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ABSTRACT1
Short-term urban traffic flow prediction remains a difficult yet important problem in the intelligent2
transportation systems (ITS). Most previous spatio-temporal based urban traffic flow prediction3
techniques just pay attention to building the relationship between the adjacent upstream and down-4
stream road segments using various models. While in this paper, we take advantage of the spatial5
and temporal information from all available road segments in the road network to predict the short-6
term traffic volume accurately. However, the available traffic states can be high-dimensional for7
high-density or large scale road networks. Therefore, we present a spatio-temporal variable selec-8
tion based support vector regression (VS-SVR) model fed with the high-dimensional traffic data9
collected from all available road segments. Our prediction framework can be presented as a two-10
stage model. In the first stage, we employ the multivariate adaptive regression splines (MARS)11
model to select a set of predictors most related to the target one from the high-dimensional spatio-12
temporal variables, and reasonable weights are assigned to the selected predictors. In the second13
stage, the kernel learning method, support vector regression (SVR), is trained on the weighted vari-14
ables in the second stage for prediction. In the experiments, we employ the actual traffic volume15
collected from a subarea of Shanghai, China, every 10 minutes. The experimental results indicate16
that the proposed spatio-temporal variable selection based support vector regression model can17
generate preferable results in contrast with the time series based autoregression (AR) method, the18
separate MARS model, and the SVR model.19
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INTRODUCTION1
Along with the frequently occurring traffic congests in urban road network, reliable short-term2
urban traffic flow prediction is becoming an extremely crucial but tough task in the intelligent3
transportation systems (ITS), especially in the advanced traveler information systems (ATIS) and4
the advanced transportation management systems (ATMS). Accurate traffic prediction assists the5
traffic managers in carrying out reasonable policies to relieve the congest or giving optimal routes6
to the travelers. In the past few decades, a great number of models have been proposed to predict7
the urban traffic flow based on historical data or spatio-temporal correlation. In general, the previ-8
ous methods can be classified into two categories: time series methods and spatio-temporal based9
methods.10

The time series based traffic prediction methods employing the parametric or non-parametric11
models build the relationship between the historical traffic states and the desired value. Among12
those methods, the autoregressive integrated moving average (ARIMA) may be the most frequently13
used parametric prediction method (1, 2, 3). In addition, the Kalman filtering was also applied to14
the prediction of traffic flow (4). However, the non-parametric models always perform better than15
the parametric models as they are more flexible to the nonlinear processes. Some non-parametric16
regression methods were applied to the traffic prediction successfully, such as k-nearest neighbor17
(k-NN) approach (5), artificial neural network (ANN) approach (6), and regression trees (7). Al-18
though the time series based approaches have limited information, some researchers still work on19
such methods due to its low cost computation. For example, Tchrakian et al. developed a spectral20
analysis approach for real-time traffic flow prediction (8). In summary, owing to considering the21
traffic flow as time series, most of these approaches could perform well in the freeway or a location22
on an artery in urban, instead of the complicated urban road network.23

Subsequently, researchers introduced the spatial information in the traffic prediction mod-24
els, especially in urban area. A large variety of multivariate spatio-temporal correlation approaches25
have been developed to predict traffic flow in urban arteries. For instance, Hobeika et al. (9) ad-26
dressed the short-term traffic flow prediction based on the traffic states from current and upstream27
roads as well as the average average states. Stathopoulos et al. (10) developed a state space ap-28
proach which fed with the data from upstream roads to improve on the downstream locations.29
Djuric et al. used the continuous conditional random fields (CCRF) to predict the travel speed30
based on the spatio-temporal correlations (11). Min and Wynter (12) developed a real-time traffic31
prediction method with spatio-temporal correlation based on the vector autoregressive model. Be-32
sides, some advanced statistical learning approaches have also been extensively utilized to build33
the relationship between the upstream and downstream traffic states, such as the support vector34
regression (SVR) (13, 14), Bayesian graphical model (15), Gaussian processes (16) and so on.35

Although a lot of spatio-temporal correlation methods have been proposed for urban traf-36
fic flow prediction, most of the previous methods just pay attention to building the relationship37
between the adjacent upstream and downstream traffic states using various models. While in this38
paper, we consider the traffic states from all available road segments in the road network to predict39
the short-term traffic volume on the target road accurately. However, towards the high-density or40
large road network, the number of the available variables fed into the prediction model can be high-41
dimensional. Consequently, we propose a spatio-temporal variable selection based support vector42
regression (VS-SVR) model fed with the high-dimensional traffic data collected from all available43
road segments in the network. The proposed traffic prediction framework can be presented as a44
two-stage model. In the first stage, we employ the multivariate adaptive regression splines (MARS)45
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model to select a set of predictors most related to the target one from the high-dimensional spatio-1
temporal variables, and reasonable weights are assigned to the selected predictors. Afterwards, the2
SVR model is trained on the weighted variables in the second stage for prediction. In the exper-3
iments, the actual traffic volume collected from a subarea of Shanghai, China, every 10 minutes4
is employed to evaluate the proposed model. The experimental results indicate that the proposed5
spatio-temporal variable selection based support vector regression model can generate preferable6
results in contrast with the time series based autoregression (AR), MARS, and SVR model.7

The remainder of this paper is organized as follows: section 2 describes the details of the8
proposed spatio-temporal variable selection based SVR traffic prediction model; section 3 briefly9
introduces the real traffic data used in our work; the spatio-temporal correlation and the short-10
term traffic volume prediction results are illustrated and analyzed in Section 4. Moreover, the AR,11
MARS, and SVR prediction methods are implemented for comparison with the proposed model12
in this section; finally, some concluding remarks and directions for the future work are given in13
Section 5.14

METHODOLOGY15
Variable selection plays an important role in many applications for which datasets with tens or16
hundreds of variables are available in classification and regression problems. According to Guyon17
et. al.’s suggestion (17), the contribution of variable selection is summarized as follows: improving18
the prediction performance of the predictor, saving computing resources of the prediction methods,19
and providing a better understanding of the relationship between the predictor and the response.20

Towards the urban traffic prediction, the spatio-temporal correlation of the road segments21
in a road network is more complicated. Although the road segments are not direct adjacent, the22
traffic states on these segments may interact. Hence in our research, the current and historical23
traffic states from all available road segments are collected as the input variables of the prediction24
model. Thus, the independent variables can be high-dimensional, especially when the road network25
is large and crowded. The prediction of the traffic flow at a target road segment can be treated as a26
regression problem with high-dimensional input. Therefore, we desire to obtain better prediction27
results through variable selection on such high-dimensional regression problem.28

In this paper, we implement the variable selection using a nonlinear and adaptive model,29
multivariate adaptive regression splines (MARS). MARS is a kind of embedded variable selection30
method as it performs variable selection via a built-in mechanism (18). The prediction ability of31

MARS
Training set

Selection
matrix SVR model 

training

Testing set Prediction
model

Prediction results

FIGURE 1 The framework of the proposed urban traffic prediction model
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MARS model is uncompetitive in contrast with some advanced statistical learning models. There-1
fore, in our work, MARS is used as a filter which performs variable selection before a learning2
based prediction method, SVR. The framework of our proposed urban traffic prediction method is3
illustrated in Figure 1. The details of the methodology are described in the following content.4

Spatio-temporal Variable Selection5
As we feed the traffic states from all of the road segments at different time intervals into the6
prediction model and desire to build the relationship between all the predictors and the target, the7
set of independent variables X fed into the prediction model is high-dimensional. Suppose that8
we have N observations, X = {xi}N

i=i, where xi ∈ ℜp contains p predictors. Then suppose the9
corresponding response variables are y = {yi}N

i=1. To select a subset X′ from X that can obtain best10
prediction performance, assume that the response is generated by11

yi = g(xi)+ εi, εi ∼ N(0,δ 2) (1)

where εi is the normal error with a mean of zero and a variance of δ 2. If we define e(X) as the12
estimation error function expressing the error between y and g(X), the best predictor set X′ should13
obey the following condition:14

e(X′)≤ e(X′′) (2)

where X′′ is any other possible subset of X except X′. Hence, the critical issues in the variable15
selection are two fold: the fitting method and the definition of the error function. Considering that16
MARS is able to remove those variables with negative effect and keep informative variables, we17
employ MARS to select the significative spatio-temporal variables.18

A Brief Introduction to MARS19
MARS is a flexible regression model for multivariate regression proposed by Friedman (18). As20
Friedman stated, the objective function g(x) in MARS is assumed to be composed of a series of21
basis functions, each of which has its support on a distinct region (19). The objective function is22
as shown in the following equation:23

g(x) = β0 +
M

∑
m=1

βmBm(x) (3)

where β0 is a constant bias; βm is the regression coefficient estimated to yield the best fit to the24
desired relationship between predictor and response; Bm(x) is the basis function; M is the number25
of basis functions. Generally, Bm(x) can be expressed as the product of spline functions:26

Bm(x) =
Lm

∏
l=1

φm,l(xv(m,l)) (4)

where Lm is the degree of the interaction of basis Bm and v(m, l) is the index of the predictor27
variable depending upon the mth basis function and the lth spline function. For each m, Bm(x) can28
consist of a single or a product of two or more spline functions, and no input variable can appear29
more than once in the product. These spline functions often take the form as follows30

φm,l(xv(m,l)) ∈
{

b+q (xv(m,l)− tm,l),b−q (xv(m,l)− tm,l)
}

(5)
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with1

b+q (x− t) = [+(x− t)]q+ =

{
(x− t)q, if x > t

0 otherwise
(6)

2

b−q (x− t) = [−(x− t)]q+ =

{
(t− x)q, if x < t

0 otherwise
(7)

where [.]+ denotes the positive part of the argument; x is the predictor split and t is the threshold3
on the predictor, named knot; q is the power of the spline function.4

Variable Selection in MARS Model5
The “optimal” variable selection from X in the MARS model is figured out with a two-stage pro-6
cess: forward growing and backward pruning. In the forward growing stage, MARS initially con-7
structs an overfitted model by adding an excessively large number of basis functions. These basis8
functions are allowed to interact with one another or be restricted to entry as additive components9
only. During this stage, MARS uses a greedy algorithm to consider whether to add a basis function10
to the MARS model by searching all combinations of all values of all variables. The selection11
of basis functions from the initial set is achieved by determining a constant function. Meanwhile12
given a configuration for the Bm(xi), the coefficients βm are estimated by minimizing the residual13
sum of squares (RSS) criterion with the following form14

RSS(M) =
N

∑
i=1

(yi− ĝM(xi))
2 (8)

where ĝM(xi) is the estimation of yi with M basis functions; N is the total number of the predictors.15
Finally, new pairs of functions are considered at each phase until the change of residual error is16
too small to continue or until the maximum number of basis functions specified at the beginning is17
reached (18).18

The second stage in the MARS strategy is a pruning procedure. In this backward step-19
wise stage, basis functions are deleted according to their contribution to the model, that is, the20
least contribution, the eariler it is deleted, until an optimal balance of bias and variance is found.21
The backward removal is performed by suppressing the basis functions that contribute to a mini-22
mal residual error. This stage consists of reducing the complexity of the model by increasing its23
generalizability. This process can be conducted by means of generalized cross validation (GCV):24

GCV (M) =
∑

N
i=1 (yi−gM(xi))

2

(1−C(M)/N)2 (9)

where M is the number of linearly independent basis functions in Equation 3, being proportional to25
the number of basis function parameters; C(M) is a complexity penalty function to avoid overfitting26
and indicates the effective number of parameters in the model. Usually, it is defined as C(M) =27
d ·M, where d is the penalizing parameter. According to the suggestion from (18), d is chosen as 428
in this paper. Finally, the basic choice of MARS model has M̂ = argminM GCV (M) additive terms.29

After creating a MARS model through the above two stages, we can track the GCV changes30
during the building of the model for each predictor. The importance of the variables can be esti-31
mated via accumulating the reduction in the statistic when each predictor’s feature is added to the32
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model. If a predictor (including spatial and temporal traffic volume) was rarely or never used in1
any MARS basis function, it has little or no influence on the target road segment. In our study, the2
GCV changes are normalized to 0 to 1, where 1 denotes that the predictor is the most important one3
among all of the predictors, while 0 denotes that the predictor is useless to the response. Finally,4
the GCV changes of all predictors constitutes the variable selection weight ω.5

Support Vector Regression Model6
In the second stage of our prediction framework, we employ the SVR model to learn the relation-7
ship between the selected predictors and the response in our work. Support vector machine (SVM)8
is a widely used classification technique developed by Vapnik and co-workers in 1995 (20). A ver-9
sion of SVM for regression named SVR has been proposed in 1997 by Vapnik, Steven Golowich,10
and Alex Smola (21) for solving nonlinear regression problems. In recent years, SVR has shown11
remarkable generalization abilities in the prediction of traffic flow (13, 14).12

Given the training data set {(xi,yi)}N
i=1, q variables are selected from X by:13

x′i = ω ·xi (10)

where ω is the variable selection matrix generated using MARS and x′i ∈ ℜq. Then a kernel14
function φ(x′i) = {φ1(x′i), . . . ,φD(x′i)}T is employed to transform the q-dimensional input into a15
higher D-dimension Hilbert space. Based on the nonlinear mapping, SVR model can be expressed16
as follows17

f (x′i) = wTφ(x′i)+b (11)

where w = {w1,w2, . . . ,wD}T is a weight vector and b is bias.18
In SVR, Vapnik (20, 21) introduced a ε-insensitivity loss function ignoring errors of size19

less than ε . The loss function is defined using the following equation:20

Lε( f (x′i)− yi) = max{0, | f (x′i)− yi|− ε} (12)

where ε is the region of ε-insensitivity; when the predicted value falls outside the band area, the21
loss is equal to the difference between the predicted value and the margin. Otherwise, The function22
gives zero loss. Such error function is therefore more tolerant to noise and is thus more robust. As23
in the hinge loss, there is a region of no error, which causes sparseness.24

After introducing the loss function, the w and b are obtained by minimizing the following25
equation:26

E(w) =
1
2

w ·w+C
1
N

N

∑
i=1

Lε( f (x′i)− yi) (13)

where C is a parameter controlling the tradeoff between the penalty and margin. The issue of SVR27
is to find the acceptable function f (·) corresponding to a minimum E(w). Analogous to the soft28
margin hyperplane, Vapnik (20) introduced slack variables to account for deviations out of the29
ε-zone. Thus Equation (13) can be transformed to:30 

min 1
2(w ·w)+C 1

N ∑
N
i=1 (ξi +ξ ′i )

s.t. yi− [w ·φx′i +b]≤ ε +ξ ′i

[w ·φx′i +b]− yi ≤ ε +ξi

ξi,ξ
′
i ≥ 0, i = 1,2, . . . ,N

(14)
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where we use two types of slack variables ξi and ξ ′i to keep them positive. Actually, we can see1
these as two hinges added back to back, one for positive and one for negative slacks. In practice,2
Equation (14) is often solved through its dual problem:3 {

max − 1
2 ∑

N
i=1 ∑

N
j=1 (βi−β ′i )(β j−β ′j)K(x′i,x′j)− ε ∑

N
i=1(βi +β ′i )−∑

N
i=1(βi−β ′i )

s.t. 0≤ βi ≤C/N, 0≤ β ′i ≤C/N, ∑
N
i=1 (βi−β ′i ) = 0, i = 1,2, . . . ,N

(15)

where βi and β ′i are the Lagrange multipliers of two constraints in Equation (14); K(x′i,x′j) =4

φ(x′i) · φ(x′j) is the kernel function satisfying Mercer condition. If β and β ′ are the solutions of5
Equation (15), then we have6

b =

{
yi− ε−∑ j(β −βi)K(x′i,x′j) βi ≥ 0

yi + ε−∑ j(β −βi)K(x′i,x′j) β ′i ≥ 0
(16)

After the above transformations, the solution to Equation (13) is transformed into the estimation7
of βi, β ′i , and b. Finally, in the testing set, we can predict the response of x′ using:8

f (x′) =
N

∑
i=1

(βi−β
′
i )K(x′,x′i)+b (17)

Moreover, before training the SVR model, the predictors X and response y are scaled inter-9
nally to zero mean and unit variance. The center and scale values are returned for later predictions.10

DATA SET DESCRIPTION11
The work in this paper focuses on the short-term prediction of the traffic volume of the target road12
segment in Shanghai urban road network area. The raw data set is collected from the Sydney13
Co-ordinated Adaptive Traffic System (SCATS) of Shanghai road network provided by Shanghai14
Traffic Information Center along with the precise map of Shanghai road network. The selected15
field data are the total numbers of vehicles passing certain loop detectors during every interval of16
10 minutes along the road links whose unit is vehicles per hour (vehs/h). The duration of the data is17
from February 1 to February 29, 2012, except February 24 as there was no data on this day. Since18
the urban traffic states on weekdays are prone to be congested and are more complicated, we only19
consider the traffic volume on weekdays in this paper.20

The traffic volumes in a subarea of Shanghai road network are investigated in our study. The21
map and the location of the subarea is shown in Figure 2. The subarea consists of 12 bidirectional22
road segments labeled by circled capital letters. The average length of the segments is about 400m.23
Furthermore, the footnotes 1 and 2 are used to denote the direction of the vehicle stream. Footnote24
1 denotes the traffic streams from north to south and west to east, and footnoot 2 denotes the25
reverses. For example, D1 denotes the link between its upstream roads, A1, C1, F2 and downstream26
roads, B2, E1, G1 and flows from west to east; G2 denotes the link between its upstream roads, I1,27
L2, J2 and downstream roads, B2, D2, E1 and flows from south to north.28

As shown in the map, there are 24 road segments in the selected road network (we consider29
the bidirectional roads as two individual road segments). However, in practice, some loop detectors30
don’t work or there are no detectors on some road segments. In our data set, traffic data from road31
B1, B2, D1, F1, G1, K1, and L1 are unavailable. Therefore, we fed the traffic volume from the32
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FIGURE 2 A subarea road network of Shanghai and the location of the subarea.

17 available road segments into the proposed prediction model. Additionally, two road segments1
with different directions, I1 and D2, are selected as the target roads to predict. I1 is a 3 lanes road2
segment directing to downtown from suburb. D2 is a 2 lanes road segment directing to suburb from3
downtown.4

In addition, there are still missing data existing in the traffic data set of the remaining road5
segments. Therefore, we eliminate the missing data when selecting the significant predictors and6
training the prediction model. When we perform the prediction model on testing date set, the7
missing data is replaced using its prediction value.8

EXPERIMENTS AND DISCUSSIONS9
In order to build the proposed prediction model, the available traffic volume is divided into two10
subsets: training set and testing set. The training set contains the early 17 weekdays in our data11
set, from February 1 to February 23, 2012. The remaining 3 weekdays, February 27, 28, and 29,12
are used for model evaluation. The training set is used to obtain the contribution weight ω via13
the MARS model in the first step, and then the weighted spatio-temporal variables in the training14
set are reused to train the SVR model. After the SVR prediction model is built, the testing set is15
employed to evaluate the performance of our traffic prediction model.16

The predictor from each road segment contains the current traffic volume Vt and the traffic17
volume in the earlier d time intervals, {Vt−1, . . . ,Vt−d}. To determine the number of earlier time18
intervals d, Xie et. al. employed an autocorrelation function (ACF) method (16). However, previ-19
ous spatio-temporal models on urban traffic prediction always construct the independent variable20
X with smaller time intervals (15). Therefore in our experiments, we tested the effects of several21
time intervals, e.g. 2, 3, 4, 5. After these attempts, we found that the proposed model can achieve22
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FIGURE 3 The selected spatio-temporal variables for road I1 and D2

better prediction results with 3 time intervals in terms of MAPE. Consequently, four predictors,1
{Vt ,Vt−1,Vt−2,Vt−3}, are drawn from each road segments and then compose the independent vari-2
able X. Therefore, the independent variable X in the training and testing set contains a total of 683
predictors. The response is the observation average traffic volume at the object road in the later 104
minutes Vt+1.5

Moreover, in the SVR model, the kernel function used for the traffic prediction is K(xi,x j)=6

exp(−σ
∥∥xi− x j

∥∥2
) where σ is the kernel parameter. In the SVR training process, the parameters7

(C,σ ,ε) are selected by a 5-fold cross-validation on the training set. The searching grid over the8
(C,σ ,ε) is [2−2,2−1, . . . ,26]× [2−6,2−5, . . . ,22]× [2−5,2−4, . . . ,22].9

Results of Spatio-Temporal Variable Selection10
As mentioned in Section 2.1, the descent of GCV importance in MARS model can be used to11
measure the contribution of the spatio-temporal variables to the object road segment. After the12
two-step optimization of the MARS model, the contribution weight ω can be drawn from the13
descent of GCV importance. Finally, the weights of the selected predictors for I1 and D2 are14
illustrated in Figure 3(a) and 3(b), respectively. The predictors which are not in the figure are15
regarded to have little impact on the traffic state of the object road segment and will not be used in16
the following SVR model building.17

In Figure 3, we can find that the two predictors most related to the response VI1,t+1 are18
its current state VI1,t and the state from one of its upstream road segment, VK2,t . For road D2, the19
current traffic state VD2,t is conceivably the most related predictor. Meanwhile the figures also20
indicate that some road segments would influence on the future traffic states of the target road21
although they don’t belong to the adjacent upstream or downstream roads.22

Prediction Results Analyses23
Following the spatio-temporal variable selection, we train the SVR model using the selected pre-24
dictors with different weights. To verify the proposed prediction model, the 3-order AR model is25
built to predict the testing set using the temporal traffic states. Moreover, the MARS model imple-26
mented in the first step is also carried out on the testing set. On the other hand, the SVR model27
is also directly trained and tested on all of the predictors without variable selection. So we can28
evaluate the performance of the spatio-temporal variable selection strategy proposed in this paper29
more intuitively.30
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As evaluating indicators, two measures for forecasting error analysis, root mean square1
error (RMSE) and mean absolute percentage error (MAPE), are employed to evaluate the perfor-2
mance of the proposed model. RMSE and MAPE are defined as follows:3

RMSE =

√√√√[ 1
K

K

∑
k=1

(
Vk−V̂k

)2

]
(18)

4

MAPE =
1
K

K

∑
k=1

∣∣Vk−V̂k
∣∣

Vk
×100% (19)

where K is the total number of intervals during the testing stage; Vk denotes the actual traffic5
volume; V̂k is the prediction value produced by the proposed or comparison models.6

In the model testing phase, the four models were carried out on the traffic volumes from7
road I1 and D2 during 3 weekdays, from February 27 to 29. Their prediction results on road I1 on8
the three days are plotted with the actual data in Figures 4(a), 4(b), and 4(c), respectively. Figure 59
plots the prediction results of road D2 on February 27. As can be observed in Figure 4 and 5, the10
daily traffic phenomenological trends on road I1 and D2 are different in the morning and evening11
peak. On road I1, the morning peak is much stronger than the evening peak. The performance of12
road D2 is just the opposite: the evening peak is stronger than the morning peak. Such differences13
are due to the origin-destination (OD) pattern existing between the suburb and downtown. Most14
people work in downtown, therefore, there is a heavy trend from west to east in the morning and15
from east to west in the evening in the subarea. However, the proposed spatio-temporal VS-SVR16
provides reliable prediction results, even though there are different OD trends between different17
roads.18

Moreover, from these figures, we can discover that the AR model generates an obvious19
delay during the prediction process, especially when the traffic states change suddenly, e.g. the20
climbing and declining phase during the morning and evening peak. MARS model also can not21
follow the frequent change of the actual volume timely. By contrast, the SVR and the proposed22
VS-SVR, as non-parametric methods, perform much better than the two parametric prediction23
methods.24

For a further comparison of SVR and the proposed VS-SVR, we plot the prediction results25
on road I1 by SVR and VS-SVR during the morning peak on February 29 in Figure 6. Obviously,26
the prediction results of VS-SVR is more close to the actual value, especially when the traffic27
volume is higher than 1500 veh/h. Therefore, we can conclude that the VS-SVR turned in a better28
performance than the SVR during the peak hour.29

Furthermore, the RMSE and the MAPE of the proposed and comparison prediction models30
are summarized in Table 1. According to the FHWA quality standards, the maximum acceptable31
prediction error is 20%; 10% should be an ideal error. From this perspective, the AR model shows32
the worst performace on our real urban traffic volume and is slightly better than the maximum33
acceptable error. As a parametric nonlinear model, MARS performs better than AR, but its total34
MAPE is still up to 18.10% (for I1). Even though the SVR model is a kernel learning method35
which always preforms excellently in most cases, there is still a way to the ideal standard. In36
comparison with SVR, the total MAPE of VS-SVR is much closer to the ideal error (10%) for37
road I1 and D2. Moreover, SVR is easily overfitting on high-dimensional predictors. As shown in38
Figure 4(b) and Table 1, SVR yields unexpected prediction errors during 4:00AM-5:00AM, which39
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(a) Feb. 27, Monday
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(b) Feb. 28, Tuesday
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(c) Feb. 29, Wednesday

FIGURE 4 Prediction results comparison of road I1

leads to a high MAPE on Feb. 28. This is caused by the overfitting yield during the testing stage.1
In contrast, the proposed VS-SVR reduces the dimensionality of the predictors so as to reduce the2
risk of overfitting.3

Besides the comparison of the accuracy of the prediction, we also discussed the computa-4
tion demand of the prediction models. The average times of 10 executions for the model training5
and testing on road I1 are listed in Table 2. The time is measured on a PC with 2.8 GHz Intel CPU,6
4GB RAM and 64-bit operating system. As we can see from the table, VS-SVR consumed much7
more time than SVR in model training stage, but in practice, the model training can be completed8
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FIGURE 5 Prediction results comparison of road D2 on Feb. 27, Monday
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FIGURE 6 Prediction results comparison of the morning peak of road I1 on Feb. 29

TABLE 1 Prediction error comparison of the four models

Road Models RMSE MAPE(%)
Feb.27 Feb.28 Feb.29 Total Feb.27 Feb.28 Feb.29 Total

I1

AR 212.55 221.59 242.97 226.19 19.04 18.01 21.91 19.66
MARS 185.03 206.24 205.19 199.18 19.63 16.13 18.60 18.10
SVR 128.18 111.65 96.85 110.03 17.61 20.50 12.62 16.90

VS-SVR 75.74 59.85 77.91 71.58 12.98 9.39 10.80 11.04

D2

AR 121.50 130.04 126.48 126.10 18.48 18.18 20.21 18.96
MARS 95.82 112.36 100.57 103.32 14.27 15.32 16.21 15.28
SVR 108.68 120.55 107.72 112.50 15.75 15.21 16.64 15.86

VS-SVR 67.95 80.62 69.85 73.07 11.49 12.65 12.86 12.34

off-line. The prediction stage of VS-SVR took much less time and could meet the real-time on-line1
application.2

Based on above discussions, we can draw a conclusion that the proposed two-step VS-SVR3
model can exploit the spatio-temporal correlations reasonably, and achieves reliable prediction re-4
sults in a short time. Meanwhile, the difference of OD trend has very little impact on the reliability5
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TABLE 2 Running time comparison of the four models
Models No. of predictors Training time(s) Prediction time(s)

AR 4 0.13 0.006
MARS 68 522.47 0.03
SVR 68 3.67 0.19

VS-SVR 68 534.94 0.09

of the proposed model. Moreover, although we test the model on a small network, the model also1
can work on large networks. For extremely large road network (e.g. Shanghai road network with2
thousands roads), although the model could run directly, we suggest that the road network should3
better be divided into small subareas first (e.g. subareas with less than one hundred roads).4

CONCLUSIONS5
This paper proposed a novel urban traffic volume prediction methods based on the spatio-temporal6
variable selection strategy. The proposed prediction framework contains two critical modules,7
the variable selection module, and the prediction module. In the first stage, the MARS model is8
employed as a filter variable selection method. In the second stage, the SVR model is employed to9
train the relationship between the selected predictors and the response. On the other hand, different10
from other urban traffic prediction models, the traffic data from all of the road segments are fed11
into the proposed model other than the upstream roads of the target. Consequently, the proposed12
model can exploit the spatio-temporal correlations of the road segments using MARS model. In13
the experiment, in order to evaluate the performance of the proposed prediction model, the linear14
AR model, the MARS model, the SVR models are employed for comparison. The experiments are15
carried out on a subarea of the real road network in Shanghai. The experimental results indicate16
that the spatio-temporal variable selection based SVR model is an effective approach for short-term17
traffic volume prediction in complex urban road network.18

For future work, the proposed method can be extended in several ways, e.g., considering19
the spatio-temporal correlations under different traffic states, such as morning peak, evening peak,20
and the stable traffic stage.21
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