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Abstract— In this paper, we describe the design of a mosaicing
technique for images from a microscope system with automati-
cally controlled object stage and image capture unit. Due to the
limited field of view in microscope imagery, larger objects are
split up into many adjacent, but slightly overlapping frames. In
many fields, such as medicine or biology, it is vastly beneficial
that these image patches are recomposed to a single (panoramic)
image.

We propose a feature matching and registration method based
on SURF (Speeded-Up Robust Features). This method is most
accurate for microscopy images, which usually have repetitive,
blob-like structures.

Further steps in our algorithm are estimation of transforma-
tion parameters for image warping and blending for elimination
of color and luminance differences between images.

For feature matching, we propose a new method of dividing
descriptor windows. This increases matching speed considerably.

The experimental results provided demonstrate the perfor-
mance of our method.

I. INTRODUCTION

Image mosaicing has been widely applied in many areas

such as robotics, virtual reality, intelligent surveillance and

so forth [1], [2], [3]. In microscopy, image mosaicing is the

only way of creating large-scale images. For example, our

microscope, using a 40X Olympus UIS2 objective lens, has

a field of view that allows to capture only object sections of

0.3mm in size with a mounted digital camera. Using weaker

magnifications provides a larger field of view, but is decreasing

the spatial resolution accordingly. Image mosaicing allows

to create images with a wide (theoretically unlimited) field

of view at full resolution. The main component of image

mosaicing techniques is generally referred to as image regis-

tration. Existing image registration methods can be categorized

into area-based and feature-based ones. Area-based methods

are sensitive to intensity changes such as noise and varying

illumination. This limits accuracy and robustness of respective

methods [4]. However, feature-based methods based on SIFT

(Scale-invariant Feature Transform) [5], [6] for example, have

superior discriminative properties and are relatively efficient.

SURF (Speeded-Up Robust Features) [9], is another scale-

and rotation-invariant feature extraction method with improved

performance compared to SIFT. Specifically, SURF is advan-

tageous in detecting repetitive blob-like structures as seen

in microscopy images, such as cells or cell organelles. For

prospective on-line applications of our system, speed is as

crucial as accuracy and robustness. Therefore, we propose an

improvement of SURF in our mosaicing scheme.

The paper is organized as follows: In Section 2, we review

matching with SURF and propose a new strategy for sepa-

rating descriptor windows, resulting in an increased speed.

Mismatches are rejected using RANSAC [10]. Section 3 is

revising the estimation of projective transformation parameters

from point correspondences found with SURF.

A simple method for color balancing and blending image

boundaries is illustrated in Sections 4 and 5. Section 6 de-

scribes the results obtained with our algorithm on selected

microscopy images. Section 7 concludes.

II. MATCHING ALGORITHM BASED ON SURF

A. Integral Images

A key concept used in SURF are integral images[7]. With

these, values in a rectangular subimage can be added quickly

and independent of the window size. From an input image I
and a point (x, y), the integral image IΣ(x, y) is computed as

the sum of intensity values between the point (x, y) and the

origin (0, 0).

IΣ(x, y) =
i≤x∑
i=0

j≤y∑
j=0

I(x, y) (1)

The sum of pixel intensities over any upright rectangular

area now can be computed with only three additions. For a

rectangle S bounded by vertices A, B, C and D, the sum of

pixel intensities ΣS is:

ΣS = IA + ID − (IB + IC) (2)

B. Selecting Key Points

SURF is based on the determinant of the Hessian matrix.

With the Hessian matrix, locations of the blob-like structures

can be detected accurately. For a point x = (x, y) in an image

I , the Hessian matrix H is defined as follows [9]:

H =
[

Lxx(x, σ) Lxy(x, σ)
Lyx(x, σ) Lyy(x, σ)

]
(3)

where Lxx(x, σ), Lyy(x, σ), Lxy(x, σ) and Lyx(x, σ) are the

convolution of the Gaussian second order derivatives in x−,

y−, xy− and yx− direction with the image I centered at

point x. σ denotes the scale in scale-space. Approximation of

these derivatives with box filters [9] (see Figure 1) reduces

computational costs significantly.

978-1-4244-4698-8/09/$25.00 ©2009 IEEE

24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009)

- 271 -



Fig. 1: Top to bottom: Approximation for the Gaussian second

order partial derivative in x-,y- and xy- direction.

With the box filters Dxx, Dxy and Dyy and assuming that

the mixed derivatives are continuous, the determinant of the

Hessian can be approximated by:

det(Happrox) = DxxDyy − (0.9Dxy)2 (4)

Here, det(Happrox) is the blob response of a point. Key points

x = (x, y, σ) are defined by local maxima of this response for

different scales.

To construct scale space, we can apply box filters of any

size at exactly the same speed directly on the original image

rather than on a scaled down layer [9]. The computing cost is

constant for the filtering time in this method is independent

of mask size.

Scale space is divided into several octaves which are

constructed by a constant number of scale levels. To locate

key points, first we remove all responses that are below a

predetermined threshold. Then we perform a non-maximum

suppression to determine a set of candidate points. Here, each

pixel in the scale-space is compared to its 26 neighbors,

comprised of the 8 points in the native scale and the 9 ones in

each of the scales above and below (see Figure 2). Finally

we interpolate nearby data to determine the point location

in both, space and scale, to sub-pixel accuracy. Figure 3

shows detected key points on a microscopy image. This

illustrates characteristics of features obtained using Hessian-

based detectors.

C. Key Point Description

To construct key points descriptors, Haar wavelets are used

to compute gradients in the x and y directions. To determine

the dominant orientation, a sliding orientation window of π/3
is applied to obtain the sum of all responses within it. The

Fig. 2: The 26 neighbors in scale-space.

Fig. 3: Detected key points for red bone marrow.

longest vector over all windows defines the orientation of the

key point (see Figure 4).

At the beginning, a 20σ square window around the key

point is constructed for extracting the SURF descriptor, where

σ refers to the detected scale. In the algorithm of SURF, the

descriptor window is divided into 4 × 4 regular subregions.

Each response of the subregions is weighted with a Gaussian

centered at the key point. This defines a vector of length 128.

In order to reduce the computational cost, we propose a

new method for dividing the descriptor window (see Figure 5).

Here, Haar wavelets of size 2σ are calculated for all points

of each subregion. Each subregion contributes eight values

(see Figure 6) to the descriptor vector resulting in a combined

vector of length 64. The eight vectors of every point are the

sums of dx and |dx| for both y < 0 and y ≥ 0 respectively, and

that of dy and |dy| for both x < 0 and x ≥ 0 respectively. As

the neighboring subregions of the key point contribute more

to this vector, our region dividing method can approximate

the Gaussian weighting measure. Thus computational cost is

saved in generating Gaussian mask and convolution. This also

increases the matching speed considerably as the length of

vectors is reduced by half. However, the matching result does

not degenerate significantly (see Table I and Figure 7 ). Table I

compares our method of window division with SURF-128.

Values compared are computing time, number of matching

points and mismatch rates on the microscopy images of red

bone marrow of size 1600 × 1200.

In Figure 7, there are some mismatching points on the upper

right of the image, due to our method. These mismatches

did not occur in SURF-128. However, this does not seriously
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Fig. 4: Orientation assignment.

Fig. 5: Subdivision of the descriptor window into eight regions.

Fig. 6: Construction of the feature vector with length 64.

TABLE I: Comparison of matching results of our method with

SURF-128.

Method Computing Number of Mismatch

time [ms] points(mismatches) rate

SURF-128 14937 300(2) 0.67%

Our method 11865 392(12) 3.06%

affect the estimation of transformation parameters since most

mismatching points are removed by RANSAC in a subsequent

refining step.

D. Matching and Refining

In the process of matching, we compute the nearest and

second nearest Euclidean distance for each key point to its

counterpart in the related microscopy image. If the ratio of

the nearest Euclidean distance to the second nearest one is less

than 60%, we choose the nearest pair as matching points. After

this step, we use RANSAC to refine the matching points. We

connect every pair of matching points with a line, so each line

(a) (b)

Fig. 7: Matching comparison: (a) SURF-128; (b) our algo-

rithm.

(a) (b)

Fig. 8: Refinement comparison: (a) before refining; (b) after

refining.

represents a pair of matching points. The average of all line

directions is called dominant motion. Point correspondences

that are in line with the dominant motion are regarded as

good matches. Points matches inconsistent with the dominant

motion are rejected. Figure 8 shows point correspondences

after refinement.

III. TRANSFORMATION PARAMETER ESTIMATION

Spatially adjacent microscopy images can be related to each

other geometrically with a planar perspective transform H
(also called homography):⎡

⎣ x′
i

y′
i

1

⎤
⎦ = H

⎡
⎣ xi

yi

1

⎤
⎦ (5)

Here, (xi, yi) and (x′
i, y

′
i) is a pair of matching points. H
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is a 3 × 3 matrix, which can be written as:

H =

⎡
⎣ h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤
⎦ (6)

As h33 is normalized to one, the DOF (Degree of Freedom)

of this matrix is eight. h13 and h23 are translations in x
and y direction respectively. Rotation and scaling factors

are h11, h12, h21 and h22, while h31, h32 are perspective

transformation factors. We use the following objective function

to estimate the geometric transformation parameters:

E =
M∑
i=1

[(x′
i −

h11xi + h12yi + h13

h31xi + h32yi + h33
)2

+ (y′
i −

h21xi + h22yi + h23

h31xi + h32yi + h33
)2] (7)

where M is the number of matched pairs after refinement.

We estimate the parameters by optimizing the above function.

These defines the homography matrix H .

IV. COLOR AND LUMINANCE COMPENSATION

Due to changes in illumination and object density at each

viewpoint, color and brightness differ between images. Let

Lc denote the radiance of a color channel. Assuming that the

objects in the scene have Lambertian surfaces, the pixel color

is proportional to the light radiance [11]:

Pc = α × Lc (8)

Here, α is a proportional coefficient. Let Pi,c(x) denote the

pixel color at x in the overlapped area of the ith image.

Since the overlapping area contains the same scene, it can

be described as follows:

P0,c(x) = α0 × Lc

P1,c(x) = α1 × Lc
(9)

This suggests that two pixel values at the same position

are related linearly. Considering noise and errors in local

registration, this linear relation may be approximated by the

average value of overlapping areas as follows:

α0

α1
=

P 0,c

P 1,c

(10)

Here, P i,c is the mean value of the ith overlapping image.

With the 0th image as the reference, the 1st one is:

P ′
1,c(x) =

α0

α1
× P1,c(x) (11)

This compensation is applied to the entire image. Colors

and light densities of images are then globally normalized.

(a) (b)

Fig. 9: Test images of red bone marrow.

V. STITCHED IMAGE SMOOTHING

Finally we smooth the image to blend the stitched bound-

aries. This is now straight forward after color and luminance

compensation as described above. A weighted average method

as in [12] is applied to all stitched boundaries. With the

weighted coefficient α, the pixel value in the overlapped area

is:

I(i, j) = αI1(i, j) + (1 − α)I2(i, j) (12)

with 0 ≤ α ≤ 1. When α decreases gradually from 1 to 0, the

pixel value in the overlapped area will change from I1(i, j)
to I2(i, j).

VI. EXPERIMENTS

The images in this paper were acquired using an Olympus

BX41 microscope which is equipped with a motorized preci-

sion stage. The positioning accuracy of the stage is 3μm. All

images were acquired using a 20X Olympus UIS2 objective

lens. The resolution of every image is 1600 × 1200. Figure 9

shows two test images of red bone marrow with obvious

differences in color and brightness.

As shown in Figure 10a, we can see that the images are

not well aligned by SAD (sum of absolute differences), where

some blur is apparent in the right part of the image. SURF

matching is invariant to variations in brightness. We can see

that the alignment in Figure 10b is more accurate. Figure 11a

shows an image obtained by stitching the image according

to the transformation parameters. We can see the boundaries

and differences in color and brightness. The processed image

after color compensation and image smoothing is shown in

Figure 11b. The boundaries are almost invisible. The bright-

ness difference between these two images is small. We also

tested our algorithm on another set of 6 images for mosaicing:

Figure 12 shows a high-resolution (4331 × 2302) mosaic of

microscopy images obtained with our method.

VII. CONCLUSIONS

We presented a method for mosaicing of microscopy images

based on SURF. A new method of dividing descriptor window

is proposed to increase matching speed. This results in a few

more mismatched point correspondences. However, in general,

this does not affect our final estimation, since mismatched are

discarded in a subsequent refining step. Experiments on real

microscopy datasets show that our algorithm produces mosaics

much faster than preexisting methods, while a satisfactory

quality is maintained.
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(a)

(b)

Fig. 10: Mosaic results: (a) SAD; (b) mosaic based on SURF.

(a)

(b)

Fig. 11: Results of blending: (a) direct; (b) with color com-

pensation and smoothing.

Future work includes building an automated microscope

system incorporating microscope controls, image mosaicing

and image browsing. The main contributions of this project

are where improvements on robustness for fast matching and

mosaicing and software development for microscopy systems.

Fig. 12: Mosaic of six images.

ACKNOWLEDGEMENT

This work is partly supported by the Natural Science Found

of China under No.60872119 and the NSF of Shandong China

under No. 2009ZRB01675.

REFERENCES

[1] D. Gledhill, G. Y. Tian, D. Taylor, and D. Clarke, Panoramic imaging–a
review, Computers and Graphics, 2003, vol. 27, pages 435–445.

[2] L. G. Brown, A survey of image registration techniques, ACM Comput-
ing Surveys, 1992, vol. 24, pages 325–376.

[3] F. Huang, R. Klette, and K. Scheibe, Panoramic Imaging, Wiley,
Chichester, 2008.

[4] B. Zitova and J. Flusser, Image registration methods: a survey, Image
and Vision Computing, 2003, vol. 21, pages 977–1000.

[5] M. Brown and D. Lowe, Recognising panoramas, Int. Conf. Computer
Vision, 2003, vol. 2, pages 1218–1225.

[6] D. Lowe, Distinctive image features from scale-invariant keypoints, Int.
Journal of Computer Vision, 2004, vol. 60, pages 91–110.

[7] F. Crow, Summed-area tables for texture mapping, 1984, In Proc.
SIGGRAPH, pages 207–212.

[8] T. Lindeberg, Feature detection with automatic scale selection, Int.
Journal of Computer Vision, 1998, vol. 30, pages 79–116.

[9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, SURF: Speeded up
robust features, Computer Vision and Image Understanding, 2008, vol.
110, pages 346–359.

[10] M. A.. Fischler, Random sample consensus: a paradigm for model fitting
with application to image analysis and automated cartography, Journal
of Communication Association Machine, 1981, vol. 24, pages 381–395.

[11] S. J. Ha, H. I. Koo, S. H. Lee, N. I. Cho, and S. K. Kim, Panorama
mosaic optimization for mobile camera systems, IEEE Transactions on
Consumer Electronics, 2007, vol. 53, pages 1217–1225.

[12] Y. Xiong and K. Turkowski, Registration, calibration and blending in
creating high quality panoramas, Applications of Computer Vision,
1998, pages 69–74.

[13] J. Zhang, B. Song, X. Feng, M. Li, and J. Kong, A novel cartridge image
mosaic approach, Intelligent Information Technology Application, 2008,
pages 472–476.

[14] C. Sun, R. Beare, V. Hilsenstein, and P. Jackway, Mosaicing of micro-
scope images with global geometric and radiometric corrections, Journal
of Microscopy, 2006, vol. 224, pages 158–165.

24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009)

- 275 -


