
Travel Time Estimation without Road Networks: An Urban Morphological
Layout Representation Approach

Wuwei Lan1,∗ , Yanyan Xu2,∗,† , Bin Zhao3

1Department of Computer Science and Engineering, Ohio State University, Columbus, OH 43210
2Department of City and Regional Planning, University of California, Berkeley, CA 94720

3Wisense AI, Jinan, China
lan.105@osu.edu, yanyanxu@berkeley.edu, binzhao@powergrid.ai

Abstract
Travel time estimation is a crucial task for not only
personal travel scheduling but also city planning.
Previous methods focus on modeling toward road
segments or sub-paths, then summing up for a fi-
nal prediction, which have been recently replaced
by deep neural models with end-to-end training.
Usually, these methods are based on explicit fea-
ture representations, including spatio-temporal fea-
tures, traffic states, etc. Here, we argue that the lo-
cal traffic condition is closely tied up with the land-
use and built environment, i.e., metro stations, arte-
rial roads, intersections, commercial area, residen-
tial area, and etc, yet the relation is time-varying
and too complicated to model explicitly and effi-
ciently. Thus, this paper proposes an end-to-end
multi-task deep neural model, named Deep Image
to Time (DeepI2T), to learn the travel time mainly
from the built environment images, a.k.a. the mor-
phological layout images, and showoff the new
state-of-the-art performance on real-world datasets
in two cities. Moreover, our model is designed to
tackle both path-aware and path-blind scenarios in
the testing phase. This work opens up new opportu-
nities of using the publicly available morphological
layout images as considerable information in mul-
tiple geography-related smart city applications.

1 Introduction
Travel time estimation in the urban area is vital to individ-
ual travel planning, transportation and city planning. Timely
estimation of travel time help travelers to effectively sched-
ule their trips in advance, plan the charging of electric ve-
hicles [Xu et al., 2018], evaluate travel exposure to air pol-
lution [Xu et al., 2019], and help transportation network
companies to improve the service quality of delivery vehi-
cles [Mori et al., 2015]. From transportation planning per-
spectives, travel time estimation can facilitate the quantifi-
cation of individual driver’s contribution to the overall traf-
fic congestion [Çolak et al., 2016; Xu and González, 2017].
∗Equal Contribution
†Contact Author

Travel time is also one of the most important metrics to
evaluate residents’ accessibility to resources in city plan-
ning [Weiss et al., 2018]. However, travel time estimation
in traffic is still challenging due to the complexity of trans-
portation systems and the unpredictability of individual travel
needs and mobility behavior, especially in urban regions.

This work places the emphasis on travel time estimation
for a trip query in urban environment utilizing massive tra-
jectory data. The developed model desires to tackle not only
the path-aware query, where the routing path is available, but
also the path-blind query, which provides the origin and des-
tination locations only. Recent solutions are proposed in two
aspects (i) link-based and (ii) path-based approaches. The
former first individually model the travel time on each tra-
versed link and then accumulate them for a given path. The
main drawbacks of these approaches are the accumulation of
error and the ignorance of travel delay at the intersections
and traffic signals. Besides, they can not directly work for
the path-blind travel time estimation [Woodard et al., 2017].
Path-based approaches aim to directly estimate the travel time
of the whole path. There are two ways to preprocess the path
before training models, mapping the path to road networks
via map-matching [Li et al., 2018], which is computationally
expensive for massive trajectory data, and to grid cells [Zhang
et al., 2018]. Regarding the gridding methods, the varying
traffic states in one grid is intractable to capture as there might
be multiple roads in the same grid and the traffic states on dif-
ferent segments and directions are dramatically divergent.

Inspired by the relation between traffic congestion and ur-
ban land use and organization [Tsekeris and Geroliminis,
2013; Louf and Barthelemy, 2013; Lee et al., 2017], we de-
sire to capture the congestion level of local regions from their
morphological layouts. Figure 1 illustrates diverse morpho-
logical layouts in an urban area with additional traffic states
in Google Maps. The layouts provide rich and learnable in-
formation about the built environments, including transporta-
tion infrastructure (levels of roads are differentiated by colors
or widths), green spaces, density of buildings, commercial
regions, etc. [Albert et al., 2017]. The variant built environ-
ments imply the nontrivial yet easy to be neglected connec-
tion between traffic congestion and the layout. Thus, appro-
priate representation of layout images could be a significant
proxy of traffic states. The travel delay would be heavy if a
driver traverses busy regions, such as the regions with dense



Highway

Commercial

Residential

Green space

©Google map

Fast Slow

Figure 1: Illustrations of different morphological layouts with traffic
states in urban environment, provided by Google Maps.

traffic facilities (e.g., metro stations) or commercial facilities.
Taking cognizance of the relation between built environ-

ment and traffic congestion, in this paper, we are interested
in the question ”Could we learn the travel delay from the ur-
ban layout images?” To this end, we present an end-to-end
multi-task deep learning model, named Deep Image to Time
(DeepI2T), to estimate the travel time of a path with the rep-
resentation of layout images of the traversed grid sequence.
Our main contributions are summarized as follows.

• We propose an end-to-end multi-task deep learning ap-
proach for travel time estimation by integrating the tra-
jectory data with morphological layout images. To the
best of our knowledge, this is the first time to introduce
the fine-scale layout images in transportation.
• DeepI2T learns the travel delay during the whole paths

and sub-paths from the gridding images, without the use
of road networks, hence without map-matching.
• We combine the layout images in grids with driving di-

rection of each vehicle. Heterogeneous traffic conditions
in one single grid could be represented distinctively.
• DeepI2T could work for both path-ware and path-blind

trip query in the testing stage. A neighboring trips solu-
tion is designed to tackle the path-blind query.
• We showcase DeepI2T with massive trajectory data in

two cities. The performance is competitive with several
state-of-the-art baselines.

2 Related Work
According to the information provided by the trip query in the
testing phase, these path-based (a.k.a. trajectory-based) ap-
proaches fall into two categories, path-aware and path-blind.

Path-aware query provides the specific routing path of the
trip to the estimation model. Wang et al. estimated the
travel time of each road segment using tensor-based spatial-
temporal model, which could handle the roads not traversed

by any trajectory [Wang et al., 2014]. Similarly, Woodard et
al. proposed to model the congestion levels on each individ-
ual segment using historical trajectory data [Woodard et al.,
2017]. In [Wang et al., 2018b], the authors formulated the
travel time estimation to regression problem and proposed
wide-deep-recurrent model feeding with multiple features,
including the spatial, temporal, traffic, and personalized fea-
tures. In these works, for modeling the traffic features on
individual road segments, map-matching is a must in the pri-
mary stage and the queried trip must provide the taking route
to the model (a.k.a., a sequence of road segments).

Thanks to the powerful representation ability of deep neu-
ral networks, recent works attempted to directly learn the
travel time from trajectory data, without the time-consuming
map-matching. Zhang et al. first mapped the GPS locations
to grids and designed a model to estimate travel time by com-
bining the spatial and temporal embedding with some aux-
iliary features, including the driving states, short-term and
long-term traffic states in grids [Zhang et al., 2018]. Wang et
al. designed an end-to-end framework to learn the spatial and
temporal dependencies from the raw GPS sequence [Wang et
al., 2018a]. During the testing phase, the path of the queries
trip is provided as a sequence of GPS locations in a route.
As this method is trained on the raw GPS coordinates, its
performance is sensitive to the quality of training data and
difference between training and testing data.

Path-blind query only provides the origin and destination
locations and departure time to the estimation model. It’s
also named as Origin-Destination (OD) travel time estima-
tion and is universal in urban planning for the evaluation of
reachability to facilities. In contrast with path-ware, path-
blind query faces with great challenge due to the uncertain
route and travel distance. Li et at. built a spatial and tempo-
ral graph on the map to learn the prior knowledge from the
traces and designed a multi-task framework to learn the path
information between origin and destination [Li et al., 2018].
This work models the road network as an undirected graph,
which ignores the divergence of traffic states in different di-
rections. Although not dealing with the trajectory data, Wang
et al. proposed a simple baseline for the path-blind travel time
estimation using only the origin and destination information
in the training sets [Wang et al., 2016]. The idea is to find the
neighboring trips for a queries trip and simply scaling their
historical travel times. This method can not perform stably
when less neighboring trips are available in training sets.

3 Preliminary
Driving Trajectory. The trajectory of a driving trip,
P , is composed of a sequence of geographical locations
{Lon,Lat} with timestamps. Each trip is associated with
a vehicle ID. Therefore, a trip with N footprints can be
formulated as, P = {F1, F2, ..., FN}, where the ith foot-
print Fi = (ti, Loni, Lati). The travel time of the path
TP = tN − t1. The travel distance of the trip equals to the
accumulation of great-circle distances between two consec-
utive footprints, that is, D =

∑N−1
i=1 Dist((Loni, Lati) →

(Loni+1, Lati+1)). Figure 2 illustrates a path with 12 foot-
prints from east to west.



Figure 2: Illustrations of a trajectory and traversed grids.

LINE AttrDirectionConvNet

Image 
Representation

Bi-LSTM

Residual Fully Connected LayersMultitask
Prediction

Loss 1 Loss 2 Loss n

Image sequence with padded and merged grids

Flow

Figure 3: Our proposed DeepI2T architecture. We merge GPS
points if they share the same grid (bold frame) and pad new grids
(dashed frame) if two continuous GPS points are not neighbors. �
is element-wise multiplication and + is vector concatenation.

Morphological Layout Images. The study region is first
divided into a number of equal-sized grids. In each grid,
we crawl the high-resolutional map from the publicly avail-
able map service, OpenStreetMap [OpenStreetMap, 2018],
using the Leaflet API [Leaflet, 2018]. In the morphologi-
cal layout images, we can visually observe different build
environments, i.e., river, park, bridge, expressway, main
and secondary roads. As shown in Figure 2, each point
in a path could be mapped to a grid image. In this way,
the path P could be presented using grid images, P ′ =
{(t1, g1), (t2, g2), ..., (tN , gN )}, where gi denotes the tra-
versed grid image at time ti. Note that gi could be repeated
as multiple points might present in one grid.

4 Model Description.
As shown in Figure 3, our proposed DeepI2T has two com-
ponents: Image Representation and Multitask Prediction.
The first component focuses on extracting feature patterns
from morphological layout images using deep convolutional
neural networks, while the second component aims at learn-
ing sequential dependency among the grids with supervision
from multi-task MAPE loss.

4.1 Image Representation
For each grid image, we apply deep convolutional neural net-
works to recognize the patterns, which are twisted by direc-
tion embedding. We also consider topological information
and traffic flow from all the grids, as well as some attribute

Input Image Conv Conv

Fu
lly

 C
on

ne
ct

ed
La

ye
r

ConvNet

Direction

N

S

EW
NW
EW

NE
WE

SW SE

Pool1 Pool3

Figure 4: ConvNet architecture and direction embeddings.

Type Kernel size Stride Input size
Layer 1 Conv2D 3 ∗ 3 1 3 ∗ 436 ∗ 373
Layer 2 Pooling 2 ∗ 2 2 8 ∗ 436 ∗ 373
Layer 3 Conv2D 3 ∗ 3 1 8 ∗ 218 ∗ 187
Layer 4 Pooling 3 ∗ 3 3 16 ∗ 218 ∗ 187
Layer 5 Conv2D 3 ∗ 3 1 16 ∗ 73 ∗ 63
Layer 6 Pooling 3 ∗ 3 3 8 ∗ 73 ∗ 63
Layer 7 Full 3 ∗ 3 1 8 ∗ 25 ∗ 21

Table 1: Parameter configurations of each layer in our ConvNet.

information, including start time, driver ID and etc. Specifi-
cally, we have five modules: ConvNet, Direction, LINE, Flow
and Attributes, which we illustrate each as follows:
ConvNet. Deep convolutional neural networks [Krizhevsky
et al., 2012] show strong ability in capturing image patterns,
e.g. arterial roads, intersections, commercial area and etc.
In order to achieve this goal, we designed a 7-layer Con-
vNet (shown in Figure 4), containing 3 convolutional layers,
3 pooling layers, and one fully connected layer for final rep-
resentation. The detailed parameters of each layer are shown
in Table 1. Specifically, we conduct 2-D convolution as

yil+1,jl+1,dl+1 =

H∑
i=0

W∑
j=0

Dl∑
dl=0

fi,j,dl,dl+1 ∗ xil+1+i,jl+1+j,dl

+ bil+1,jl+1,dl+1 (1)

where fi,j,dl,d is an element from kernel vector f with size
(H,W,Dl, Dl+1), representing height H , width W , in chan-
nels Dl and out channels Dl+1. xil+1+i,jl+1+j,j,dl refers
to an element from xl, which is the input data at layer l
with size (H l,W l, Dl). The output yil+1,jl+1,d is an element
from yl+1 with size (H l+1,W l+1, Dl+1). The bias term
bil+1,jl+1,dl+1 is added into yil+1,jl+1,dl+1 . After convolution,
we apply Relu function Relu(x) = max(0, x) for non-linear
mapping, and max pooling for down sampling. The last fully
connected layer finally outputs 200-dimension vector.
Direction. We define 12 directions for each grid in Figure 4
and use lookup table R12∗200to map each direction into 200-
dimension embedding, which will be updated during model
training. In order to tweak the CNN image embedding, we
conduct element-wise multiplication between direction em-
bedding and ConvNet embedding, resulting in a final 200-
dimension image representation.
LINE. We construct grid network and apply network em-
bedding to capture the spatial correlation between neighbor-
ing grids. Specifically, each grid is a node in a network and



the neighborhood relationship is converted into edge connec-
tion, while the weight on each edge is the reciprocal of Man-
hattan distance between two grids. In order to simplify the
network, we consider at most 5-hop neighbors, which means
any two grids that are more than 5 hops away will be discon-
nected. The spatial locality is actually implied by the network
structure, which is represented by LINE [Tang et al., 2015] in
our work. In addition, we use 100-dimension for this struc-
ture representation and keep updated during model training.
Flow. The same region may have different traffic conditions
as time changes, therefore we need time-varying representa-
tion for each grid. To this end, we average the number of
vehicle per grid per hour. Each grid is associated with a flow
vector with 24 elements, representing the change of traffic
conditions every hour. Taking 100 vehicles as minimum unit,
we have flow embedding as R1000∗50.
Attributes. We consider three attribute information to im-
prove the grid image representation: start time of the trip,
vehicle ID and weather. In detail, we have three embed-
ding lookup tables to represent each attribute: (i) we take
one minute as minimum unit, given 7 days per week, we
have start time embedding as R10080∗30; (ii) different drivers
may have different driving habits, we encode the driver ID as
R25000∗10; (iii) the weather condition is also critical for travel
time estimation, we encode all kinds of weather into R400∗10.

Finally, we get 50-dimension attribute vector after concate-
nation. Combined with 200-dimension image representation,
100-dimension LINE representation and 50-dimension flow
representation, we generate 400-dimension vector per grid.

4.2 Multitask Prediction
Following previous works [Wang et al., 2018a; Zhang et al.,
2018], we use Bi-LSTM [Hochreiter and Schmidhuber, 1997]
to model sequential dependency and adopt residual connected
layers for non-linear mapping. As for the prediction layer, we
designed a different multitask structure, where each task is to
estimate the travel time from origin grid to the current grid,
to leverage the valuable information of sub-paths.
Multitask Loss Function. Given a trip with L grids,
{g1, g2, . . . , gL}, we consider not only the mean absolute per-
centage error (MAPE) of the whole path from g1 to gL, but
also the MAPE of sub-paths from g1 to gl. To this end, the
final loss L is defined as

L = 1
L−1

∑L
l=2

(
wl · |T̂l−Tl|

Tl

)
(2)

where Tl = tl − t1 denotes the travel time from grid g1 to
gl and T̂l denotes its estimation; wl is the predefined weight,
wl = 2l/(L2 + L− 2), where 1 < l ≤ L and

∑L
l=2 wl = 1.

In this way, we emphasize the longer sub-trips, to make sure
model put more effort on whole trip estimation.

4.3 Travel Time Estimation
Path-aware Estimation. Given a path-aware query, we
map its path into grid sequence with driving directions. We
then feed the grid sequence and the associated attribute infor-
mation into the well-trained DeepI2T, which outputs whole
travel time prediction.

Path-blind Estimation. We design a neighboring strategy
to tackle the path-blind query. Given a query with departure
time, origin and destination locations, we first find the trips
with the same origin and destination grids in the historical
trips, namely neighboring trips. We predict the neighboring
trips’ travel time at the same departure date and time as the
queried trip. Finally, the travel time of queried trip is esti-
mated by weighting the (estimated) travel time of neighbor-
ing trips with their `1 distances.

T̂test =
1
Ne

∑Ne

i=1
Ltest

Li
T̂i (3)

where Ne denotes the number of neighboring trips in the
training set having the same origin and destination grids as,
or in the neighboring grids of, the queried trip; Ltest and Li

refer to the `1 distances of the testing and neighboring trips,
respectively; T̂test and T̂i refer to the estimated travel time of
the testing and neighboring trips, respectively.

5 Experiments
5.1 Data Description
In the experiments, large-scale datasets in two cities from
different countries are adopted to validate the proposed
DeepI2T. The study area and the distribution of raw GPS data
are presented in Figure 5. The statistical information of the
datasets is shown in Table 2.

Shanghai Data. Shanghai Data contains of the GPS trajec-
tories of taxis from Apr. 1st to Jun. 15th in 2014, with sample
interval ranges from 20s to 100s. We only keep the trips of
taxis when they are transporting passengers. We select the
data from Apr. 1st to May 31st for model training, and the
remaining for testing.

Porto Data. The dataset is collected from 442 taxis running
in the city of Porto, Portugal, from 1st Jul. 2013 to 30th Jun.
2014, and is publicly available [Taxi-Link, 2018]. The mea-
surement interval of the track points is fixed at 15s in the raw
data. We select the data during the first 9 months for model
training, and the remaining for testing.

Shanghai Porto

©OpenStreetMap ©OpenStreetMap

Figure 5: Study region and spatial distribution of GPS footprints in
Shanghai in one week (left) and Porto in one year (right).



Dataset Shanghai Porto

area of study region 1479.7km2 419.0km2

# grids (W×H) 200 × 175 100 × 85
size of grid ∼ 200m ∼ 200m
# vehicles 15, 000 442
# trips per day 170, 000 3, 530
average sample rate 55s 15s
average travel time 719s 749s
travel time std 469s 593s
average travel distance 4.53km 5.79km
# days for training 61 273
# days for testing 15 90

Table 2: The statistical information of the datasets

5.2 Methods for Comparison
Linear regression (LR). Given the geographical positions
of the origin and destination, we train the relation between the
`1 distance and travel time using a linear regression model.

Neighbor average (AVG). For each trip in the training data
sets, the average speed is calculated with the travel time and
the `1 distance between the origin and destination. During the
testing phase, we estimate the travel speed by simply averag-
ing the historical speeds of its neighbors, i.e., trips between
the same origin and destination grids.

Temporally weighted neighbors (TEMP). Wang et al.
proposed a simple baseline method to estimate trip travel time
by scaling the average speeds of its neighboring trips [Wang
et al., 2016]. The scaling factors are calculated by the tem-
poral change of the average speeds of all trips in the city,
i.e., relative temporal speed reference in [Wang et al., 2016].
Comparing with AVG method, TEMP inspects the variance
in average speeds of historical trips by their departure hours.

Gradient Boosting Machine (GBM). Gradient boosting
decision tree models have been used in travel time predic-
tion [Zhang and Haghani, 2015]. Several attributes of trips
are fed into GBM model, including the departure time, the
day in a week, the geographical coordinates of the origin and
destination, and the `1 distance, etc. The model is imple-
mented using LightGBM [Ke et al., 2017], configured with
500 trees with 1,000 leaves.

DeepTTE. It is a state-of-the-art end-to-end deep learning
method for travel time estimation, learning the spatial and
temporal dependencies of the raw GPS points in trajecto-
ries [Wang et al., 2018a]. We use the code shared by au-
thors to test our two datasets. However, we find DeepTTE
tends to overfit when fed with uniformly sampled GPS trajec-
tories (i.e., Porto data has fixed sample rate). In such case,
DeepTTE simply learns the travel time by counting the num-
ber of points in one trace and fails in the testing. To fix it,
we feed DeepTTE with the centroids of the grids traversed by
trips for both training and testing data, as same as DeepI2T.

GridLSTM. It is a degeneration of DeepI2T by removing
ConvNet and direction embedding. It learns the travel time
with the spatial and temporal relation of grids in one trace.

5.3 Performance Evaluation
We utilize three metrics to evaluate the performance of ref-
erence models, mean absolute error (MAE), mean absolute
percentage error (MAPE), and satisfaction rate (SR). SR is
defined as the fraction of trips which estimation error rates
are not more than 10% and higher SR indicates better per-
formance. The formulas of these metrics are given as follow.

MAE(T, T̂ ) = 1
N

∑N
i=1 |Ti − T̂i| (4)

MAPE(T, T̂ ) = 1
N

∑N
i=1

|Ti−T̂i|
Ti

× 100% (5)

SR(T, T̂ ) = 1
N

∑N
i=1

(
|Ti−T̂i|

Ti
≤ 10%

)
× 100% (6)

where Ti and T̂i are the actual and estimated travel time of
the ith trip in the N testing trips.

In Table 3, we present the estimation errors of reference
methods. The first group of methods (LR, AVG, GBM and
TEMP) are designed for path-blind query and the second
group of methods (DeepTTE and GridLSTM) are designed
for path-aware query. The best performance is highlighted
per metric per group. As we can see, DeepI2T performs best
in both groups in terms of MAPE. Compared with GridL-
STM, the introducing of image representation promotes the
MAPE of path-aware queries by 10% and 7% in Shanghai
and Porto, respectively. Regarding the path-blind queries,
DeepI2T shows competitive performance with TEMP in
Shanghai, but evidently better performance in Porto.

We also summarize the MAPE and SR of each model dur-
ing the morning (7:00-9:00) and evening (16:00-18:00) peak
hours in Shanghai in Table 4. Comparing with the other
two deep learning baselines, DeepI2T yields the best perfor-
mance in terms of MAPE and SR on path-aware queries dur-
ing both peaks. Especially during the evening peak, the SR
of DeepI2T reaches 41.37%, while DeepTTE and GridLSTM
only can achieve 29.08% and 34.62%, respectively. That in-
dicates DeepI2T could provide acceptable time estimation for
a large fraction of trip queries during traffic congestion. The
path-blind estimation also reaches competitive performance
with the baselines during peak hours, except the SR during
morning peak is weaker than TEMP.

Further, we compare the performance of DeepTTE, GridL-
STM and DeepI2T on Shanghai Data. Figure 6 presents the
estimation error per hour. All models show relatively weak
performance during the peak hours due to the traffic con-
gestion. Even so, DeepI2T generates better estimation than
compared models during all the day. In Figure 7, we com-
pare the performance of these models per the actual travel
time of queried trips. We find DeepTTE performs worse for
longer trips, while the proposed DeepI2T has much stable
performance for trips with varying travel time. In addition,
we present the evolution of estimation error during the model
training phase in Figure 8. Overall, the MAPE decays stably
along with the training time. The closeness between training
and evaluation curves reflects that DeepI2T efficiently pre-
vent overfitting during model training.



Method Shanghai Porto
MAE (s) MAPE (%) SR (%) MAE (s) MAPE (%) SR (%)

LR 186.5 27.64 23.87 287.9 49.02 17.20
AVG 158.9 22.30 29.35 235.86 30.43 24.65
GBM 144.3 22.55 30.45 238.17 37.83 22.97
TEMP [Wang et al., 2016] 141.0 21.93 31.24 231.10 29.84 25.67
DeepTTE [Wang et al., 2018a] 147.61 19.02 31.13 167.94 20.44 32.34
GridLSTM 117.12 16.98 37.00 139.55 18.10 38.45
DeepI2T (path-blind) 143.61 20.47 30.62 186.65 25.28 30.08
DeepI2T (path-aware) 105.43 15.20 42.23 128.26 17.08 38.97

Table 3: Overall performance comparison on Shanghai and Porto Data. Path-aware methods are highlighted in gray shadow.

Method MAPEpeak (%) SRpeak (%)
AM PM AM PM

LR 27.89 26.17 22.61 24.15
AVG 23.72 21.77 26.39 28.30
GBM 23.74 24.13 29.38 28.62
TEMP 23.03 23.45 30.23 29.44
DeepTTE 21.58 20.15 26.72 29.08
GridLSTM 18.95 17.95 33.40 34.62
DeepI2T
(path-blind) 22.55 20.40 27.29 29.52
DeepI2T
(path-aware) 16.89 15.75 37.28 41.37

Table 4: Peak hour performance comparison on Shanghai Data

DeepTTE

GridLSTM

DeepI2T (path-aware)

DeepI2T (path-blind)

Departure time (hr)

M
A

PE
 (%

)

Figure 6: Estimation error for trips with different departure time.

DeepTTE

GridLSTM

DeepI2T (path-aware)

DeepI2T (path-blind)

Fraction of trips

Actual travel time (min)

M
A

PE
 (%

)

Figure 7: Estimation error for trips with different travel time. The
right y-axis shows the distribution of testing trips.

It’s noteworthy that the performance of DeepTTE on our
datasets is evidently weaker than the results in [Wang et al.,
2018a]in terms of MAPE. We argue the reasons are mainly in
several aspects, (i) DeepTTE learns the dependency between

Figure 8: Evolution of estimation error during model training.

two consecutive locations with their time gaps. It tends to
fail when the sample rate of data is (nearly) constant; To fix
this issue, we resample GPS points by using the centroids
of grids. However, the time gap between two centroids may
introduce some errors; (ii) DeepTTE is sensitive to the dis-
tance gap in the testing trip, which determines the similarity
between testing and training data. How to select the best dis-
tance gap is not given in [Wang et al., 2018a]; (iii) The trip
lengths in [Wang et al., 2018a] are approximately twice of
ours on average. Normally, for a shorter trip, the MAPE tends
to be higher than longer trip even they have similar MAE.
Another state-of-the-art model is DeepTravel [Zhang et al.,
2018], which we didn’t compare because the source code is
not publicly available. We notice that the standard deviation
of travel time for Porto Data in DeepTravel in [Zhang et al.,
2018] is much smaller than ours (348s vs. 593s), indicating
the task in our work is more challenging.

6 Conclusions
This work explores the potential of learning travel delay from
urban layout images for a specific task, travel time estima-
tion. Our proposed DeepI2T model showed promising perfor-
mance for both path-aware and path-blind scenarios on real-
world datasets in Shanghai and Porto. Our attempt presents
new opportunities of using publicly available morphological
images to solve transportation problems.

Acknowledgments
The work is supported by the Science and Technology Inno-
vation Action Plan Project of Shanghai Science and Technol-
ogy Commission under Grant No. 18511104202.



References
[Albert et al., 2017] Adrian Albert, Jasleen Kaur, and

Marta C Gonzalez. Using convolutional networks and
satellite imagery to identify patterns in urban environ-
ments at a large scale. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 1357–1366. ACM, 2017.

[Çolak et al., 2016] Serdar Çolak, Antonio Lima, and
Marta C González. Understanding congested travel in ur-
ban areas. Nature Communications, 7:10793, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Ke et al., 2017] Guolin Ke, Qi Meng, Thomas Finley,
Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boost-
ing decision tree. In Advances in Neural Information Pro-
cessing Systems, pages 3146–3154, 2017.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural in-
formation processing systems, pages 1097–1105, 2012.

[Leaflet, 2018] Leaflet. Leaflet - a JavaScript library for in-
teractive maps. https://leafletjs.com, 2018. [Accessed
Sep.-2018].

[Lee et al., 2017] Minjin Lee, Hugo Barbosa, Hyejin Youn,
Petter Holme, and Gourab Ghoshal. Morphology of travel
routes and the organization of cities. Nature Communica-
tions, 8(1):2229, 2017.

[Li et al., 2018] Yaguang Li, Kun Fu, Zheng Wang, Cyrus
Shahabi, Jieping Ye, and Yan Liu. Multi-task represen-
tation learning for travel time estimation. In Proceed-
ings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1695–
1704. ACM, 2018.

[Louf and Barthelemy, 2013] Rémi Louf and Marc
Barthelemy. Modeling the polycentric transition of
cities. Physical Review Letters, 111(19):198702, 2013.

[Mori et al., 2015] Usue Mori, Alexander Mendiburu, Maite
Álvarez, and Jose A Lozano. A review of travel time
estimation and forecasting for advanced traveller infor-
mation systems. Transportmetrica A: Transport Science,
11(2):119–157, 2015.

[OpenStreetMap, 2018] OpenStreetMap. https:
//www.openstreetmap.org, 2018. [Accessed Sep.-2018].

[Tang et al., 2015] Jian Tang, Meng Qu, Mingzhe Wang,
Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-
scale information network embedding. In WWW. ACM,
2015.

[Taxi-Link, 2018] Taxi-Link. Porto Taxi Dataset. http:
//www.geolink.pt/ecmlpkdd2015-challenge/dataset.html,
2018. [Accessed Oct.-2018].

[Tsekeris and Geroliminis, 2013] Theodore Tsekeris and
Nikolas Geroliminis. City size, network structure and

traffic congestion. Journal of Urban Economics, 76:1–14,
2013.

[Wang et al., 2014] Yilun Wang, Yu Zheng, and Yexiang
Xue. Travel time estimation of a path using sparse tra-
jectories. In Proceedings of the 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, pages 25–34. ACM, 2014.

[Wang et al., 2016] Hongjian Wang, Yu-Hsuan Kuo, Daniel
Kifer, and Zhenhui Li. A simple baseline for travel time
estimation using large-scale trip data. In Proceedings of
the 24th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, page 61.
ACM, 2016.

[Wang et al., 2018a] Dong Wang, Junbo Zhang, Wei Cao,
Jian Li, and Yu Zheng. When will you arrive? estimat-
ing travel time based on deep neural networks. In Pro-
ceedings of the 32nd AAAI Conference on Artificial Intel-
ligence, pages 2500–2507. AAAI, 2018.

[Wang et al., 2018b] Zheng Wang, Kun Fu, and Jieping Ye.
Learning to estimate the travel time. In Proceedings of the
24th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 858–866. ACM,
2018.

[Weiss et al., 2018] D. J. Weiss, A. Nelson, H. S. Gibson,
W. Temperley, S. Peedell, A. Lieber, M. Hancher, E. Po-
yart, S. Belchior, N. Fullman, et al. A global map of travel
time to cities to assess inequalities in accessibility in 2015.
Nature, 553(7688):333, 2018.

[Woodard et al., 2017] Dawn Woodard, Galina Nogin, Paul
Koch, David Racz, Moises Goldszmidt, and Eric Horvitz.
Predicting travel time reliability using mobile phone gps
data. Transportation Research Part C: Emerging Tech-
nologies, 75:30–44, 2017.

[Xu and González, 2017] Yanyan Xu and Marta C González.
Collective benefits in traffic during mega events via the use
of information technologies. Journal of The Royal Society
Interface, 14(129):20161041, 2017.

[Xu et al., 2018] Yanyan Xu, Serdar Çolak, Emre C Kara,
Scott J Moura, and Marta C González. Planning for elec-
tric vehicle needs by coupling charging profiles with urban
mobility. Nature Energy, 3:484–493, 2018.

[Xu et al., 2019] Yanyan Xu, Shan Jiang, Ruiqi Li, Jiang
Zhang, Jinhua Zhao, Sofiane Abbar, and Marta C
González. Unraveling environmental justice in ambient
PM2.5 exposure in Beijing: A big data approach. Comput-
ers, Environment and Urban Systems, 75:12–21, 2019.

[Zhang and Haghani, 2015] Yanru Zhang and Ali Haghani.
A gradient boosting method to improve travel time pre-
diction. Transportation Research Part C: Emerging Tech-
nologies, 58:308–324, 2015.

[Zhang et al., 2018] Hanyuan Zhang, Hao Wu, Weiwei Sun,
and Baihua Zheng. DeepTravel: a neural network based
travel time estimation model with auxiliary supervision.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 3655–3661. IJCAI, 2018.

https://leafletjs.com
https://www.openstreetmap.org
https://www.openstreetmap.org
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html
http://www.geolink.pt/ecmlpkdd2015-challenge/dataset.html

	Introduction
	Related Work
	Preliminary
	Model Description.
	Image Representation
	Multitask Prediction
	Travel Time Estimation

	Experiments
	Data Description
	Methods for Comparison
	Performance Evaluation

	Conclusions

