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Among the rapidly growing three-dimensional technologies, multiview displays have drawn great
research interests in three-dimensional television due to their adaption to the motion parallax and wider
viewing angles. However, multiview displays still suffer from dazzling discomfort on the border of view-
ing zones. Leveraging on the separability of scene via foreground segmentation, we propose a novel vir-
tual view synthesis method for depth-image-based rendering to alleviate the discomfort. Foreground
objects of interest are extracted to segment the whole image into multiple layers, which are further
warped to the virtual viewpoint in order. To alleviate the visual discomfort, global disparity adjustments
and local depth control are performed for specific objects in each layer. For the post-processing, we
improve an exemplar-based inpainting algorithm to tackle the disoccluded areas. Experimental results
demonstrate that our method achieves effective disparity control and generates high-quality virtual view
images.

� 2018 Elsevier Inc. All rights reserved.
1. Introduction

Interests in three-dimensional technology have grown rapidly,
particularly in autostereoscopic displays, which make glasses-
free stereo perception possible. Crosstalk, Moire Fringe, resolution
reduction and narrow viewing angle are the main technical obsta-
cles of 3D flat panel displays [1]. The first three could be improved
by utilizing advanced display devices. Aiming at the narrow view-
ing angle, there are two popular approaches accommodating wider
viewing angle: eye-tracking and multiview displays [2]. Eye track-
ing has performed well in games and virtual reality applications
but has the limitation of displaying to a single viewer. Multiview
system separately redirects stereoscopic image sequences to mul-
tiple viewing zones, thereby allows multiple users to watch from
different viewpoints simultaneously. Besides, it provides smooth
motion parallax while the viewers are moving around. And the
development of multiview video coding and transmission enables
depth-image-based rendering (DIBR) of additional viewpoints
and helps in the application scenario [3–5].

Visual comfort and virtual view synthesis are two important
ingredients of multiview displays. The first problem can be
compensated through disparity control. Previous works mostly
focus on stereoscopic distortions of two-view displays that original
images captured from cameras mismatch binocular perception
[6–9], but few studies consider the strong visual discomfort and
fatigue on the border of viewing zones in multiview displays. As
illustrated in Fig. 1, the viewing zones in green indicate that view-
ers standing there could receive stereo image pair in the right
order. In contrast, when the viewers move to the border of the
viewing zones (the red zones), the perceived two images are
non-adjacent in content, that is, the viewer receives a wrong stereo
image pair. Accordingly, the 3D scene cannot be reconstructed by
the human brain and causes the spectators’ vertigo instead.
Towards virtual view synthesis, DIBR [10] is an efficient solution
to produce content for 3D television (3DTV), which also requires
proper disparity maps to generate high-quality virtual views for
the viewers.

Recent researches demonstrate that proper disparity remapping
could find a balance between vivid 3D perception and visual com-
fort [7–9,11]. A simple implementation of remapping is shifting or
scaling the horizontal disparity. Targeting at the visual comfort of
regions of interest, Lei et al. [11] regarded geometric center of
the salient regions as the key-point, where the disparity is set to
zero by shifting the multiview images. The work in [8,9] intro-
duced another remapping framework. They performed global lin-
ear disparity scaling and then local nonlinear refinement.
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Fig. 1. Viewing zone (indicated in green) of (a) a two-view display, (b) a multiview display. Binoculus receive wrong view-image pair in red zone. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Coupled with the extracted features, support vector regressing is
applied to predict remapping models in these approaches. But it
leads to a high computational cost. Moreover, these methods uni-
formly control disparity on global images without the knowledge
of specific objects. However, as different regions contribute to
the discomfort to varying degrees, individually controlling the dis-
parities of certain objects is a better strategy to enhance the visual
comfort. Mangiat et al. [7] separately adjusted the disparities of
face and background for mobile video, and they also utilized face
detection and disparity threshold to identify the viewer’s head
ahead of the camera.

Previous studies have made great progress in DIBR. The Motion
Picture Expert Group (MPEG) released View Synthesis Reference
Software (VSRS) [12] as a reference. It takes two reference views
plus the associated depth maps as inputs to produce vivid virtual
views. With the emergence of depth cameras, depth maps have
been widely utilized. Although the recorded depth images tend
to be corrupted by missing data, there have been extensive sophis-
ticated methods to overcome the limitation [13–16]. Furthermore,
Wang et al. [17] put forward the 3D warping with depth-based
pixel interpolation to remove cracks and background-based hole
filling for disocclusions. Manap and Soraghan [18] separated the
depth map into several layers to perform view interpolation inde-
pendently. To eliminate the holes arising from limited sampling
density, Mehrdad et al. [19] detected superpixel by segmentation
before warping, which is not suitable for the disoccluded regions.
Some works applied improved exemplar-based inpainting algo-
rithms to address the disocclusion issue [20–22], which synthesize
consistent and realistic texture in the patch level.

To alleviate the discomfort of viewers, this paper presents a dis-
parity control method for multiview displays using foreground
segmentation. To our knowledge, if the spatial thickness of the
reconstructed 3D scene is within a small depth range, the viewers
barely feel the visual discomfort even at the border of viewing
zones. We hence propose to adjust z-dimensional depth of the des-
ignated objects to flatten the scene, which enables a gradual tran-
sition from a viewing zone to the adjacency. In the context of DIBR,
we present a new segmentation-based view rendering algorithm.
First, the foreground objects of interest are extracted to segment
the whole image into several layers, which are warped to the vir-
tual viewpoint in order. Secondly, with the labeled separated lay-
ers, an exemplar-based inpainting algorithm is proposed to
handle the disocclusions. In summary, our contributions are in
two aspects: (i) a novel disparity remapping method to overcome
the visual discomfort induced by discontinuous viewpoints in mul-
tiview 3DTV; (ii) a new view synthesis algorithm based on fore-
ground object extraction for disparity control and image
inpainting.

The paper is organized as follows. In Section 2, we describe the
main target problem to be solved and the outline of the proposed
scheme. Section 3–5 present the details of our scheme. Experimen-
tal evaluations are presented in Section 6. Conclusions are drawn
in Section 7.
2. Overview of the approach

2.1. Problem statement

Conventional 3DTV employs a two-view display for the viewer
wearing a pair of stereo glasses. While for the recent glasses-free
3DTV, the two-view stereo image pair can be received correctly
only when the viewer is at the ideal position and distance; never-
theless, there is a 50% chance that the viewer perceives the images
in the wrong order, as shown in Fig. 1a. Such disordered image pair
is named as pseudoscopic image [23], and causes dazzling discom-
fort especially when there are strong 3D effects with large dispar-
ities. In this context, multiview displays are designed to enlarge the
viewing angle allowing more adjacent perceiving positions, but
they still suffer from the abrupt view-image change at the border
of viewing zones. Fig. 1 illustrates the difference in viewing zone
and the dazzling discomfort caused by the two-view and 8-view
displays, respectively. Multiview displays expand the viewing
zones by mapping a number of images in a given order to the
screen. The image sequence depicts the same stereo scene from
slightly shifted viewpoints. When viewers are in the green viewing
zone, binoculus receive a stereo pair, image k and kþ 1. Binocular
parallax and motion parallax are enabled when viewers move
around. Nevertheless, when the viewer moves to the border of
the viewing zones (indicated in red), one eye receives the last view
while the other receives the first, which results in an abrupt exces-
sive change of disparities. Such discontinuity of viewpoints causes
the dazzling discomfort of the scene with strong 3D effects.

Generally, the objects in a real scene at different depth level
have different disparities. The objects with large disparity primar-
ily contribute to the visual discomfort on the border of viewing
zones. It is beneficial to individually adjust the disparities of the
objects of interest. Depth layering and salient object segmentation
are primarily explored in the literature [18,11], and yet rough seg-
mentation commonly results in fracture or fold of complete
objects. Hence, we extract semantically meaningful foreground
objects, of which disparities can be freely adjusted.
2.2. Outline of the method

A flowchart of our multiview synthesis approach is shown in
Fig. 2. Firstly, the RGB and preprocessed depth data from the refer-
ence viewpoint are utilized to segment the image to multiple lay-
ers, thus we could distinguish the foreground objects from the
background. Secondly, the extracted objects and background are



Fig. 2. Sketch of the proposed scheme.
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warped to the virtual viewpoint in a specified order. In this step,
we identify and remove the cracks. Thirdly, the global and local
disparities are adjusted to improve the visual comfort. Then the
layers are overlaid in sequence. Finally, the remaining holes are
filled using the proposed inpainting method based on the segmen-
tation results. It is noteworthy that we apply a reference view and
an associated depth map to synthesize a virtual view.
Fig. 3. Example of translucent cracks.
3. Layered warping for designated objects

As aforementioned, it is reasonable to individually adjust the
disparities of the objects of interest and background. Thus, we pre-
sent to perform foreground object extraction and layer warping
first. On the basis of that, we can remove the crack artifacts and
freely adjust the disparity.
3.1. 3D Warping with foreground object extraction

Depth map provides additional information to enhance the seg-
mentation accuracy. As such, an image segmentation method pro-
posed by Xiao et al. [24] is adopted to semantically extract
meaningful foreground objects from the background, as well as
their silhouettes. Xiao et al. improved the graph-based method
by combining the color and depth information to over-segment
the color scene for region merging step. Next, a multi-threshold
Otsu method is used to segment the depth map to multiple layers.
An automatic depth layer selection scheme is designed to reduce
user interactions. Ultimately, the regions are merged on the basis
of regional continuity which is established under the constraints
of depth layers, user-specified seed points and area threshold.

After the objects of interest are segmented from the back-
ground, all segments are ranked in descending order of the dis-
tance to the viewpoint and defined as layer 1, 2, . . ., N. Layer 1 is
generally the background and layer 2 to N are the foreground
regions. Each layer is warped to a virtual viewpoint and prelimi-
narily completed with cracks interpolated.
3.2. Crack removal

There are usually cracks on the rendering foreground layers.
The crack artifact is attributed to integer round offs of projected
coordinates. Neighboring pixels are rounded off to non-
neighboring integer values in the virtual view. When it occurs
along with the foreground boundary, the crack is usually seeped
through by the erroneously mapping of background pixels, which
is referred to as translucent cracks [25]. As illustrated in Fig. 3,
the crack on the foot of a baby is filled with background pixels
by mistake as it is surrounded by the background. Unless translu-
cent cracks are removed before warping, they will be restrained in
post-processing filtering at the cost of image blurring. Thus it is
necessary to identify translucent cracks ahead of hole filling. We
utilize layer warping and perform separate interpolation by mask-
ing foreground.

Let E denote the set of empty pixels in a single warped layer I.
Then the set difference I � E is a group of mapped color pixels.
The width of cracks is generally 1 pixel not only because it stems
from round-off error, but because the cameras are supposed to
be set in a parallel configuration. We hence define cracks with

crack ¼ p j
X

ði;jÞ2N8ðpÞ
Eði; jÞP 4

( )
ð1Þ

crack is the set of empty pixel p in whose 3-by-3 neighborhood four
or more pixels are nonempty. Next, crack is interpolated by non-
missing neighboring pixels. Finally, all completed layers are over-
lapped in ascending order. The results are compared with full-
image warping in Section 6.
4. Disparity control

The disparity of a stereo image pair is dependent on the setup of
cameras. Stereo cameras are usually set in two fashions, toed-in
and parallel [26]. The optical axes of toed-in cameras converge to
a point in depth, while the convergence depth is placed at infinity
in the parallel configuration. Previous researches show that toed-in
configurations are impractical to set up and introduce keystone
distortions [7,27]. Accordingly, this paper discusses disparity con-
trol in a parallel configuration.

For the stereo image pair captured from parallel cameras, the
objects in a scene only appear in front of the display [7]. The dis-
parity d is inversely proportional to the depth Z, with

d ¼ f
b
Z

ð2Þ

where f is the camera focal length, and b denotes the baseline of
stereo cameras. For 3DTV at far distance, Shibata et al. [28] found
that the objects behind the screen are less comfortable than those
in front of the screen. Therefore, it is better to keep the objects in
front of the screen. Nevertheless, the excess disparities accumulated
on the border of viewing zones still result in visual fatigue. In order
to balance the stereoscopic perception and visual comfort, the
objects farthest from the cameras should be placed on the image
plane. The first step is to calculate the minimum disparity dmin with
maximum depth using (2). We shift the multiview images with dmin

to adjust the disparity of the farthest point to zero.



Fig. 4. Depth of the foreground object with (solid circle) and without (dashed circle) depth adjustment for 9-view foreground.
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Besides, the foreground objects of interest are adjusted individ-
ually to generate smooth transition effect, from strong at the inter-
mediate view to weak 3D perception on the border of viewing
zones. Disparity control is in essence changing scene depth. Depth
values are commonly quantized to intensity with the following
function

Z ¼ 1:0
P

255:0
1:0
Zmin
� 1:0

Zmax

� �
þ 1:0

Zmax

ð3Þ

where Zmin; Zmax are the minimum and maximum actual depth of
the scene, respectively; P is the depth value scaled to ½0;255�, which
is equal to 255 at Zmin and 0 at Zmax.

Taking a 3D scene with 9 views for an example, we adjust the
foreground depth closer to background according to the baseline
between the reference and virtual view, as shown in Fig. 4. Suppos-
ing the intermediate view 5 is the reference view, we keep the
background depth unchanged but pull the foreground objects
backwards when synthesizing the virtual views. Let the scaled
depth of an extracted foreground object be P0, we decrease the
depth to P1 to synthesize adjacent views 4 and 6 in Fig. 4. Similarly,
we generate view iþ 1 with view i for view 5–9 and generate view
i� 1 with view i for view 1–5, as illustrated by arrow in Fig. 4. The
scaled depth Pji�5j of view i is decreased to Pji�5jþ1 by DP. DP
depends on the depth of the object in the reference image and
the total number of views n as

DP ¼ P0=
n� 1
2

� �
ð4Þ

Using (2) and (3), we calculate the disparity di of view i. Simi-
larly, the change in disparity Dd is deduced from a change in inten-
sity DP as

di ¼ fb
Pji�5j
255

1
Zmin
� 1
Zmax

� �
þ 1
Zmax

� 	
ð5Þ

Dd ¼ �fb DP
255

1
Zmin
� 1
Zmax

� �
ð6Þ

The final adjusted foreground disparity between view i and i� 1
is di � dmin þ Dd. The views closer to either side have smaller dis-
parities of foreground objects. The disparities are equal to zero
on both sides of the view zone.
Fig. 5. Illustration of the improved exemplar-based texture synthesis algorithm.
5. Disocclusion handling

In general, one object is of continuous depth, while the depths
of foreground objects and background are discontinuous and obvi-
ously different. The discontinuity leads to translucent cracks and
disocclusions. The slight cracks are removed in Section 3.2, but
the large disoccluded areas are left to be solved. An exemplar-
based inpainting method is proposed to handle the disocclusions
in the post-processing, which is inspired by the pioneer work of
Criminisi et al. [29]. The main contribution of Criminisi’s algorithm
lies in the isophote-driven priority term PðpÞ, which determines
the filling order of patches along the boundary of the target region.
It propagates the best matching texture elements to patches to be
filled by a greedy method in decreasing priority order.

Image inpainting starts from tackling the boundary of holes. As
illustrated in Fig. 5, given a patch Wp centered at the pixel p on the
border, the priority PðpÞ is defined as the product of two terms

PðpÞ ¼ CðpÞDðpÞ ð7Þ
where CðpÞ and DðpÞ are the confidence term and data term, respec-
tively. CðpÞ gives higher priority to the patches containing more
known pixels. DðpÞ defines the strength of isophotes hitting the
boundary, which encourages the propagation of local linear struc-
ture. CðpÞ and DðpÞ are updated in each iteration. The most similar
patchWq̂ is targeted within the source region U by minimizing their
distance, that is, the sum of squared differences (SSD) between the
pixels in the two patches:

Wq̂ ¼ arg min
Wq2U

dðWp̂;WqÞ ð8Þ

Many extended methods have been developed to improve the
priority term in the literature. Ahn et al. [22] employed structure
tensor in DðpÞ to strengthen the robustness of filling order. Under
the circumstances of available depth information, Daribo et al.
[20] added a depth variance term LðpÞ to PðpÞ in (7). LðpÞ favors
background patches overlaying similar depth values over fore-
ground ones.



Fig. 6. Virtual view with and without crack removal. (a) layer 1: background; (b)
layer 2: foreground; (c) warped image without segmentation and crack removal; (d)
warped image with segmentation and crack removal; (e) and (f): comparison of
rectangular portion in (c) and (d).
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In our approach, the confidence and data terms are retained in
the priority term. We present a modification to the depth variance
term LðpÞ and a layer term HðpÞ using layer information obtained in
Section 3.1. Although Daribo et al. [20] give higher priority to back-
ground patches with similar pixel depth values, it does not work
well when the filling proceeds to the center of holes. As the pixels
in the outer layers are filled, updated CðpÞ closer to background
decays and plays a dominant part in the priority term, where
LðpÞ is less effective. To guarantee that the background patches
are inpainted first, we replace the depth map with the layer label
map obtained by foreground object extraction, and the updated
layer mean term HðpÞ is added to the original priority term. In con-
clusion, the revised priority term can be written as

PðpÞ ¼ CðpÞDðpÞLðpÞ þ ðN � HðpÞÞ ð9Þ

HðpÞ ¼ aveHpðqÞ 8q 2 Hp \U ð10Þ
where N is the number of layers, HðpÞ denotes the mean value of
non-empty pixels in the label patch Hp centered at p, which always
favors the background patches over foreground ones. LðpÞ is inver-
sely related to the variance of Hp

LðpÞ ¼ 1
1þ C � varHpðqÞ 8q 2 Hp \U ð11Þ

where the parameter C controls the importance assigned to the
variance of layer label, and it is set to 5 in our experiments.

Once the target patch with the highest priority has been
located, we search the most similar patch Wq̂ in the source region
U. Disocclusions are mostly band-like and well matched with the
surrounding background. We hence present a fast searching strat-
egy within an expanded search window, coupled with a changing
threshold of minimum distance, and a constraint to available patch
candidates. See Fig. 5 for an illustration.

In detail, we begin with scanning the L� L pixel window Wp̂

centered at the target pixel p̂. The radius of L is initially set as
the maximum disparity value 2dmax þ 1 (in pixel) derived from
(2) using minimum depth value, which ensures valid source
patches. The distance of two patches is computed when the layer
labels of non-empty pixels Hq and Hp̂ are the same. Wq̂ denotes
the temporal matched patch

Wq̂ ¼ Wq



 arg min
Wq ;Hq2U\Wp̂

dðWp̂;WqÞ ^ Hq ¼ Hp̂

( )
ð12Þ

We initialize the distance threshold b0 empirically. If the mini-
mum distance b is less than b0, which is normalized to a range of
0–1, Wq̂ is the final best matched patch. Otherwise the search win-
dow is dilated by 1 pixel and the matching threshold is added by a
small value �. We repeat this procedure until a patch satisfying
above condition turns up or L reaches the maximum value, which
is set as a quarter of image height H by default. Time efficiency is
improved compared to the conventional exemplar-based inpaint-
ing methods since we begin searching from a reduced window.
The pseudocode description of search steps is shown as follows.

Algorithm 1. Source patch search algorithm

Input: The target patch Wp̂;Hp̂ and its coordinate
Output: Wq̂

1: Initialize b0 and L
2:while b > b0 or L < H=4 do
3: Find the best patch Wq̂ in the L� L window Wp̂ (12);
4: L Lþ 2; b0  b0 þ e;
5: end while
6. Experimental results and discussion

6.1. Experimental setup

We implemented our method in Matlab R2013a, with the plat-
form characterized by a PC with Intel Core i7 3.40 GHz CPU and
8 GB RAM memory. To demonstrate the subjective and objective
quality of synthesized images, experiments were conducted with
the MPEG test sequence Shark provided by NICT [30], Ballet, Love-
bird1 from the 3DVC reference set [31,32] and the Middlebury’s
2005, 2006 datasets [33]. The datasets contain three multiview
image sequences captured by parallel cameras, Baby1, Art and
Reindeer. The experiments were conducted in three scenarios,
one for crack removal, one for disparity adjustments using seg-
mentation, and another for virtual view quality, in which we
skipped disparity control. In the third part, we compared our
results against four competing schemes containing VSRS 3.5
[12,17,21,22] presented in Section 1. The first two methods used
diffusion to fill holes, which are modified to use a single reference
view for warping and their default inpainting scheme are adopted
to fill in the missing pixels. The remaining ones, Joint Texture-
Depth Inpainting (JTDI) algorithm and Ahn’s method, are depth-
aided exemplar-based inpainting methods for disocclusions. Since
the input depth maps often have missing and inconsistent values,
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we preprocessed the depth data with the background-based hole
filling in literature [17].
6.2. Results of crack removal

The subjective evaluation of translucent cracks is shown in
Fig. 6. It illustrates the procedure of segmentation and warping.
Baby1 is segmented into 2 layers, as shown in Fig. 6a and b.
Fig. 6c shows that translucent and empty cracks are removed in
the warped image. The crack artifacts on the baby’s right hand
are completely removed by layering in Fig. 6e.
6.3. Results of disparity control

We compare the results of two disparity control methods, the
one we proposed using foreground object extraction and the one
using depth layering. Fig. 7a shows the depth and color maps of
the reference viewpoint. As illustrated in Fig. 7b, the ventral is bro-
ken off in the virtual view generated by depth layering due to sep-
arate adjustments. While in Fig. 7c, the proposed foreground
segmentation based disparity adjustments preserve the shape of
the shark without visible distortion. The results demonstrate that
Fig. 7. (a) Reference view. Results comparison of disparity adjustm
foreground object extraction is appropriate for disparity
adjustment.

Besides, Art has been used to test the proposed method due to
multiple differentiated foreground layers. Fig. 8 utilizes red-blue
anaglyph to show disparity control results. The original disparities
in Fig. 8a are at the same level from the intermediate to rightmost
view. After disparity control the objects at different depth levels
are adjusted to different degrees in Fig. 8b This method adjusts
both global and local disparities and makes a gradual transition
from strong at the intermediate view to weak stereoscopic percep-
tion at the rightmost view.
6.4. Quantitative analysis

To evaluate the performance of the proposed scheme, we mea-
sure the similarity between the synthesized view and the existing
original one. We adopted the commonly used evaluation method-
ology in the view synthesis context. Peak Signal-to-Noise Ratio
(PSNR) and Mean Structural Similarity Index (SSIM) [34] are com-
puted as objective metrics. Both metrics are applied on the full
image. PSNR measures the absolute difference, while SSIM assesses
the perceptual visual quality. The higher both metric values, the
better the quality of the reconstructed image.
ents using (b) depth layering, (c) foreground segmentation.



Fig. 8. Red-blue anaglyphs of adjacent views (intermediate to rightmost view from
upper to lower row): (a) original views; (b) after disparity control. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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According to the rule that, in practice, the patch size is expected
to be larger than distinguishable texture element [29], the optimal
patch size is set as 9 � 9 for Baby, Art, Reindeer, 15 � 15 for Ballet,
and 11 � 11 for Lovebird1 in JTDI, Ahn’s and our method. The over-
all numerical results are presented in Tables 1 and 2. These results
demonstrate that the proposed method yields better results than
the other methods in both metrics. For the scenario Baby, our
method surpasses the VSRS, Wang’s, JTDI and Ahn’s method by
Table 1
PSNR Comparison for synthesized images (in dB).

VSRS Wang

Baby v3 ! v4 30.7024 32.0546
Art v3 ! v4 24.2976 27.5442

Reindeer v3 ! v4 26.6285 30.0145
Ballet v5 ! v6 25.3802 25.5850

Lovebird1 v6 ! v8 24.5695 24.3489

Values in bold indicates the highest scores.

Table 2
SSIM Comparison for synthesized images.

VSRS Wang

Baby v3 ! v4 0.9558 0.9703
Art v3 ! v4 0.8781 0.9325

Reindeer v3 ! v4 0.9217 0.9653
Ballet v5 ! v6 0.8293 0.8827

Lovebird1 v6 ! v8 0.8883 0.8844

Values in bold indicates the highest scores.
7:89%;3:35%;1:67% and 3:04% in terms of PSNR, respectively.
From the perspective of SSIM, our method also produces better
results, promoting the value of SSIM by 2:18%;0:65%;0:29% and
0:51%, respectively. Likewise, there is evident promotion in Art,
Ballet and Lovebird1. For the sequence Reindeer, the result of Ahn’s
method is approximate to ours and the SSIM value is slightly
higher. Yet our method performs significantly better than VSRS
and JTDI in Reindeer. We also observe that the objective quality
of our method is slightly lower than Wang’s method in the
sequence Reindeer. The loss is due to the reference image’s charac-
teristic background: (i) the holes in the reference image are mostly
surrounded by smooth background, so it appears consistent and
natural when Wang’s approach filled the missing regions with
background pixels. It implies that the diffusion performs effective
filling for low-structured texture background; (ii) The out-of-field
area is just along the edge of the right box where there is a sharp
color change. Our method filled it with inconsistent texture due
to no similar information can be found in the source region.

6.5. Qualitative analysis

Fig. 9 depicts the visual quality of the virtual view generated by
the proposed method in comparison with the three reference
methods. The ground truth is shown in Fig. 9a, with two particular
patch examples selected for illustration. On the edge of foreground
objects, depth maps are usually not aligned with the color images
due to inaccurate sampling and estimation. It leads to artifacts in
exemplar-based inpainting, as illustrated in the first patch of the
first row in Fig. 9d, e and f, which appear as a shadow of a few-
pixel-width foreground. It also results in erroneous diffusion in
Wang’s method. As shown in Fig. 9c, the holes are supposed to
be made up with the background, but partly filled by the fore-
ground pixels by mistake. Besides, there are blurring artifacts in
Fig. 9b and c, especially in the complex background. The incorrect
fillings in the first, fourth and last rows of Fig. 9d might be caused
by the disorder in priority. And JTDI suffers from the translucent
cracks such as in the last two rows in Fig. 9d when the baseline dis-
tance is increased. The magnified parts of Fig. 9e shows that Ahn’s
method sometimes yields relatively inconsistent patches. Overall,
it is observed that our algorithm better propagates texture and
structure from background regions. In most cases, the synthesized
textures in our method look more natural than those in JTDI and
Ahn. In spite of inaccurate texture such as in the second row of
Fig. 9f, the overall visual perception is acceptable and pleasing.
JTDI Ahn Proposed

32.5809 32.1448 33.1235
26.3946 27.1714 27.8548
27.0506 29.8121 29.9126
26.5894 27.7599 28.1823
24.4970 23.8906 24.7448

JTDI Ahn Proposed

0.9738 0.9716 0.9766
0.9229 0.9362 0.9421
0.9380 0.9658 0.9641
0.8824 0.8977 0.9046
0.8858 0.8845 0.8900



Fig. 9. Visual evaluation of synthesized images. (a) Original target view, (b) VSRS 3.5 [12], (c) Wang et al. [17], (d) JTDI [21], (e) Ahn et al. [22], (f) the proposed method.
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7. Conclusions

This paper presents a new scheme of virtual view synthesis for
multiview display system. We perform layered 3D warping after
effective foreground object segmentation. Translucent cracks are
identified and removed by morphological method. Then the pro-
posed disparity control method alleviates the dazzling discomfort
on the border of viewing zones and find a balance with stereo-
scopic perception and visual comfort. Semantically meaningful
segmentation facilitates the disparity adjustments of foreground
objects and background. Moreover, an improved exemplar-based
inpainting is applied to fill the disocclusions. In the experiments,
we adopted three different methods to validate the proposed
method. The results demonstrate that our scheme surpasses the
references in image quality. There is still some limitation that the
missing regions are possibly erroneously filled when similar
patches within the maximum searching radius are not available.
Besides, the seed points are specified manually to locate the fore-
ground objects. Our future work will focus on the automatic
extraction of salient regions. Machine learning techniques have
proved successful in image analysis and object detection [35,36],
which can offer inspiration for this purpose.
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