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Abstract— Current freeway traffic flow prediction techniques
pay attention to time series prediction or introduce the up-
stream adjacent road segments in the short-term prediction
model. In this paper, all of the road segments on the freeway are
considered as candidates of the independent variables fed into
the prediction model. A spatio-temporal multivariate adaptive
regression splines (MARS) approach is proposed for the road
network analysis and to predict the short-term traffic volume
at the observation stations on the freeway. The actual traffic
data are collected from a series of observation stations along
a freeway in Portland every 15 minutes. In the first phase, the
macroscopic dependency relationships of the stations on the
freeway are investigated via MARS method. Subsequently the
stations most related to the object station are selected and fed
into the MARS prediction model to generate the short-term
volume. The experiments are carried out on the actual traffic
data and the results indicate that the proposed spatio-temporal
MARS model can generate superior prediction accuracy in
contrast with the historical data based MARS model, the
parametric ARIMA, and the nonparametric PPR methods.

I. INTRODUCTION

In recent years, as an efficient realization of intelligent
transportation systems (ITS), parallel-transportation manage-
ment systems (PtMS) have been applied to extenuate the
transportation pressure in large cities by degrees [1], [2]. In
PtMS, the short-term traffic flow prediction in the freeways
plays a significant role in some concrete components, such
as the artificial transportation systems (ATS) and the traffic
information services (TIS).

Since several decades ago, various approaches have been
proposed and tested to ameliorate the short-term prediction of
traffic flow on freeways based on different models. From the
early parametric to the subsequent non-parametric methods,
historical traffic data on the object road has been considered
as the most important factor to the prediction model. For in-
stance, researchers have taken advantage of the historical data
to predict short-term traffic flow through Kalman filtering [3],
autoregressive integrated moving average (ARIMA) [4], non-
parametric regression method such as k-nearest neighbor
(k-NN) approach [5], regression trees approach [6]. These
methods also can be seen as univariate methods as the
univariate historical values on the single object road are fed
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into the prediction model. On the basis of considering the
traffic flow as time series, these approaches mostly could
promise well when the traffic relatively remained stable,
instead of the complicated situations.

In the recent two decades, researchers perceived the impor-
tant of the influence of the spatial information in the traffic
flow prediction. Hobeika et al. [7] tried to predict short-
term traffic flow based on the historical and upstream traffic
states. Chandra et al. [8] developed a vector autoregressive
model considering the spatial contributions of the upstream
roads. The relationship between traffic flow on the current
section and the upstream stations can be used for predict-
ing in Zhang et al.’s paper [9]. Besides, machine learning
approaches have also been extensively utilized to deal with
the short-term traffic flow prediction, especially v-Support
Vector Machines [10], Bayesian combined neural network
approach [11], stochastic approach [12] and so on.

The above mentioned spatio-temporal correlation models
are developed to predict the current road’s traffic flow taking
advantage the upstream traffic. However, the other spatial
traffic states from the road segments or stations which are not
immediately adjacent are neglected. In this paper, a multivari-
ate spatio-temporal correlation model based on a collection
of observation stations is developed to predict the freeway
traffic flow. We first describes a spatio-temporal multivariate
adaptive regression splines (MARS) model to mining the
correlative dependence relationships among the observation
stations. Following the variables importance investigation,
the short-term traffic volume is predicted using the MARS
prediction model with the data from the selected most related
stations as inputs. Finally, in the experiment stage, the actual
traffic data collected from a series of observation stations
along a freeway in Portland every 15 minutes are exploited
to verify the effectivity of the proposed predictive model.
The results indicate that the proposed spatio-temporal MARS
model can generate more preferable prediction in contrast
with the historical data based MARS model, the parametric
method ARIMA, and the nonparametric PPR methods.

The remainder of this paper is structured as follows:
section II is a brief introduction on the data set used in our
work; section III describes the basic theory of MARS model
concisely; the details of the spatio-temporal model building
and the experiment results are illustrated and analyzed in
Section IV, moreover, other two prediction methods are
implemented for comparison with our model; finally, some
concluding remarks are given in Section V.
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II. DATA SET DESCRIPTION

The work in this paper concentrates on the short-term
prediction of the traffic volume on the freeways by taking full
advantage of the spatial and temporal information. Therefore,
we employ the traffic volume obtained from the observation
stations along a long-distance freeway. The data is drawn
from the PORTAL FHWA Test Data Set [13] developed
by Portland State University. The current PORTAL system
receives the traffic volume every 20 seconds from the freeway
loop detectors, which are installed in the main line lanes
and on-ramps on the Portland-Vancouver metropolitan region
freeways. In the data set, an observation station has a set of
related loop detectors.

The data set used in this paper is collected from eight
adjacent stations located on freeway Interstate 205 (I-205)
aligning from south to north. Figure 1 shows the distribution
of the eight chosen observation stations on the I-205. More
details about the number of lanes on the freeways, the spe-
cific locations, and the lengths of the stations are illustrated
in Table I. Milepost denotes the location of the observation
station on the freeway.

The traffic volumes were collected from February 24 to
March 23, 2013. The univariate traffic volume observations
were obtained over each 15 minutes interval. The data from
February 24 to March 16 were the training data set; the latter
one week were processed as the test data set to evaluate the
developed prediction model. In addition, the traffic volume
is formatted as the average number of vehicles per lane per
hour (VPLPH).
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Fig. 1. Locations of the observation stations on I-205 in Portland

TABLE I
PROPERTIES OF SELECTED STATIONS

Stations Lanes Milepost Length

1. 10th Street to I-205 NB 2 6.88 2.63
2. ORE 43 SB-NB 2 8.8 1.07
3. ORE 99E NB 2 9.45 1.01
4. Gladstone NB 3 11.05 1.75
5. Clackamas Hwy NB 3 12.94 1.27
6. Lawnfield NB 3 13.58 0.69
7. Sunnybrook NB 3 14.32 0.37
8. Sunnyside NB 4 14.32 0.94

III. OVERVIEW OF THE MARS METHOD

Multivariate adaptive regression splines (MARS) proposed
by Friedman [14] is a hybrid nonparametric regression ap-
proach which can automatically model non-linearities and
interactions between high-dimensional predictors and re-
sponses. It is a spline regression model that uses a specific
class of base functions as predictors in place of the original
data. MARS has been applied to a wide variety of data anal-
yses in recent years, including traffic flow prediction [15].

The core idea of MARS is to build flexible regression
function as a sum of basis functions, each of which has
its support on a distinct region [16]. Within a region, the
regression function reduces to a product of simple functions
that are initially constant but can be chosen as splines. In
particular, MARS uses expansions in piecewise linear basis
functions of the form (x− t)+ = max(0, x− t), where t is
a univariate constant, named the knot, and the + indicates
the positive part. Therefore, assuming X is composed by N
predictors with p-dimensional vectors, the the collection of
basis functions is

C =
{
(Xj − t)+, (t−Xj)

+
}

(1)

where t ∈ {x1j , x2j , . . . , xNj} and j = 1, 2, . . . , p.
The model-building strategy of MARS is like a forward

stepwise linear regression. Based on the preprocessing, func-
tions from the set C and their products are allowed to be used
in MARS, Finally, the MARS model is expressed as

Y = f(X) + ε = β0 +

r∑
j=1

βmhm(X) + ε (2)

where each hm(X) is a function in C, or a product of two
or more such functions. These functions serve as a set of
functions representing the relationship between the predictor
variables X and the target variable Y . The error term ε is the
Gaussian white noise produced in the data collection stage.

The “optimal” f(X) in the MARS model is achieved in
a two-stage process. In the first forward stepwise stage, a
model is grown by adding basis functions selected from set
C until an overly large model is found. In other words, the
selection of basic functions from the initial set is achieved
by determining a constant function h0(X) = 1, and all
functions in the set C are candidate functions. Meanwhile
given a choice for the hm, the coefficients βm are estimated
by minimizing the residual sum-of-squares. During the stage,
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new pairs of functions are considered at each phase until the
model has the maximum number of terms specified at the
beginning of the process.

In the second backward stepwise stage, basis functions
are deleted step by step in order of least contribution to
the model until an optimal balance of bias and variance is
found. The backward removal is performed by suppressing
those model terms that contribute to a minimal residual error.
This stage consists of reducing the complexity of the model
complexity by increasing its generalisability. This process
can be conducted by means of generalized cross validation
(GCV):

GCV (λ) =

∑N
i=1 (yi − f̂λ(xi))2

(1−M(λ)/N)2
(3)

Where M(λ) indicates the effective number of parameters
in the model and can be estimated with:

M(λ) = r + cK (4)

where r is the number of linearly independent basic functions
and K is the number of knots selected in the forward process.

Finally, by allowing for any arbitrary shape for the re-
sponse function as well as for interactions, and by using
the two-stage model selection method, MARS is capable of
reliably tracking very complex data structures that often hide
in high-dimensional data.

IV. EXPERIMENTS AND DISCUSSIONS

In order to build the MARS model, the data set is divided
into two parts: training set and testing set. The training set
continues for 3 weeks, and consists of 2016 time intervals.
The training set is used to build the MARS model and
analyze the spatio-temporal characteristic of the traffic flow
between the freeway observation stations. The testing set
consists of the remaining 672 time intervals and is used to
evaluate the performance of the proposed predictive model.

The input variables consist of the current traffic volume
Vt and the former historical volumes at the 8 observation
stations in the investigated freeway. The time lag of the
historical data is equal to 4 in our project. Therefore, X
is a collection of {Vt, Vt−1, . . . , Vt−4} from all the stations.
Y is the observation average traffic volume Vt+1 in the later
15 minutes.

A. Spatio-Temporal Relationships Analysis

As mentioned in Section III, MARS models include a
backwards elimination feature selection routine that looks
at reductions in the GCV estimate of error. Therefore, we
track the GCV changes during the building of the model
for each predictor. The importance of the variables can be
estimated via accumulating the reduction in the statistic when
each predictor’s feature is added to the model. If a predictor
(including spatial and temporal traffic volume) was rarely or
never used in any MARS basis function, it has little or no
influence on the specified freeway station.

In our study, the GCV importances are normalized to 0 to
100. And hence 100 denotes that the predictor is the most
important one among all of the predictors, while 0 means that
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Fig. 2. The importance of the traffic varaibles related to station 3
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Fig. 3. The importance of the traffic variables links related to station 4

the variable is useless to the response. Taking a deep look
into the observation station S3, the variable importances for
S3 (t+1) are plotted in Fig. 2. Other variables not appearing
in the figure are unused in the model. It is clear from the
figure that the variable S3 t certainly has the most important
influence on S3 (t + 1) by a comfortable margin. Other
variables listed in the figure are the upstream or downstream
stations, such as S1, S4, and S8. Therefore, from the variable
importances figure, we can conclude that the most influential
stations to S3 along the freeway are S1, S4, and S8. The fact
that there are two downstream variables in the figure signifies
that the traffic status on the downstream roads equally impact
the traffic state on the current road segment.

As another example the variable importances chart of
station S4 is drawn in Fig. 3. The effective stations related
to S4 are S3, S6, S7, and S1 with separate time lag.

B. Prediction Results Analyses

Following the spatio-temporal relationships analysis of
the traffic states on the freeway, this paper predicts the
short-term traffic volume on the eight observation stations.
During the traffic prediction stage, the current and historical
traffic volumes on current and the most related observation
states are treated as the input of the MARS prediction
model. Otherwise, the output of the prediction model is
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the short-term volume at the current station. To reflect the
contributions of the spatial traffic states to the object station,
a temporal MARS model (temp-MARS) is also employed
to compare with the proposed spatio-temporal MARS (ST-
MARS) model. Moreover, two classic prediction models
including parametric and non-parametric methods are also
implemented on the testing data set and compared together.
The parametric one is the 3-order autoregressive integrated
moving average (ARIMA) model. The nonparametric one is
the projection pursuit regression (PPR) method.

As evaluating indicators, two measures for forecasting
error analysis, root mean square error (RMSE) and mean ab-
solute scaled error (MASE) proposed by Rob Hyndman [17],
are adopted in this research to evaluate the performance
of the proposed model. RMSE and MASE are defined as
follows:

RMSE =

√√√√[ 1

K

K∑
k=1

(
Vk − V̂k

)2]
(5)

MASE =
1

K

K∑
k=1

∣∣∣∣∣ Vk − V̂k
1

K−1

∑K
k=2 |Vk − Vk−1|

∣∣∣∣∣ (6)

where K is the total number of intervals during the testing
stage; Vk denotes the actual traffic volume; V̂k is the predic-
tion value produced by the proposed model. Different from
RMSE, MASE is a sort of scaled error that takes account
of the gradient of the actual values. The smaller MASE
indicates better prediction.

In our experiments, all the 8 observation stations are
predicted during the testing period, including weekdays and
weekends. Fig. 4 and 5 plot the 15 minutes traffic volume
prediction results of the predictive models together with the
actual volume for station S3 on March 17 and 18, respec-
tively. As Sunday, the volume on March 17 keeps a high
level at midday, and our ST-MARS model can follow this
state closely. Differently, the volume on Monday contains
the morning and evening peak as shown in Fig. 5. At the
beginning of the morning peak during 6:00 to 7:00, our ST-
MARS model can follow the climbing more closely than
other models. Moreover, the ST-MARS also performs much
better during the descent phase after 8:00. In addition, Fig. 6
draws the prediction results of station 5 on March 18. The
figures show that the proposed ST-MARS can follow the
trace of the actual value during stable traffic states or peaks,
on weekdays or weekends.

Furthermore, to precisely weight the proposed ST-MARS
prediction model against other models, the numerical errors
of the prediction approaches for comparison are exhibited
in Table II and III. From the tables we can catch that
the performances of the proposed ST-MARS model surpass
the temp-MARS, ARIMA, and PPR method on all of the
observation stations. From Table II, the average RMSE are
reduced by about 7%, 13%, and 8% relative to the temp-
MARS, ARIMA, and PPR methods according to RMSE,
respectively. Furthermore, by the look of the MASE errors
in Table III, the MASE of ST-MARS is much less than 1

and performs much better than the other three models. To
sum up, we can conclude that ST-MARS also gets ahead of
the temporal MARS approach, ARIMA, and PPR in general.

TABLE II
RMSE COMPARISON OF THE SELECTED STATIONS

Station ID RMSE
ST-MARS temp-MARS ARIMA PPR

1 89.13 99.91 103.70 98.21
2 140.03 161.48 159.44 158.35
3 95.48 110.57 120.11 112.86
4 80.22 84.83 97.21 85.57
5 79.78 82.90 93.19 83.55
6 78.99 79.86 88.49 81.47
7 92.20 96.37 102.17 99.60
8 79.92 77.27 85.63 80.06

Average 91.97 99.15 106.24 99.96

TABLE III
MASE COMPARISON OF THE SELECTED STATIONS

Station ID MASE
ST-MARS temp-MARS ARIMA PPR

1 0.87 0.94 1.01 0.92
2 0.87 0.96 0.99 0.95
3 0.77 0.91 1.00 0.92
4 0.84 0.86 0.99 0.87
5 0.83 0.87 0.99 0.87
6 0.84 0.89 1.01 0.90
7 0.94 0.96 1.03 1.01
8 0.88 0.90 1.01 0.92

Average 0.855 0.911 1.004 0.920

V. CONCLUSIONS

This paper has presented a spatio-temporal multivariate
adaptive regression splines approach for the roads relevance
analysis and prediction of the short-term traffic volume
on the freeway. The traffic data set is collected from the
observation stations on a freeway in Portland every 15
minutes. In the first stage, a MARS model is designed to
build the dependency relationships of the average traffic
volumes between the observation stations and their historical
values. For each station on the freeway, a set of variables are
found up with the strongest interrelated ones. Afterwards,
the historical volume on current and the most interrelated
volumes are fed into the MARS prediction model to predict
the short-term traffic flow.

Finally, in order to evaluate the performance of the pro-
posed prediction model, the historical data based MARS,
the ARIMA and the PPR methods are employed for com-
parisons. The experiment results indicate that the spatio-
temporal MARS model is an efficient approach for short-
term traffic volume prediction on freeway.
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Fig. 4. Prediction of the traffic volume for station 3 on March 17
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[16] B. Clarke, E. Fokoué, and H. H. Zhang, Principles and Theory for
Data Mining and Machine Learning, ser. Springer Series in Statistics.
Berlin, Germany: Springer-Verlag, 2009.

[17] R. J. Hyndman and A. B. Koehler, “Another look at measures of
forecast accuracy,” International Journal of Forecasting, vol. 22, no. 4,
pp. 679–688, 2006.

978-1-4799-2914-613/$31.00 ©2013 IEEE 222


