwise adjacent pixels in its N × N neighborhood
and form two vectors, as the−→a and

−→
b shown in Fig. 2.

Then we use Equation (4) to calculate the normal vec-
tor, and finally average the normal vector of this pixel.
The schematic diagram of the normal vector estimation
is illustrated in Fig. 2, and the experimental results of
the normal map are shown in Fig. 3.

FIGURE 3. The results of disparity map and normal map. (a1) and (a2) are
the original road images from the KITTI dataset; (b1) and (b2) are the
disparity maps generated by the stereo matching algorithm [28] and
provided directly by KITTI dataset, respectively; (c1) and (c2) are the
corresponding normal maps.

3) NORMAL MAP OPTIMIZATION AND SEGMENTATION
The normal vector (x, y, z) of each point can correspond
to (r, g, b) in the color map one by one. Hence, to opti-
mize the normal map, morphological operations are first
utilized to merge pixels with similar colors into regions. Next,
we choose the front of the vehicle as the seed region, and
the region with the same normal vector as the seed region
is regarded as the road pavement. When the size of this road
region is less than a certain value, we can determine that there
is no safe area ahead and an alarm arises.

Teichmann et al. proposed a network architecture named
‘‘MultiNet’’ [29], which is able to perform road segmen-
tation, car detection, and street classification at the same
time. For road segmentation, their algorithm can segment
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FIGURE 4. Sample results of road segmentation. (a1)∼(a4) are the original images; (b1)∼(b4) are the results of ‘‘MultiNet’’ [29]; (c1)∼(c4) are the results
of the proposed method.

the road more accurately without the roadside structures, but
requires a large number of different training data to ensure
the accuracy of the algorithm and fails under certain lighting
conditions, as illustrated in Fig. 4. Our work only needs to
segment the pavement area to remove the interference caused
by the vehicles and buildings. The normal map is not sensitive
to color and illumination, and thus it can properly extract the
dominant plane in the scene. Therefore, it is a simple and
effective method to separate the road pavement and can be
coupled with other lane detection algorithms based on vision.

B. LANE FEATURE ENHANCEMENT
According to the natural characteristics of the road scene,
the lane in the image usually has a certain slope angle, so the
Sobel operator [24] is employed to enhance the lane edges,
which is proved to be of simplicity and credible performance.
After performing the edge detection process, the binarization
is applied to preserve valid lane features and reduce data
processing.

1) ADAPTIVE THRESHOLD SEGMENTATION
Reasonable threshold is not only the key to binarization,
but also the basis for accurate lane detection. There are two
widely used methods. One is Otsu’s method [30] which is
a kind of global threshold method. Otsu’s method reaches
relative good performance if the histogram of the image can
be assumed to have bimodal distribution with a deep and
sharp valley between the two peaks. Otherwise, in the cases
of low visibility of objects or a large amount of noise in the
image, the possibly incorrect threshold determined by Otsu’s
method results in the segmentation error. Another method is
the local adaptive threshold segmentation [31], which relies
on the distribution of the pixel values in the adjacent blocks.
However, the performance of local thresholding method is
limited by uneven illumination and noises. To deal with
these issues, we propose a modified local adaptive threshold
segmentation method. For image f (x, y), we assume that the
average of gray value of the pixels in a certainw×w block ism
and the standard deviation is σ . Then the constant difference
to correct the threshold can be defined in Equation (6), which
depends on the statistical characteristic of the pixel values in

the adjacent blocks.

C = max (k1 ∗ σ, k2 ∗ m) (6)

where, k1 and k2 are two constants. Therefore, the binariza-
tion threshold for a certain w×w block centered on the pixel
(i, j) can be expressed as,

Ti,j =

∑
w×w f (i, j)

w× w
− C (7)

In the proposed threshold segmentation method, there are
three key parameters, {w, k1, k2}, affecting the performance
of the lane detection algorithm, which will be discussed in
detail in the experimental description of Section 3A.

2) ELIMINATION OF EDGE NOISE
The proposed adaptive threshold segmentation approach can
be well adapted to complex illumination, but the segmented
results still contain some noises, especially in the case of
uneven illumination. Therefore, proper denoising operations
must be employed.

FIGURE 5. Elimination of edge noise.

Generally, the lanes in the images captured by the road-
facing cameras often have relatively fixed shapes and ori-
entations, so elimination of noise can be carried out in two
aspects: (1) Area (S) constraint, namely defining an area size
threshold of the connected region; (2) Orientation (θ) con-
straint, namely limiting the angle of the lane. In this research,
we regard the lanes as a set of discrete line segments, and
extract nine sub-images (L1, L2, L3, L4,R1,R2,R3,R4, LR5)
in segmented image, as illustrated in Fig. 5. If the lines meet
some predefined conditions, as shown in Equation (8), it will
be considered as the line in a lane, and we preserve the
line and all the points on its extension which exist in the
binary map. Fig. 6 shows the results of image preprocessing
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FIGURE 6. Sample results of image preprocessing. (a1)∼(a4) are the original images; (b1)∼(b4) are the results of road segmentation; (c1)∼(c4) are the
results of binarization with Otsu’s method [30]; (d1)∼(d4) are the results of proposed threshold segmentation method; (e1)∼(e4) are the results after
removing noise.

and comparison with Otsu’s method. As seen in the figure,
the Otsu’s method works well only when lane-mark edges
are clearly visible and the illumination distribution is even.
However, in the cases of complex environments, the lane-
mark edges will be affected by various conditions, such as
sunlight, shadows, or dirt. In contrast, the proposed threshold
segmentation method and denoising operation can eliminate
vehicles and other obstacles on the road efficiently.

line =
{
True, S > 50; θ ∈ [15◦, 165◦]
False, otherwise

(8)

C. IDENTIFICATION OF LANE
With the candidate lane edges obtained through the previous
image preprocessing, the host lanes are identified from the
candidates into three steps, (1) finding the initial position
of the lane; (2) making linear prediction of the location of
the adaptive regions of interest (AROI) of lanes, and then
searching the inner edge points of the lane in the AROI;
(3) fitting the lanes with the least square method.

1) DETERMINATION OF INITIAL LANES
The determination of the initial lanes is the key factor to the
lane detection. For the first frame, a comprehensive approach
combining Hough transform and vanishing point is used to
extract a accurate initial position of lanes. First, Hough trans-
form is applied to detect the lines, and then the intersections
of these lines are calculated. However, it is hard to get a
unique intersection point when more than two lines exist.
Thus, optimization procedure should be employed, and the
total squared distance from all the lines as a cost function is
defined in Equation (9),

I =
1
2

∑(
nTi (VP − pi)

)2
(9)

where pi denotes the point on line i detected by Hough trans-
form and ni is the unit normal to line i. Then the vanishing
point (VP) is selected as the point whose cost function is min-
imal. To find the minimum, the cost function is differentiated
with respect to the VP, so that the expression of vanishing
point can be obtained with the following equation.

VP =
(∑

ninTi
)−1 (∑

ninTi pi
)

(10)

In the case of complex illumination (intense light, uneven
illumination, etc.) or serious lack of the lane lines, the Hough
transform may not be able to detect all the lines of lanes.
At this time, estimation of the vanishing point tends to fail,
then the center of image is taken as the vanishing point.

FIGURE 7. Determination of starting point of lanes.

Once the candidate lines and vanishing point are found,
we extend all these candidate lines to find their intersection
points with the horizontal line at the bottom of the image.
Then the distance between each intersection point and the
vertical line traversing the vanishing point can be calculated
to assist in finding the initial position of the lanes, likeD_L1,
D_L2, D_R1 in Fig. 7. Generally, when the vehicle camera is
fixed, the width between the left and right lanes is constant.
Based on this knowledge, we define 1d = D_Li + D_Ri.
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For each candidate line, if the aforementioned constraints are
reached, this line is labeled as a candidate lane. And then the
starting point of host lane is regarded as the intersection point
who has the shortest distance to the vertical line traversing
the vanishing point, as shown in Fig. 7, D_L1 and D_R1
are the starting point of host lane. It is efficient to predict
the starting position of lane marking in the next frame by
using the information of the lane position obtained from the
previous frame, and then all the lane features can be detected
from the bottom to upper in the AROIs. Considering that
lane change in the driving, the starting point of the lanes is
re-identified around 20 frames.

FIGURE 8. Illustration of AROI.

2) EXTRACTION OF LANE FEATURES
According to the information of the starting point of lane
obtained above, the first ROI close to the host lane can
be determined, and then the points of inner lane edge are
searched in the ROI. By this way, the noise disturbance can
be eliminated further. Then, we apply the least square method
to fit these points into a short line segment. The angle of
this line segment, the position of the previous ROI, and the
interval 1y can be used to determine the next ROI, as shown
in Equation (11), which takes the left lane as an example. This
allows a linear prediction of the ROI along the direction of the
lane, as illustrated in Fig. 8.XL1 = XL0 +

1y
tanα0

YL1 = YL0 −1y
(11)

In order to achieve the flexible tracking of the
straight or curve lane, the discrete AROIs are introduced,
whose size and position can be adjusted dynamically accord-
ing to the curvature change of lane and the speed of the vehi-
cle. Experimental results imply that the curvature change of
the straight lane is relatively small, so we gradually decrease
the width of ROI and properly increase the interval between
ROIs. While the curvature of the curve lane varies greatly,
we increase the width of the ROI and reduce the interval
between ROIs to avoid missing detection.

3) LANE MODEL FITTING
After the lanes are extracted, a compact high-level represen-
tation of the path can be obtained, which is used for decision
making. The angles of lane lines obtained from each ROI are

utilized to identify the lane as straight or curve. When the
change of angle is greater than a certain value (10◦ in our
experiments), the least square curve model is adopted to fit
the lane. Otherwise, the least squares linear model is adopted.

III. EXPERIMENTS AND DISCUSSIONS
The experiments are performed on a PC equipped with
3.20 GHz Intel Core i5 CPU and 8 GB RAM. In order to
quantify the robustness of the proposed method, the perfor-
mance of the proposed algorithm and other algorithms are
estimated on the KITTI dataset and our dataset, separately.
It’s noteworthy that the images we used are all based on
the criteria that the lane markings should be visible to the
naked eye. The performance of lane detection varies with a
set of parameters. Hence, we analyze the effects of different
parameters on the performance of the lane detection and
confirm the optimal configuration of parameters finally.

A. OPTIMAL CONFIGURATION OF PARAMETERS
For edge-based methods, the degeneration of a gray level
image to a binary image is the most critical but challenging
step, and directly determines whether the lane information
can be retained and separated from the background. The
performance of our modified threshold segmentation method
primarily affected by three parameters, {w, k1, k2}. Inappro-
priate selection of the parameters would lead to failure of
lane preservation or excessive noises in the binarized images.
To this end, 500 road images are randomly selected from the
two datasets, then different combinations of the {w, k1, k2}
are tested. We use the accuracy rate, R, which is defined
as the fraction between the number of correctly detected
frames and the total number of frames, to measure the per-
formance of the detection algorithm. For each configuration,
the corresponding accuracy rate is calculated, as displayed
in Fig. 9. It is apparent that when the window size is 9,
the overall performance is the best among the candidate sets.
In the local window of this size, the values of {k1, k2}, are
varied between the ranges illustrated in Fig. 9(d). It can also
be observed that the highest R value, 93.60%, is achieved
with the configuration {9, 0.2, 0.2}. Of course, we may find
a better configuration, but this one is acceptable.

B. COMPARISON WITH THE STATE-OF-THE-ARTS
We measure the performance of the proposed lane detec-
tion algorithm using the ‘‘optimal’’ configuration of param-
eters and other four baseline methods, i.e., IPM + hyper-
bolic model [10], superparticle method [16], lane detection
with two-stage feature extraction (LDTFE) method [26],
and a state-of-the-art fully convolutional networks (FCN)
method [32]. These four different methods are relatively
new and practical in current vision-based lane detection
algorithms. We evaluate the performance using the metrics
of accuracy rate, detailed statistics on the KITTI dataset
and our dataset, which are depicted below and shown
in Table 1 and Table 2, respectively.

49684 VOLUME 6, 2018



C. Yuan et al.: Robust Lane Detection for Complicated Road Environment Based on Normal Map

FIGURE 9. The accuracy rate of different configurations of parameters for different window sizes. (a) w = 3; (b) w = 5; (c) w = 7; (d) w = 9;
(e) w = 11; (f) w = 13.

TABLE 1. The performances of different lane detection algorithms on KITTI dataset.

TABLE 2. The performances of different lane detection algorithms on our dataset.

1) KITTI DATASET
KITTI is a challenging real-world computer vision
dataset [33]. In our experiment, four different types of envi-
ronments are tested to quantify the performance of different
lane detection algorithms. They are, (i) day-time scenarios,
which are well illuminated with vehicles and stains; (ii) dusk
scenarios, where the brightness of the lanes is inconsistent
because of the existence of the shadow, and dense traffic
makes the detection of lanes more difficult; (iii) shadows
scenarios, where intense light and tree shadows create the
illumination inconsistencies and deteriorate the visibility;

(iv) light reflection scenarios, where the optical reflections
on the road reduce the contrast between lane markings and
pavement. The accuracy rates of different lane detection
algorithms on KITTI dataset are shown in Table 1. Sample
detection results of four scenarios on KITTI dataset are
illustrated in Fig. 10.

2) OUR DATASET
In order to further test the robustness of the proposed algo-
rithm in the different urban environment. We create our
dataset of road images captured by a binocular camera,
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FIGURE 10. Sample detection results on KITTI dataset.(a1)∼(a8) are the results of IPM + hyperbolic model [10], cyan lines refer to the detected
lanes; (b1)∼(b8) are the results of superparticle [16], blue points refer to the detected lanes; (c1)∼(c8) are the results of LDTFE [26], magenta lines
refer to the detected lanes; (d1)∼(d8) are the results of FCN [32], green area refers to the host lane; (e1)∼(e8) are the results of the proposed
method, red lines refer to the detected lanes, and green area refers to the host lane.

including four different scenarios: daytime, night, dense traf-
fic, and stains/scratches. The daytime scenarios are well
illuminated, while the brightness and visibility of the lanes
in the night scenarios are relatively low; For scenarios
with dense traffic or stains and scratches, the interfer-
ence factors around lanes increase the difficulty of lane
detection. The performances of different lane detection
algorithms on our dataset are shown in Table 2. Sample
detection results of four scenarios on our dataset are shown
in Fig. 11.

As can be observed from the Fig. 10 and Fig. 11, despite
there exist heavy shadows or uneven illumination, the pro-
posed method can successfully identify the lanes. While the
reference methods are easy to fail faced with the complex
environment. Besides, we inspect the reasons for the failure
of the reference methods in typical scenarios. In the IPM +
hyperbolic model, Xu et al. chose 95% of the maximum pixel
values as the global threshold [10], which is not feasible
in diverse scenes. As can be observed in Table 1, Table 2,

Fig. 10(a4), (a6), (a7), and Fig. 11(a2), (a4), (a5), (a7),
(a8), (a10), this method collapses when facing complex light
condition and dense traffic, e.g., the strong light reflection
scenario in KITTI dataset, and the night and dense traffic
scenarios in our dataset. In the superparticle method [16],
the oriented distance transform (ODT) applied on the binary
edge map is sensitive to occurrences of noisy pixels, espe-
cially when the lanes are discontinuous or missing. In our
experiments, the superparticle method collapse in the night
scenario in our dataset with only 60.20% accuracy rate. Some
failures can be observed in Fig. 10(b4), (b6), (b7), (b8), and
Fig. 11(b4), (b6), (b8), (b10). In the LDTFE method [26],
despite Niu et al. attempted to introduce the Canny detector
to reduce the impact of uneven light conditions, it still can not
work well with dense traffic, as demonstrated in Fig. 10(c6),
(c7), (c8), and Fig. 11(c2), (c4), (c7), (c8), (c10). In the
FCN method [32], a fully convolutional network is used for
semantic segmentation of the host lane. As a deep learn-
ing method, FCN requires a large amount of data to train
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FIGURE 11. Sample detection results on our dataset. (a1)∼(a10) are the results of IPM + hyperbolic model [10],
cyan lines refer to the detected lanes; (b1)∼(b10) are the results of superparticle [16], blue points refer to the
detected lanes; (c1)∼(c10) are the results of LDTFE [26], magenta lines refer to the detected lanes; (d1)∼(d10) are
the results of FCN [32], green area refers to the host lane; (e1)∼(e10) are the results of the proposed method, red
lines refer to the detected lanes, and green area refers to the host lane.

a powerful model. However, it trends to fail when tackling
the scene which is significantly different from the training
datasets, as can be seen in Fig. 10(d3), (d5), (d7), (d8), and
Fig. 11(d4), (d7), (d10).

C. LIMITATIONS OF PROPOSED APPROACH
Despite the proposed model reaches reliable performances
in typical scenes, there are still some limitations. Firstly,
the proposed algorithm relies on the depth map to accurately
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FIGURE 12. Failed detection cases. (a), (c) and (e) are the failed detection
results on our dataset; (b), (d) and (f) are the failed detection results on
KITTI dataset.

segment the road pavement, but the development of stereo
matching algorithm can facilitate this requirement. Secondly,
the generation of normal map consumes most of the
time in the proposed lane detection algorithm and needs
to be optimized and accelerated to save the computing
resources. Thirdly, the proposed method is only applicable
to detect lanes in structured roads with lane markings and
clear road boundaries. Fourthly, lane-like scratch (as shown
in Fig. 12(a)∼(c)) and low visibility of lanes caused by
light (as shown in Fig. 12(d)∼(f)) are challenges for the pro-
posed algorithm, which are also the further work to improve
and overcome.

IV. CONCLUSIONS
In this paper, a road segmentation and lane detection algo-
rithm based on the normal map has been described. Unlike
the deep learning methods need to be trained on large data
sets, our model is based on geometric computer vision and
‘‘plug and play’’. Especially, we focus on dealing with the
complex illumination and dense traffic which are common
in the real driving environment. To that end, first of all,
a method based on the normal map to segment the road is pro-
posed. This method can effectively remove the interference
of buildings and vehicles on the basis of a higher-precision
depth map. And it also can be used to avoid collision on
unstructured rural roads. Secondly, the traditional local adap-
tive threshold segmentation method is improved to adapt to a
variety of complex illumination conditions. The ‘‘optimal’’
configuration of key parameters is found through a large
number of experiments and works in a variety of lighting
conditions. Thirdly, in order to accurately infer the starting
point of the lane, Hough transform and vanishing point are
combined to jointly identify lane boundaries. To demonstrate
the strength of proposed approach, three state-of-the-art lane
detection methods are compared on two databases. Exper-
imental results indicate that the proposed algorithm works
robustly and accurately under various challenging situations,
in spite of some limitations stated above, such as lane-like

scratch and blur lanes. In the near future, we can optimize the
time cost for the mobile devices and improve the detection
rate in more complex scenes, and our research will also be
followed up with lane tracking.
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