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Reliable prediction of short-term passenger flow could greatly support metro authorities’ decision processes, help passengers to
adjust their travel schedule, or, in extreme cases, assist emergency management. The inflow and outflow of the metro station are
strongly associated with the travel demand within metro networks. The purpose of this paper is to obtain such prediction. We first
collect the origin-destination information from the smart-card data and explore the passenger flow patterns in a metro system.
We then propose a data driven framework for short-term metro passenger flow prediction with the ability to utilize both spatial
and temporal related information.The approach adopts two forecasts as basic models and then uses a probabilistic model selection
method, random forest classification, to combine the two outputs to achieve a better forecast. In the experiments, we compare the
proposedmodelwith four other predictionmodels, i.e., autoregressive-moving-average, neural networks, support vector regression,
and averaging ensemble model, as well as the basic models.The results indicate that the proposed approach outperforms the others
inmost cases.The origin-destination flows extracted from smart-card data can be successfully exploited to describe different metro
travel patterns. And the framework proposed here, especially the probabilistic combination method, can improve the performance
of short-term transportation prediction.

1. Introduction

Many cities, due to increasing travel demands and ever-
extending city coverage, rely more and more on metro
systems. With reliable, efficient, and safe service, metro
networks are experiencing a sharp rise in ridership [1]. The
successful delivery of such a huge amount of passengers
requires a high level of operational services where short-
term passenger flow prediction plays a key role. Short-term
passenger flow prediction is the prerequisite and foundation
for the adaptive control of traffic condition in the intelligent
transit system. The prediction of passenger information can
be extensively applied to the advanced traffic management
systems and the advanced travel information systems to
help with facility improvement, operation planning, revenue
management, and even emergency evacuation.

Short-term traffic prediction and short-term passenger
flow prediction are successful applications of short-term
transportation prediction in literature [2]. Unlike metro

passenger demand forecasting, traffic forecasting has a
long research history and has various analytic, statistical,
and simulation based models. Parametric models include
ARMA, seasonal ARMA, Kalman filtering, etc., while k-
nearest neighbors (kNN) approach and spectral analysis are
some frequently used nonparametric models [3]. In recent
years, various data driven methods and machine learning
models have attractedmuch attention.Many researchers have
moved from what can be considered as a classical statistical
perspective (the ARMA family of models), to neural and
evolutionary computational approaches.This significant leap
from analytical to data driven modeling has been marked
by an overwhelming increase of computational intelligence
and data mining approaches to analyzing the data [4].
Machine learning algorithms like neural network (NN) [5],
support vector regression (SVR) [6], and Gaussian Processes
[7] have been adopted frequently to perform short-term
traffic prediction. Compared to traffic prediction for ground
transportation, short-term passenger demand prediction for
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transit systems is a relatively new research field. Here are
some related works we found. Tsai et al. [8] constructed
two types of improved neural network model. The first is
multiple temporal units neural network (MTUNN), which
deals with distinctive input information via designated con-
nections in the network. The second is parallel ensemble
neural network (PENN), which deals with different input
information in several individual models. The results show
that both MTUNN and PENN outperform conventional
multilayer perception neural networks. Wei and Chen [2]
developed a hybrid forecasting approach which combines
empirical mode decomposition and back-propagation neural
networks and found that the approach performs well and
stably in forecasting the short-term metro passenger flow.
Sun et al. [9] proposed a hybrid model of Wavelet Support
Vector Machine (SVM). The method first decomposes the
passenger flow data into different high frequency and low
frequency series by wavelet and then predicted these series by
SVM separately. In the end, the diverse predicted sequences
are reconstructed by wavelet. This method is claimed to have
the best forecasting performance compared with the state-of-
the-art techniques in the year 2015. Li et al. [10] presented a
multiscale radial basis function network for forecasting the
irregular fluctuation of metro passenger flows. And the pre-
diction performance is said to outperform current prevailing
computational intelligence methods for nonregular demand
forecasting at least 30 min prior. Silva et al. [11] proposed an
approach to analyzing massive transportation systems with
goals of quantifying the effects of shocks in the system, such
as line and station closures, and to predict traffic volumes.
They used past disruptions to predict unseen scenarios, by
relying on simple physical assumptions of passenger flow and
a system-widemodel for origin-destination (OD)movement.

Combining forecast takes advantage of the availability
of both multiple information and computing resources for
data-intensive forecasting to improve forecasting accuracy
[12]. They are wildly used in a postprocessing phase to
improve the stability and accuracy of the individual models
[12–16]. Research on this methods started from around the
sixties and now is available in a wide range from the robust
simple average to the far more theoretically complex, such
as state-space methods that attempt to model nonstationarity
in the combining weights. Among most literatures, it is
documented that a combined forecast improves the overall
accuracy to a great extent and is often better than the forecast
of each component model [17]. A majority of them form a
weighted linear combination of the component forecasts.The
statistical averaging techniques, e.g., simple average, trimmed
mean, Winsorized mean, median, etc., are the most basic
ensemble methods, as they do not explicitly determine the
combining weights. Many studies found that these fairly
simple methods reasonably outperformed a number of more
advanced combining schemes [18].

In this work, we propose a framework to select and
combine forecasts to achieve better prediction performances.
In the first step, two basic models are initially adopted to
obtain two forecasts, which are k-nearest neighbors (kNN)
and adaptive boosting (Adaboost). Due to the complexity
of the travel pattern and flow, these individual prediction

modelsmay have different performancewhen facing different
situations. Thus we compared the results based on the fitted
regression relationships between forecasting accuracies and
features for each basic model. Finally, probabilistic com-
bination is applied to combine the refined results into a
final forecasting value. The subsequent validation performed
indicates that the proposed model outperforms some widely
used forecasting model, i.e., ARMA, NN, SVR, and an
averaging ensemble model using the same basic models, in
terms of prediction accuracy and stability.

The remainder of the paper is organized as follows.
Section 2 presents the dataset used in this study. Section 3
provides an intuitive analysis of the data. Section 4 provides
the whole method and a case study of passenger flow predic-
tion using the real world data is presented. Comparative anal-
yses of the prediction performances are provided. Section 5
gives the result and visualizes the prediction performances.
Finally, conclusions are drawn and future research directions
are indicated in Section 6.

2. Data Description

Metro line 1 in Zhengzhou City, China, is selected for a case
study. The city lies in the middle of China and has a very
prosperous and promisingmetro demand for its 9.568million
population. During the period our dataset covered, line 1 was
the onlymetro line in the city with an average daily passenger
volume about 300, 000. This dataset reflects a typical growth
pattern of a new-built metro system and the exploration of
its demand pattern helps the policymaker to understand the
passenger volume fluctuation of a medium city.

Thedatasets were collected fromautomatic fare collection
(AFC) system which covers 667 days, from July 20th, 2014,
to May 16th, 2016. AFC records comprise all of the journeys
by metro. The useful information in each record for this
case consists of a time stamp, a location code, a transaction
type, and card IDs.The location code uniquely identifies each
of the 19 stations of the system that were active during the
period covered by our data. The two transaction types of our
interest are generated when a passenger touches the smart-
card reader at the entrance (“tap-in” event) or at the exit
(“tap-out” event) of a station. Card IDs allow us to pair the
tap-in and tap-out records in which way ODs are obtained.
We discarded all tap-in records that are not matched to
a tap-out and vice versa. Paired OD flows are aggregated
by a time interval of 15 minutes. Each day is composed
of 96 time intervals. Our analysis covers all weekdays and
weekends. Some statistics of instation flow and outstation
flow are shown in Table 1, including average 50th and 80th
percentile value and standard deviation of 15 minutes’ flow
for all days and every station. Most stations have balanced in
and out station flows. It is noteworthy that Table 1 shows a
high volatility of the flows, which also indicates the difficulty
of our prediction task.

3. Travel Demand Analysis

3.1. In- and outstation Flow Patterns. We investigate the
patterns of the inflow and outflow at each station with the
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Table 1: Statistics of inflow and outflow (pax/15min).

inflow outflow
station 50% 80% std 50% 80% std
1 165 284 146 133 229 112
2 53 94 67 55 89 51
3 115 177 112 126 214 121
4 120 188 120 121 185 108
5 88 136 72 87 138 68
6 94 153 97 96 145 79
7 128 196 105 136 195 100
8 257 426 199 293 478 215
9 249 560 275 277 582 274
10 137 204 99 136 215 103
11 209 315 162 227 337 171
12 137 199 101 146 207 111
13 121 182 98 115 167 102
14 112 212 145 117 206 165
15 105 167 89 99 144 78
16 78 131 83 71 113 77
17 101 159 98 96 148 96
18 173 380 195 214 360 172
19 189 335 161 177 311 153

average counts in each timeslot, as shown in Figure 1. The
stations could be split into the following four groups accord-
ing to their flow patterns. (i) The stations which display
a two-peak pattern on both the in- and the outflows on
weekdays, e.g., Station 12. The main reason is that these
stations are located in the zoneswhich serve as both residence
and nonresidence areas. The number of people departing
from these zones is comparable with the number of those
arriving at these zones during the peak hours. (ii)The stations
where the inflow shows only one strong peak during the
morning peak hour, while, the outflow shows one strong peak
during the evening peak hour, e.g., Station 4. Such stations
are located in the zones which mainly serve as residential
area. Most of the travelers are commuters in these zones,
who usually depart from home to work in the morning peak
hour and back to home in the evening. (iii) On the contrary
with the second pattern, some other stations have a strong
morning peak on the outflow and evening peak on the inflow,
e.g., Station 16. These stations are in the nonresidential areas,
including the business or industrial area, and provide a great
number of jobs. (iv) The stations which display peaks in the
noon on both of the inflow and outflow, such as Station
19. Such stations may be located in the popular commercial
area, which is the destination of lots of noncommuters. And
there are some stations showing mixed characters of those
four divisions, like Station 10. They are mostly located in the
central district of the city and surrounded by big shopping
malls and public utilities like hospitals and theaters. They
show mixed characters of types (iii) and (iv).

3.2. Metro Travel Distance Distribution. The distribution of
metro trip displacements computed from the dataset is shown

in Figure 2. A metro trip refers to a travel from the boarding
station to alighting station of a passenger, which reflects the
movement of an individual within the metro system. The
displacement between any OD pair is calculated from station
longitudes and latitudes. The probability increases quickly
from the beginning and reaches the peak at about 4 ∼ 5
km, and another peak is reached at about 9 km. This may
result from the pricing structures and travel purposes. With
a flat fare of 2 RMB and some time to enter and exit the
metro stations, taking metro to complete very short trips is
not economical and time efficient. And most metro trips are
for the purpose of daily travel, like commuting, which is not
likely to have a very long distance, and also the upper bound
of the travel distance is restricted by the city scale. We select
Weibull distributions to fit the displacements. The likelihood
indicated that the Weibull distribution fits the metro trip
displacements slightly better, which is different from the
result from [19]. The difference may lie in the structure of
urban layout.

3.3. Spatial Correlation. The relationship between each two
OD pairs in a complex network, especially the correlation
among spatially neighboring OD, has always been a research
interest. There is a possibility that related OD flows could be
used as potential features to improve the prediction.We tried
to explore the possibility by finding out the interdependencies
between geographically close OD flows. In Figure 3, OD 4–8
(passenger flow from Station 4 to Station 8) is chosen as the
target OD pair; neighboring OD pairs include all OD pairs
starting from Stations 2–6 and ending at Stations 6–10. Each
individual figure shows the correlation between the neighbor-
ing OD pairs with the target OD pair. It can be seen that those
ODs with correlation higher than 0.5 are OD 3–8, OD 3–9,
OD 4–7, OD 4–9, and OD 5–8. Most of these are one station
away from the targetOD.After conduct the analysis on all OD
flows, we choose a spatial window of 1 (one station away) to
construct features in prediction.Thus for one target OD flow,
8 neighboring OD flows are used as feature in prediction.

4. Travel Demand Prediction

4.1. Basic Model Formulation. The datasets are split into
three parts to train and test the prediction models. The
first 80% of them are used as training set. The remaining20% are used as testing set to examine the performance of
proposed combined prediction model. For the training set,
we randomly disordered the whole sequence (the first 80%
of all data) and then divided the disordered sequence by 5:3
to obtain the Training Set 1 and Training Set 2. By doing the
random permutation, we excluded the long-term trend from
the training dataset. The Training Set 1 (50% of all data) is
used to train the two basic prediction models, Adaboost and
kNN; Training Set 2 (30% of all data) is used to train the
probabilistic classifier, RF, here named Training Set 2.

It is noteworthy that the weekdays and weekends are
treated separately. In the whole computational process of this
presentmethod, OD flow in the next timeslot,𝑂𝐷(𝑆𝑂, 𝑆𝐷)𝑡+1,
is selected as target. The forecasts of instation and outstation
passenger flows can be obtained by aggregating OD flows by
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Figure 1:The inflow and outflow counts at each station. (a) (b)The average counts of inflow (outflow) every 15-minute timeslot on weekdays.
(c) (d) The average counts of inflow (outflow) every 15-minute timeslot on weekends and holidays.
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Figure 2: Distribution of travel distances approximated by Weibull distribution.

Figure 3: The correlation between the target OD flow 4–8 and its neighboring OD flows.

their origin or destination station. Historical values of the
targeting and some neighboring OD flows of the target are
selected as features, as shown in Figure 4(a).

As we select the spatiotemporal flows as the inputs of the
prediction model, the number of features is 45 when the spa-
tial window is 𝑤 = 1(8 neighboring ODs and the target OD)
and the time lag is 𝑑 = 5. Such number of features contains
redundant information which increases the uncertainty of
prediction.Therefore, principal component analysis (PCA) is
adopted to decompose the original OD flow into a number
of principal components and scores, and it also plays the role
of data filtering. In this way, the systematic variations in OD
flows are captured in lower dimensions. Consequently, the
resulting principal components have a desirable property of
being independent of each other, and the weights of principal

components could serve as predictors in prediction process.
A detailed description of PCA could be referred to in [20]. In
our case, the size of feature matrix R is 𝑚 × 𝑛. The variable𝑚 represents the number of samples; i.e., each row of the
data matrix is the estimated OD flow vector in any of the
intervals. The variable 𝑛 represents the number of features.
The principal component directions can then be deter-
mined by performing Singular Valued Decomposition on the
data matrix R

R = UΣC𝑇 (1)

where Σ is a𝑚 × 𝑛 rectangular-diagonal matrix with positive
values called singular values; U is a 𝑚 × 𝑚 matrix with
orthogonal column vectors called the left singular vectors;
and C is a 𝑛×𝑛matrix with orthogonal column vectors called
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Figure 4: The framework of the proposed method. (a) The formation of the independent variables and response for OD flow prediction. (b)
The pipeline of the proposed probabilistic model selection approach for OD flow prediction.

the right singular vectors.The columns of thematrixC are the
principal component directions. Alternatively, the columns
of 𝐶 can also be interpreted as the eigenvalues of the matrix(1/𝑚)R𝑇R, which is the sample covariance matrix.

Let the individual principal component directions be
represented by c1, c2, . . . , cp. Here, c1 represents the principal
component direction with the largest sample variance, c2
represents the principal component direction with the largest
sample variance subject to being orthogonal to c1, and so
on. Assume that only first 𝑘 directions explain a majority
of the variance in the OD flow vector. The first 𝑘 principal
component directions can be represented using a𝑚×𝑘matrix
as

C = [c1, c2, c3, . . . , ck] (2)
Then the 𝑘 × 1 principal component vector Z =[z1, z2, z3, . . . , zk]𝑇of the OD flow vector r can be written as

z ≈ C𝑇r (3)
and the OD flow vector r can be approximately constructed
back as

r ≈ Cz (4)

The extracted principal components are sorted by the
percentage of the total variance explained by each principal
component, from high to low, and reveal various patterns of
ODflow. In this case, we use the first 10 principal components.

The two basic models, Adaboost and kNN, are widely
used forecasting approaches. We will not describe them in
detail. For Adaboost, we used 500 trees and the maximum
depth equals to 4. Interested readers could refer to [21] for an
introduction. For kNN, we adopt 𝑘 = 12.
4.2. Probabilistic Model Selection. Two basic forecasts are
obtained from previous stage. In the following stage, we
combine the prediction results of two individual basicmodels
with a probabilistic model selection approach, random forest
classifier, as shown in Figure 4(b). In contrast with the
deterministic classification which selects the better one from
the individual outputs, the probabilistic classification yields
a probability that the output is selected as the better one.
This probabilistic mechanism reduces the bias of prediction
when the outputs of the individual models are divergent,
as one overestimates the traffic flow while another one
underestimates the value.
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Suppose we have a training set (x1, 𝑦1), (x2, 𝑦2), . . . (x𝑁,𝑦𝑁), where 𝑁 is the number of samples in training set.
Here in our metro OD flow prediction problem, x𝑖 is the
projected feature vector of the 𝑖th independent variables, as
shown in Figure 4(a). 𝑦𝑖 is the binary label of the 𝑖th sample.𝑦𝑖 = 0 implies that the prediction of Adaboost is closer to
the actual observation than kNN; 𝑦𝑖 = 1 implies the contrary.
In this way, once we applied the trained Adaboost and
kNN to the samples in Training Set 2, the labels 𝑦𝑖 can be
collected by comparing the prediction with the ground truth.
Consequently, we can adopt the supervised classification
method, random forest, to learn the relationship between
samples and their labels. Random forest is an ensemble tree
model introduced by Leo Breiman [22] consists multiple
classification trees. The basic tree models are trained on the
data randomly selected from the original training data set,
namely, bootstrapping.Usually, the predicted label of a testing
sample is the label that appears most frequently in the basic
tree models.

For the probabilistic classification, we desire to estimate
the probability of each label, that is, 𝑝𝑖,𝑘 = 𝑃(𝑌 = 𝑘|𝑋 =
x𝑖). The most simple way is to count the proportion of trees
that output class 𝑘 when observation x𝑖 is passed to the tree,
namely, Voting. In this work, we adopt an out-of-bagmethod.
First, we denote the set of samples used for training the
basic trees by B𝑡 ∈ A, and the complementary set of B𝑡 is
B𝑐𝑡 ∈ A, a.k.a, out-of-bag method. Here in our work, A is
generated by running the individual predictor on Training
Set 2. Obviously, for each basic tree model, B𝑐𝑡 is not used
for training. That is, the terminal nodes are not pure when
passing down the samples in B𝑐𝑡 to the trained tree.Therefore,
B𝑐𝑡 gives information about the underlying class probabilities.
Suppose that 𝑚 samples in B𝑐𝑡 are assigned to the terminal
node 𝑖 of a basic tree 𝑡 and these𝑚 samples contain 𝑘 classes;
we use the relative frequency of class 𝑘 as the classification
probability of this terminal node. For the terminal node 𝑖,

𝑝𝑘,𝑖 = ∑
𝑚
𝑗=1 𝐼 (𝑗, 𝑘)𝑚

𝐾∑
𝑘=1

𝑝𝑘,𝑖 = 1
(5)

where 𝐼(𝑗, 𝑘) = 1 if the 𝑗th sample of 𝑚 is labeled as class
k in B𝑐𝑡 and 0 if else. Finally, each terminal node in basic
trees is associated with a set of classification probabilities,𝑝1, 𝑝2, . . . , 𝑝𝐾 for a 𝐾-class classification problem.

When passing down the testing sample to the trained
random forestmodel, we assign the sample to a terminal node
in each basic tree and get a set of classification probabilities.
Then we average the probabilities of all basic trees to infer
the final classification probabilities. In the context of metro
flow prediction, we use two basic prediction models and
thus train a binary random forest model to estimate the
probability of each prediction model. Once we have applied
the probabilistic classification model to the testing set, the
final prediction can be calculated using the following linear
combination:

Ĉ = 𝑝0Ĉ0 + 𝑝1Ĉ1

𝑝0 + 𝑝1 = 1 (6)

whereC0 is the predicted inflowor outflow count ofAdaboost
and C1 is that of kNN; 𝑝0 is the probability that Adaboost
performs better than kNN on the active sample; 𝑝1 is the
probability that kNN performs better than Adaboost.

5. Results Analysis

We implemented several widely used prediction models, i.e.,
ARMA, neural network (NN) and support vector regression
(SVR), using the same dataset to compare predictive per-
formances with the proposed model. It is noteworthy that
the proposed combined model is applied to the OD flow
first, and then the prediction results are aggregated to get the
inflow and outflow, while the three reference methods are
directly applied to the aggregated inflow and outflow data,
as analyzed in Table 1 and shown in Figure 1, rather than
the OD flow. The reason is that we aim to validate not only
the proposed combination approach but also the effect of
OD flow aggregation. The parameters of 𝑝, 𝑞, 𝑑 in ARMA
model are calibrated for each time series data (in/outflow
of every station), with Bayesian information criterion; For
NN, we configure two hidden layers with 5 and 2 nodes,
respectively. The model is solved with Limited-memory
Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm; for
SVR, we choose the radial basis function (RBF) as the kernel,
and the two key parameters of RBF are chosen by grid search,
with 𝐶 = 100 and 𝛾 = 1 × 10−4.

Besides, to compare the probabilistic combination with
other combining methods, we implement an averaging com-
bination model. Averaging is one of the commonly used
model combination method [23]. The model is implemented
in the same way with our probabilistic combining model
except that the basic models are combined with simple
averaging.

To assess the performance of the proposed combined
approach, we use two metrics, Mean Absolute Percentage
Error (MAPE) and Variance of Absolute Percentage Error
(VAPE). MAPE is used to measure the prediction accuracies,
andVAPE is used to examine the stability of the proposed and
reference models. The formulations of MAPE and VAPE are
given as follows:

𝑀𝐴𝑃𝐸100 = 1𝐾
𝐾∑
𝑘=1

𝐶𝑘 − 𝐶𝑘𝐶𝑘 × 100%, for 𝐶𝑘 ≥ 100 (7)

𝑉𝐴𝑃𝐸100 = var(
𝐶𝑘 − 𝐶𝑘𝐶𝑘 ) × 100%,

for 𝑘 ∈ 1, . . . , 𝐾 and C𝑘 ≥ 100
(8)

where𝐶𝑘 denotes the actual counts of inflow or outflow at the
metro station. Here we only consider the counts larger than
100 as the policymakers are more concerned with large travel
flows; the total number of samples is 𝐾 during the testing
phase; 𝐶𝑘 is the predicted value produced by the prediction
models.

Tables 2, 3, 6, and 7 show the MAPE of the proposed
combined model and the referenced models. It can be seen
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Table 2: The MAPE of inflow on weekdays.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 13.68 18.06 14.42 14.27 13.88 13.71 13.83
2 19.06 23.62 19.82 17.84 19.26 18.23 20.22
3 11.69 20.43 15.82 13.12 11.90 11.84 11.83
4 12.44 22.73 17.56 14.7 12.64 12.72 12.47
5 12.94 21.56 16.06 14.87 13.13 12.96 13.11
6 11.79 21.84 16.67 13.33 12.00 12.15 11.70
7 12.13 23.9 14.13 11.78 12.31 12.24 12.28
8 19.99 25.15 22.81 23.89 20.22 20.34 19.83
9 10.23 13.70 11.79 12.9 10.43 10.33 10.44
10 11.82 20.11 14.23 12.72 12.03 11.97 11.87
11 9.74 19.31 13.15 10.76 9.96 10.11 9.66
12 11.49 21.01 13.74 12.04 11.69 11.40 11.85
13 11.01 21.26 14.17 12.16 11.23 11.24 11.04
14 12.16 22.34 15.55 13.86 12.38 12.35 12.29
15 11.33 19.50 14.85 12.94 11.57 11.65 11.36
16 12.14 21.58 15.88 13.24 12.34 12.62 11.98
17 13.12 22.54 16.78 14.68 13.33 13.32 13.29
18 20.23 33.79 25.45 29.09 20.54 21.2 19.94
19 15.02 17.86 15.13 16.26 15.23 14.90 15.33
# of best 11 0 0 2 0 2 4
Average 13.26 21.65 16.21 14.97 13.47 13.44 13.40

Table 3: The MAPE of outflow on weekdays.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 12.37 16.03 12.91 12.38 12.57 12.31 11.97
2 15.66 17.62 14.89 14.24 15.84 15.25 13.54
3 10.27 16.36 12.21 10.77 10.48 10.56 10.73
4 11.35 17.51 14.08 12.85 11.56 11.57 11.96
5 11.78 17.99 13.82 12.54 11.99 11.92 10.72
6 10.63 22.2 14.77 12.12 10.84 10.96 11.77
7 11.73 17.43 12.97 11.42 11.94 11.86 12.11
8 9.85 15.71 10.6 11.64 10.06 9.97 14.13
9 10.44 14.73 11.35 12.4 10.67 10.70 16.31
10 11.53 19.5 13.33 12.18 11.75 11.66 14.79
11 10.71 18.62 12.9 11.4 10.92 11.04 13.37
12 10.47 21.14 13.1 11.23 10.69 10.76 10.94
13 10.59 22.16 15.54 11.3 10.81 11.94 11.76
14 11.55 20.18 15.68 13 11.77 11.84 11.90
15 10.55 32.62 14.31 11.18 10.76 10.82 11.47
16 12.78 20.56 16.31 14.09 12.98 13.10 12.38
17 11.93 22.3 15.62 11.89 12.12 11.98 11.87
18 12.40 13.95 11.48 12.27 12.59 12.07 12.39
19 12.30 15.37 12.8 13.31 12.50 12.26 12.52
# of best 10 0 1 2 0 2 4
Average 11.51 18.49 13.61 12.22 11.73 11.66 12.43
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Table 4: The VAPE of inflow at each station on weekdays.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 1.26 2.04 3.29 1.39 1.27 1.30 1.56
2 1.39 3.66 1.63 1.41 1.39 1.40 1.31
3 0.73 2.64 4.03 1.06 0.73 0.77 0.88
4 0.96 4.93 1.68 1.35 0.96 1.01 1.19
5 0.84 3.84 1.37 1.32 0.85 0.87 0.86
6 0.90 3.97 1.05 1.07 0.91 1.01 1.29
7 0.87 3.97 1.05 0.91 0.89 0.88 1.21
8 3.15 5.12 4.48 5.19 3.15 3.32 4.99
9 1.60 1.78 2.03 2.73 1.64 1.56 2.7
10 0.87 2.83 2.92 1.07 0.87 0.91 1.62
11 0.69 2.58 0.99 0.77 0.69 0.74 1.72
12 0.72 2.79 1.17 0.92 0.72 0.73 0.83
13 0.86 3.18 1.77 1.08 0.87 0.91 1.17
14 1.10 4.89 1.8 1.72 1.11 1.15 1.34
15 0.82 2.18 3.15 1.06 0.83 0.86 1.01
16 0.83 3.01 1.35 1.06 0.84 0.89 0.89
17 0.98 3.88 1.78 1.62 0.98 1.01 1.03
18 2.84 8.39 4.82 6.08 2.85 3.03 3.66
19 1.59 2.31 1.58 1.87 1.59 1.58 1.94
# of best 13 0 0 0 5 1 0
Average 1.21 3.58 2.21 1.77 1.22 1.26 1.64

that among the total 76 (in/outflow at 19 stations onweekdays
and weekends) forecasts, the proposed combined model
outperforms others in 43 forecasts. By comparing the MAPE
of inflow and outflow, we observe that the outflow is generally
more predictable than the inflow.That is because the outflow
is tied up with the historical inflow, which may be known in
the inputs of the prediction models.

The comparison of VAPE is showed in Tables 4, 5, 8, and
9. It can be seen that among the total 76 (in/outflow at 19
stations on weekdays and weekends) forecasts, the proposed
combined model outperforms others in 47 forecasts. The
improvements are significant compared with ARMA, NN,
SVR, and the two basic models. The VAPE of combined
model performs best at most of the stations, for inflow
or outflow, on weekdays or weekends. However, our prob-
abilistic combined model and averaging combined model
yield close VAPEs in many cases. This demonstrates that the
prediction ability of combined methods is more stable than
other references models. Another interesting finding is that,
from the overall view, for the same station, prediction on
weekdays is better than weekends and prediction of outflow
is better than inflow.

Figures 5 and 6 exhibit the visual comparison of the
prediction results with the actual data at selected stations
during the operation time of one weekday and weekend,
respectively. In contrast with the referencemodels, ourmodel
shows a relatively stable performance both in peak and in
small perturbations. Among the four prediction models,
ARMA yields more undesired peaks than others. Although
the combined model cannot follow the bumpinesses in the
actual curve, it gives the most promising prediction among

the four models. However, we observe that the combined
model underestimates the evening peaks on weekdays at
Stations 4, 12, and 16, as shown in Figures 5(a), 5(c), and 5(d).
This shortcoming leaves room for the further improvement.
To understand more clearly the ability of predicting peak
hours of combined model, we summarized the MAPEs for
peak hours in Table 10. Peak hours are selected as 7-8 a.m and
5-6 p.m.

Another aspect of this method we discover during this
study is that when applying combination to two basicmodels,
if one individual basic model performs significantly worse
than the other, the combination may be not efficient, because
the final prediction is a linear combination of the two
outputs of the two basic models. In the opposite, another
extreme case is that when the two basic models are with
very similar characteristics, the combination may also not
improve the performance. The reason is that the predicted
results of the basic models tend to be same. Therefore, we
need to carefully select basic models. The two models should
be expert in different scenarios and have overall balanced
performance. In this case, the combination will give the best
performance.

6. Conclusion

Accurate short-term travel flow prediction in metro systems
helps the policymaker tomanage the operation ofmetromore
efficiently and also make proactive control possible. With
robust and accurate prediction, various control measures
could be prepared in advance, for example, volume restriction
and timetable reschedule. In this paper, we first analyzed
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Table 5: The VAPE of outflow at each station on weekdays.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 0.90 1.75 1.08 1.17 0.89 0.90 1.01
2 0.94 1.42 1.08 1.06 0.93 0.94 0.81
3 0.64 1.75 0.94 0.74 0.70 0.66 0.84
4 0.83 1.99 1.34 1.15 0.88 0.84 1.02
5 0.69 1.74 2.77 0.88 0.70 0.69 0.63
6 0.63 3.13 1.23 0.83 0.67 0.63 0.90
7 0.72 1.81 0.95 0.81 0.71 0.72 1.00
8 0.84 1.98 1.2 1.43 0.89 0.84 1.51
9 0.94 1.84 0.81 2.37 0.99 0.93 1.99
10 0.81 2.37 1.24 0.93 0.86 0.81 1.49
11 0.80 2.09 1.22 0.97 0.85 0.81 1.41
12 0.64 2.69 1.12 0.89 0.66 0.62 0.81
13 0.70 3.58 1.49 0.82 0.74 0.71 0.93
14 0.88 2.81 1.17 1.35 0.87 0.83 1.01
15 0.74 1.96 1.00 0.75 0.76 0.77 0.85
16 0.74 2.88 0.98 1.02 0.78 0.74 0.75
17 0.86 3.55 1.39 0.89 0.88 0.88 0.9
18 1.47 1.91 1.75 1.35 1.45 1.47 1.77
19 1.56 2.14 1.68 1.87 1.58 1.56 1.76
# of best 11 0 1 1 3 2 1
Average 0.86 2.29 1.29 1.12 0.88 0.86 1.13

Table 6: The MAPE of inflow at each station on weekends.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 14.11 17.56 15.29 15.54 14.30 14.13 14.28
2 18.08 21.82 18.53 16.73 18.27 17.24 19.13
3 11.59 18.88 14.52 13.05 11.76 11.57 11.75
4 12.30 20.84 14.74 14.48 12.51 12.47 12.35
5 13.29 20.12 14.53 14.96 13.48 13.13 13.64
6 11.71 20.36 14.81 13.4 11.90 11.97 11.71
7 13.23 23.11 13.63 12.42 13.47 13.20 13.57
8 22.39 26.23 23.47 28.27 22.61 22.62 22.38
9 10.49 13.7 11.44 14.16 10.70 10.60 10.81
10 11.63 19.05 13.46 12.42 11.85 11.72 11.75
11 10.32 18.8 12.35 11.66 10.55 10.41 10.43
12 11.75 19.88 12.92 11.82 11.95 11.45 12.27
13 11.69 20.57 13.76 12.52 11.90 11.82 11.78
14 13.02 21.49 15.27 14.46 13.24 13.26 13.14
15 12.41 18.54 14.76 13.25 12.61 12.54 12.47
16 12.40 22.52 16.52 14.2 12.62 12.71 12.39
17 14.25 21.78 16.33 15.01 14.46 14.48 14.39
18 22.23 33.20 26.41 32.38 22.55 23.25 21.78
19 15.08 16.97 14.90 15.66 15.30 14.91 15.55
# of best 11 0 1 3 0 4 0
Average 13.78 20.81 15.67 15.60 14.00 13.87 13.98
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Table 7: The MAPE of outflow at each station on weekends.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 12.64 14.94 12.20 12.71 12.84 12.31 12.12
2 16.67 15.77 14.04 15.14 16.84 16.21 14.18
3 11.06 14.92 11.96 11.41 11.27 11.05 11.04
4 12.36 16.41 13.93 13.26 12.57 12.49 12.62
5 12.76 16.26 13.25 12.84 12.96 12.48 11.15
6 11.23 20.68 13.98 12.24 11.43 11.40 11.92
7 12.37 14.43 13.13 12.11 12.58 12.38 12.11
8 10.16 15.26 11.41 12.11 10.37 10.29 13.20
9 11.17 13.59 10.37 13.30 11.40 11.46 15.25
10 11.26 18.38 12.99 12.68 11.47 11.40 14.17
11 11.37 17.6 13.41 12.20 11.59 11.49 13.33
12 11.01 19.1 13.06 11.53 11.23 11.22 11.53
13 10.99 21.15 15.12 11.9 11.22 11.30 11.66
14 11.95 19.9 16.15 13.74 12.16 12.12 12.17
15 10.69 30.40 13.88 11.47 10.89 10.85 10.88
16 14.46 20.45 15.88 15.56 14.67 14.54 13.58
17 11.91 20.84 14.59 12.27 12.12 11.92 11.62
18 12.81 13.81 11.51 13.61 13.00 12.56 12.59
19 13.18 15.96 13.32 17.19 13.37 13.15 13.16
# of best 11 0 4 1 0 1 2
Average 12.10 17.94 13.38 13.02 12.31 12.14 12.54

Table 8: The VAPE of inflow at each station on weekends.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 1.31 2.02 1.44 1.62 1.31 1.35 1.74
2 1.28 2.7 1.89 1.44 1.29 1.28 1.16
3 0.72 2.29 0.99 1.1 0.72 0.74 0.90
4 0.84 3.99 1.19 1.35 0.84 0.87 1.17
5 0.90 3.07 1.47 1.62 0.91 0.89 0.90
6 0.75 2.86 2.69 1.02 0.76 0.79 1.17
7 0.94 3.57 1.22 0.93 0.95 0.93 1.47
8 4.51 6.34 5.64 7.22 4.50 4.67 7.78
9 1.85 2.03 2.17 2.87 1.84 1.81 3.26
10 0.83 2.3 1.13 0.97 0.83 0.85 1.7
11 0.69 2.67 3.01 1.03 0.69 0.71 1.84
12 0.76 2.56 1.03 0.89 0.76 0.75 0.91
13 0.84 2.84 1.13 0.99 0.85 0.86 1.13
14 1.41 4.82 2.63 1.91 1.42 1.48 1.78
15 0.92 2.09 1.20 1.04 0.92 0.94 1.10
16 0.91 2.29 1.52 1.13 0.92 0.97 0.94
17 1.07 3.53 1.58 1.47 1.70 1.08 1.12
18 3.58 8.66 6.89 7.39 3.60 3.77 5.01
19 1.64 2.08 4.44 1.77 1.64 1.60 1.97
# of best 12 0 0 1 1 4 1
Average 1.35 3.30 2.28 1.99 1.39 1.39 1.95
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Table 9: The VAPE of outflow at each station on weekends.

Station Combined ARMA NN SVR Averaging Adaboost kNN
1 0.99 1.6 1.06 1.22 0.99 0.94 1.09
2 1.00 1.37 1.06 1.13 1.00 0.98 0.9
3 0.86 1.65 0.92 0.87 0.85 0.92 1.06
4 0.99 1.92 1.26 1.24 0.99 1.03 1.18
5 0.75 1.54 1.45 0.97 0.75 0.74 0.68
6 0.69 3.05 1.16 0.90 0.71 0.70 0.88
7 0.81 1.74 0.98 0.89 0.81 0.82 0.99
8 0.87 1.91 1.18 1.45 0.88 0.88 1.36
9 1.00 1.64 0.86 1.74 1.04 1.09 1.95
10 0.79 2.3 1.12 1.11 0.80 0.82 1.35
11 0.84 2.43 1.29 1.17 0.84 0.88 1.38
12 0.72 2.94 3.14 1.16 0.73 0.80 1.03
13 0.77 3.2 1.5 0.92 0.79 0.94 1.12
14 0.83 2.72 1.68 1.49 0.83 0.85 0.99
15 0.73 6.28 2.12 0.72 0.74 0.8 0.84
16 0.94 2.58 1.52 1.4 0.94 0.96 0.89
17 0.89 3.17 1.26 1.06 0.89 0.88 0.87
18 1.34 1.84 1.36 1.58 1.33 1.33 1.57
19 2.13 2.73 2.20 3.86 2.11 2.07 2.22
# of best 11 0 1 1 1 5 0
Average 0.94 2.45 1.49 1.31 0.95 0.97 1.18

Table 10: The MAPE of peak hour on weekdays.

combine Avg1 Ada2 kNN
morning peak outflow 11.78 11.96 12.34 11.69
evening peak outflow 11.02 11.15 11.16 11.28
daytime outflow 11.51 11.73 11.66 12.43
morning peak inflow 10.79 10.98 11.32 10.92
evening peak inflow 14.35 14.38 14.60 14.38
daytime inflow 13.26 13.47 13.44 13.40
1Averagingmethod.
2Adaboostmethod.

the travel pattern of passengers. Then a practical approach
is proposed, in which probabilistic model combines two
basic models, to improve metro passenger flow forecasting
performance. The effective combination benefits from the
intermodel diversities, mitigates the risks of using an isolated
model, and compensates the drawbacks of the individual
models. More importantly, the combination rules could be
applied to most individual prediction models. Besides, our
model predicts the inflow and outflow at each metro station
in an unaggregated way by utilizing OD flows. That is, the
OD flows are predicted in a spatiotemporal fashion and then
aggregated to get the inflow and outflow at each station.
Our assumption is that OD flows enjoy more predictable
power for they essentially reflect travel behaviors. Overall, the
experiment results indicate that the accuracy and stability of
the proposedmodel outperform the baselinemodels, ARMA,
neural networks, and support vector regression. And the
whole framework proposed is generalizable to other complex

transportation systems with origin-destination and therefore
offers important insights to future research.

In the future research, we would like to improve the
usage of spatiotemporal information for the flow prediction
of more complex metro networks with a certain number of
transfer stations. Another interesting direction is to expand
the prediction problem to a multicriteria one. In the past
research, assessments of the relative performance of various
combinations have generally been made under an accuracy
criterion, expressed in terms of MSE, MAE, or MAPE. How-
ever, the robustness should attract more attention.Therefore,
the variance should also be considered as one of the criteria
when developing models. In the end, to build a method to
predict the short-term travel demand under disruptions is
also in our future plan.
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Figure 5:The comparison of prediction results with referenced models at selected stations during the operation time of one weekday. “AVG”
stands for averaging model and “PRO” stands for probabilistic combination. (a), (b), (c), and (d) are the results of Stations 4, 9, 12, and 16,
respectively.They are located in different zones.The left column shows the actual and predicted counts of inflow.The right column shows the
counts of outflow.
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Figure 6:The comparison of prediction results with referencedmodels at selected stations during the operation time of one weekend. “AVG”
stands for averaging model and “PRO” stands for probabilistic combination. (a), (b), (c), and (d) are the results of Stations 4, 9, 12, and 16,
respectively.They are located in different zones.The left column shows the actual and predicted counts of inflow.The right column shows the
counts of outflow.
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