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Abstract

Our current digital age is characterized by the shift from traditional industry to an
economy based on the information computerization. The sweeping changes brought
about by digital computing have provided new data sources for transportation model-
ing. In this thesis, two mainstream trends in utilizing digital traces in transportation
modeling are explored.

The first approach is to incorporate mobile phone records and digital map point
of interests into commuting flow prediction models such as the gravity model and the
radiation model. An extension to the radiation model is proposed to adjust to the
different degrees of homogeneity of opportunities when the scale of the study region
changes. The density of the point of interests is a suitable proxy for commuting flow
attraction rates at all the scales. Moreover, the parameter a in the extension to
the radiation model is predictable given the size of the study region. When tradi-
tional data sources are not available, mobile phone records is shown to be an ideal
alternative. Home and work locations can be inferred at individual level and then
aggregated to show its equivalence to the census data. This method is applied to
Rwanda, Dominican Republic and Portugal.

The second approach is using low-frequency bus GPS records to evaluate tran-
sit service. The analysis under such data scarcity requires careful data handling.
This thesis demonstrates that how the data pre-processing procedure, namely map-
matching and kernel density estimation, step by step turns the raw GPS data into
information for service evaluation. Bus service quality is analyzed by measuring s-
tatistics of headway and in-vehicle travel time. The headway analysis helps to identify
bottlenecks caused by the road network layout and passenger volumes while the com-

parison of peak vs. off-peak hour travel speed helps to identify bottlenecks caused by
traffic conditions.

To sum up, the thesis explores new digital data sources and methods in trans-
portation modeling. The purpose is to provide analysis procedures that are of lower
costs, higher accuracy and are readily applicable to different countries in the world.

Thesis Supervisor: Marta C. Gonzalez
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Chapter 1

Introduction

1.1 Introduction and Overview

The transportation industry encompasses movements of people, goods, and informa-

tion, which are fundamental components of human societies. Millions of employees in

this huge industry work to ensure the daily movement of the societies. In the US, more

than 10 million people are working in the transportation industry (US Department of

Transportation, BTS, G-7 Countries: Transportation Highlights.), contributing 11%

of the total GDP (U.S. Department of Transportation, Bureau of Transportation S-

tatistics, Pocket Guide to Transportation). The transportation industry is essential in

economic development because it provides mobility needs and insures access to mar-

kets and resources for economic activities. From the industrial revolution in the 19th

century to the globalization in the late 20th century, every important transformation

in the human societies is accompanied by a heap in the transportation industry.

It is because the transportation industry's unique position in the development of

societies that transportation modeling has always attracted the attention of planners,

engineers, and economists. Transportation modeling is used to develop information

to help make decisions on the future development and management of transportation

systems, especially in urban areas. They are used to estimate the number of trips that

will be made on a transportation alternative at some future date. These estimates

are the basis for transportation plans and are used in major investment analysis,
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environmental impact statements and in setting priorities for development (14).

As mentioned before, transportation encompass the mobility of human, goods, and

information, among which human mobility is the most directly sensible one. People

may not be aware that how commodities are transported from factories to their local

stores, but they all care about the quality of their own travel activities. That's why

human mobility patterns have been broadly studied. Having a clear map of the

travel demands and daily activities of the diverse urban groups can help us to design

better cities. This is becoming a pressing need as traffic congestion and pollution

are becoming worldwide issues. Even the total travel demand keeps increasing, we

can still adopt strategies to alleviate such problems. Such strategies may include:

re-balance the spatial temporal distribution of travels; spread out the peak of travel,

re-allocate the land use in a city to avoid long distance separation of residential and

industrial regions. Understanding daily travels and activities could also help us to

organize cities as sustainable systems: using less energy, less water and producing less

waste per-capita comparing to sprawling alternatives.

Data is the prerequisite of accurate modeling. If the input data is of low qual-

ity, the output will inevitably also of low quality however sophisticated a model is.

Therefore in human mobility modeling a large portion of time and money are spent

on data collection. The most classic modeling method is the four step model, which

dates back to the 1950s and is still widely used all around the world. The four steps

are: trip generation, trip distribution, mode choice, and route assignment. The four

step model has significant data demands in addition to that required to define the

activity and transportation systems. The primary need is for data that define travel

behavior, and these are gathered via a variety of survey efforts. Household travel

surveys with travel-activity diaries provide much of the data that are required to

calibrate the four step model. These data and observed traffic studies (counts and

speeds) provide much of the data needed for validation. Nowadays a 24 hour survey

of approximately 3,000 households costs the city about $1.5 million. Because they

are expensive and intrusive, surveys only describe typically a sample day, which is a

very limited time period.

16



The alternatives to overcome the limitations of surveys are using the digital de-

vices around us. Our current digital age is characterized by the shift from traditional

industry to an economy based on the information computerization. The sweeping

changes brought about by digital computing and communication technology during

the latter half of the 20th century have provided new data sources for transporta-

tion modeling. Automatic Data Collection Systems (ADCS) on public transit systems

provide abundant long-term, high accuracy data through vehicle GPS systems, smart-

card transaction records, and automatic passenger counting systems. These systems

can not only be used to monitor real time system operation, but also be used to

improve system efficiency and diagnose service bottlenecks.

While the aforementioned automatic data collection systems can provide data

only for public transit, there is another data source, mobile phone transaction data,

which can provide information for nearly all the travelers. Mobile phones records

can pinpoint a user's location, either to the nearest cell tower or within meters using

GPS or WIFI sensors, which has the potential to deepen our understanding of human

mobility patterns within a city. Questions about the micro-structure of a city such

as where individuals live and work, which previously could only be answered with

surveys, can now be explored using mobile phone data. Such a 24/7 information

source has broad impacts on both urban planning and epidemiology. Now we can track

how the population moves during different times of day and thus infer how land is used

dynamically, which is a mission impossible for static and often antiquated zoning and

regulatory data. Furthermore, knowing how people move within and between cities

will provide needed insights into social contact networks used by epidemiologists to

model disease spread in urban environments.

The geo-located digital information helps us to create an Internet that connects

real world objects: Internet of Things. Together with the techniques of cloud com-

puting, crowd sourcing, and wireless sensor networks, a city that has higher efficiency,

sustainability, and livability is no longer a distant view.
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1.2 Literature Review

Transportation modeling requires interdisciplinary cooperation. Different communi-

ties have different modeling approaches which have both similarities and differences.

These communities can be mainly classified into three categories: the transporta-

tion engineering community; the statistical physics community; and the computer

science community. These three communities have different characteristics. The

transportation engineering community relies more on surveys and is gradually using

more automatically collected data. The researches usually try to build a connection

between people's travelling patterns and their socio-economic characteristics. The

statistical physics community captures collective trips at large scales. The computer

science community focuses on using data mining and machine learning techniques to

extract patterns from large amount of data. Nowadays as the cooperation between

different disciplines is getting closer, the boundary between different communities is

diminishing.

1.2.1 Approaches from the Transportation Engineering Com-

munity

When it comes to transportation modeling, an inevitable model is the four step mod-

el. It has a long history and is still widely used all over the world. It is also where

this section will start at. As the digital traces around us are becoming more abun-

dant, automatically collected data is gradually taking the place of manual surveys.

The most widely used automatically collected data in transportation modeling and

planning is in the public transit system. The vehicle GPS data, smartcard swiping

records and automatic passenger counting data can be used to infer passenger flows,

track vehicle locations, adjust scheduling, and even reroute bus routes.

The Four Step Model

The four step model originated in the 1950s (86). It decomposes the whole travelling

procedure into the following four steps:
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1. Trip generation, which determines the frequency of origins or destinations of

trips in each zone by trip purpose, as a function of land uses and household

demographics, and other socio-economic factors.

2. Trip distribution, which matches origins with destinations.

3. Mode choice computes the proportion of trips between each origin and destina-

tion that uses a particular transportation mode.

4. Route assignment, which allocates trips between an origin and destination by

a particular mode to a route.

It fits well into the transportation analysis framework proposed by Manheim (82) and

other scholars (47). The first comprehensive application of the four step model is in

the Chicago Area Transportation Study (114). Several federal legislation requirement

in the 1960s and 1970s helped to institutionalize the four step model and bring en-

vironmental concerns into it. A flow chart of the four step model is shown in Figure

1-1.

For the first step, the core question is to answer: How many trips per family?

To answer this question, data need to be collected from surveys such as: Number

of trips as a function of number of people per household, of number of cars, type

of dwelling, residential area, distribution among trip purposes, distribution between

motorized and non-motorized, distribution between chained and un-chained trips,

number of captive public transport users, etc. The models used in this step are

usually regression analysis (46; 84; 73; 88) or cross-category analysis (96).

The second step calculates the elements in the Origin-Destination Matrix from

the marginal values derived from the first step. Various aggregate models of trip

distribution have been proposed (89; 128; 118; 101; 117; 116). Among all these efforts,

the gravity model, which assumes that the number of movements between an origin-

destination pair decays with their distance, is the most widely used one(128; 42; 33).

When an empirical OD is available the iterative proportional fitting (IPF) method

can be used directly (98).
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After the flow of each OD pair is assigned, the third step further splits the flow

into different transportation modes. This step is dominated by discrete choice mod-

els (4; 16; 83; 17). It's a method for modeling choices from discrete alternatives.

It's components include: decision-makers and their socio-economic characteristics;

alternatives and their attributes. The decision maker selects the alternative with the

highest utility among all the alternatives in the choice set. The utility of an alterna-

tive is often a function of the characteristics of the traveller and the features of the

travel mode.

The previous steps are all on zoning level. The last step assigns the flow of dif-

ferent modes between different OD pairs to road networks. Often (for high volume

assignment) Wardrop's principle of user equilibrium is applied (equivalent to a Nash

equilibrium), wherein each driver (or group) chooses the shortest (travel time) path,

subject to every other driver doing the same (1; 74). The difficulty is that travel times

and demand rely on each other so that it's hard to determine where the equilibri-

um point is. Other more computationally economic methods include all-or-nothing

method which do not consider congestion and assign all travellers to the shortest

path. This method is hardly used because it deviates from reality. Other more re-

alistic methods adjust the congestion level of the road network gradually and assign

the flows dynamically (37; 7; 87).

The four step model has limitations such as:

" Demands are for trip making rather than for activities.

* The purpose of making trips should not be just making trips but to perform

certain kind of activities.

" Person-trips as the unit of analysis which lacks household interactions.

* Sequential nature of the four-step process makes behavior modeled in earlier

steps unaffected by choices modeled in later steps.

* Limited types of policies that can be analyzed.
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Land use
Social economic factor Generate a representative population

Regression anlysis

Traffic generation

Traffic distribution

Mode split

Cross-category analysis

The gravity model

Intervening opportunity model

IPF expansion

1 - Discrete choice analysis

Route Assignment

Figure 1-1: Four step flowchart and the mainstream models used in each step

All the disadvantages of the trip based four step model lead to the activity based

models in which travel demand is derived from demand for activities; tours are inter-

dependent; people face time and space constraints that limit their activity schedule

choice; activity and travel scheduling decisions are made in the context of a broader

framework (19; 6; 106; 55).

Using Digital Traces in Public Transit

Geo-located digital traces are more prevalent in transportation engineering, especially

public transportation. The automatic data collection systems such as the smartcard

transaction record system are originally implemented just for collecting revenues. But

later transportation researchers find that the data has much more potential values.

The data can be used on estimating passenger flows, optimizing scheduling, planning

new routes, etc.

21
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Automatic Data Collection Systems for public transit (ADCs) are classified as

AVL/GPS (Automatic vehicle location) systems, AFC (Automatic Fare Collection)

systems and APC (Automatic Passenger Count) systems (22; 27). AVL systems

record vehicle location information; AFC systems are often designed for the purpose

of revenue management; APC systems count the numbers of boarding and alighting

passengers.

It is generally agreed that automated data collection systems present the oppor-

tunity to do statistically valid analyses on service reliability for the first time (50; 70).

Furth et al. (52) reviews past and potential applications of automatic data collection

systems in service planning, scheduling, performance evaluation and system manage-

ment. The study describes a number of analysis and decision support tools that have

been, or could be, developed using the output of these systems.

Examples of the application of these ADC systems include bus schedule improve-

ment (70; 51), travel time prediction (109), identifying causes of performance is-

sues in bus schedule adherence (81), service reliability measurements (52), real time

controls(40; 60).

The abundance of ADC data differ from system to system, this poses restrictions

on the type of analysis could be done on each system (27; 22). Furth et al. (52) define

four key dimensions in archived data: level of spatial and temporal detail, complete

vs. exception data, fleet penetration and sample size, and data quality control.

Data detail increases from level A to E. With merely AVL data, only level A and

B could be reached (though some AVL systems may pull at higher frequency).

AFC data is used mainly for OD Matrix deduction: A set of algorithms was

applied to Metro Card trips to infer the destination stop for each origin stop (11);

fare collection data was used to estimate Rail OD Matrix in London (30); GIS system

was integrated with AFC and AVL system to enable study in more detailed transfer

trips (123; 10); Multi-day AFC transaction record improved deduction accuracy of bus

OD matrix (108). The study results could be further applied to transit assignment

(104) and making transportation policies (43).

AVL data is used mainly on service quality evaluation. Abkowitz et al. (2; 3)
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Table 1.1: Hierarchical ADC data detail

Level Description Event- Event Records Between-Stop
Independent Performance
Records Data

A AVL with- infrequent (typi- -

out real-time cally 60 to 120 s)
tracking

B AVL with real- infrequent (typi- each timepoint -

time tracking cally 60 to 120 s)
C APC or event - each stop

recorder
D event recorder - each stop and recorded events

with between- between-stop and summaries
stop summaries events

E event recorder / very frequent all types all events, ful-
trip recorder (every second) l speed profile

proposed a series of passenger-centric reliability metrics that capture the distribution

of travel time, schedule adherence and headway distribution. The distributions are

characterized by the mean, coefficient of variation (mean divided by the standard

deviation), and the percentage of observations beyond a certain value. The new level

of data available from AVL systems permits a refinement of the metrics. Camus

et al. (25) systematically discussed the limitations of TCQSM's method for LOS

estimation and proposed a new service measure called weighted delay index. This

method is validated by AVL data. Chen et al. (32) proposed three bus service

reliability measures: punctuality index based on routes, deviation index based on

stops, and evenness index based on stops, which measures respectively evaluates bus

service at stop, route and network level. AVL data is an ideal source to perform such

analysis. Byon et al. (24) used low frequency GPS data to estimate bus headway

distribution and adherence to schedule.

1.2.2 Approaches from the Statistical Physics Community

Statistical physics techniques go a long way in improving models of mobility networks.

The circulation of bank notes is analyzed to show human travelling statistics (21). It

23



is shown that the distribution of travelling distances decays as a power law, indicating

that trajectories of bank notes are reminiscent of scale-free random walks known as

Levy flights. Second, the probability of remaining in a small, spatially confined region

for a time is dominated by algebraically long tails that attenuate the superdiffusive

spread. Human travelling behaviour is described mathematically on many spatiotem-

poral scales by a two-parameter continuous-time random walk model.

We still have to notice that the movement of banknote is very different from the

movement of people. On the other hand, mobile phone data is a much closer approx-

imation to human trajectories. Gonzilez et al. analyzed human mobility patterns by

studying the trajectory of 100,000 anonymized mobile phone users whose position is

tracked for a six-month period (56). They found that human trajectory is actually

different from Levy flight predicted by random walk. Human trajectories show a high

degree of temporal and spatial regularity, each individual being characterized by a

time independent characteristic travel distance and a significant probability to return

to a few highly frequented locations. It is shown that the distribution of displacements

over all users is well approximated by a truncated power-law:

P(Ar) = (Ar + Aro)-#exp(-Ar/s) (1.1)

# = 1.75 ± 0.15, Aro = 1.5km and the cutoff values , = 400km and K = 80km. The

radius of gyration rg also follows a truncated power-law:

P(rg) = (rg + r)-Irexp(-rg/r) (1.2)

ro = 5.8km, #r = 1.65 ± 0.15 and K = 350km. Moreover, after correcting for

differences in travel distances and the inherent anisotropy of each trajectory, the

individual travel patterns collapse into a single spatial probability distribution.

Song et al. (99) show that the mechanisms of exploration and preferential return

help to recover many important scaling laws in human mobility. Exploration mean

that with probability

Pnew = pS-? (1.3)
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the individual moves to a new location. S is the number of location he/she has

already visited. Preferential return means that with the complementary probability

Pret = 1 - pS-7 the individual returns to one of the S previously visited locations. In

this case, the probability to visit location is chosen to be proportional to the number

of visits the user previously had to that location. These mechanisms help to grasp

three important properties in human mobility:

" The number of distinct locations S(t) visited by a randomly moving object is

expected to follow S(t)-tP, p = 0.6 i 0.02.

" The visiting frequency f of the kth most visited location follows Zipf's law

fk-Ck where ( ~ 1.2 ± 0.1.

" The convergence of the mean square displacement (MSD) predicted by the

continuous time random walk is too slow when compared with empirical data.

Other applications include modeling social networks (57; 26; 39); finding the

predictability of human mobility (100; 112); modeling the spreading of epidemics

(115; 91; 92). For more detailed review of applications of statistical physics, please

refer to (28; 12).

1.2.3 Approaches from the Computer Science Community

Machine learning, a branch of artificial intelligence, is about the construction and

study of systems that can learn from data. An important application is about recog-

nizing patterns from data, which makes it a perfect tool to analyze human mobility

traces, to detect daily routines and anomaly behaviors. The mainstream models

in machine learning can be classified as clustering, classification, graphical models,

and reinforcement learning. It is intuitive to use graphical model and reinforcement

learning algorithms to analyze human trajectories since a human trajectory is a time

series and these algorithms can deal with the causal relationships of actions between

consecutive time steps.
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A graphical model is a probabilistic model for which a graph denotes the con-

ditional dependence structure between random variables. Markov chain and hidden

Markov chain are the simplest form of graphical models. But they are already quite

powerful in modeling human daily routines (34; 68). The input data is usually GPS

human traces, the output is the conditional probability distribution of a daily routine.

More complex graphical models are usually called Markov random field for undirected

graphs and Bayesian network for directed graphs. The more flexible graph structure

means more modeling power, under the premise that the required input data quality

can be reached. Hierarchical Markov model and Bayesian networks enable features

such as mode choice and activity pattern choice (38; 77; 69; 76).

Another approach is using reinforcement learning, in which an agent take action-

s in an environment so as to maximize some pre-defined cumulative reward. Re-

inforcement learning integrates the concepts of reward (utility) maximization and

context-dependent choice heuristics. The application of reinforcement learning is in

many fields including robotics (80), game theory (105) and dispatching system (13).

Applying reinforcement learning to human mobility has several advantages. First,

the imitation of human learning through trial-and-error interactions with a dynamic

environment helps to explain behavioral mechanisms (67). Secondly, it doesn't need

an expert-system to inform it what selection is right and what is wrong. Thirdly, it

could react to unforeseen events and take both long term learning and short term dy-

namics into account. Among the first attempts, Charypar and Nagel built the basic

model of activity time plans using q-learning and got quite realistic results (31). This

model was then modified to allocate both time and location choice of activity-travel

pattern (66). Because q-learning generally takes a long time to converge and "the

curse of dimensionality" limits the feasible dimensionality of the problem, q-learning

was combined with regression tree to form the new algorithm called q-tree (110).

With the close collaboration between the urban planning and computer science,

urban computing is emerging as a concept where every sensor, device, person, vehicle,

building, and street in the urban areas can be used as a component to probe city

dynamics to further enable city-wide computing for serving people and their cities
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(125). The approach usually combines GPS trajectories with data sources from urban

planning such as the land use within a city and census data. The aim is usually trying

to infer potential interesting locations for different groups of people for location based

services (127; 124) or to explore the influence of social networks on peoples activity-

travel patterns (126; 121).

1.3 Thesis Outline

The rest of the thesis will show the applications of different digital traces in different

aspects of transportation modeling.

Chapter 2 shows the application of mobile phone data and digital map point of

interests in commuting flow estimation. The models used include the gravity model

and the radiation model. This chapter shows that at large scales the radiation model's

performance is comparable to models relying on adjustable parameters. But when

zooming in from the inter-city scale to the inner-city scale, some extensions must be

applied to the model. The radiation model is extended by adding one parameter a

which reflects the influence of the size of the study region and the heterogeneity of the

distribution of opportunities. The extended radiation model gives close commuting

flow predictions to the census data at all the scales. For regions without detailed cen-

sus data but with available cell phone records, a cell phone user OD matrix expansion

method is proposed to gain insights into these regions' commuting flow characteris-

tics. This method is validated in the Bay Area and then applied to three different

countries: Rwanda, Dominican Republic, and Portugal, through which some special

commuting flow characteristics are observed. These characteristics are also captured

by the radiation model with the a parameter extension.

Chapter 3 shows the application of low frequency bus GPS data. The potential

of "low-frequency" bus localization data for the monitoring and control of bus sys-

tem performance is investigated. Data with a sampling rate as low as one minute,

when processed appropriately, can provide ample information. In particular, accu-

rate estimates of stop arrival and departure times which in turn allow the analysis
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of headways and travel times can be obtained. A three parameter gamma family of

distributions is fitted for headways at the stops along a bus line. The evolution of

the parameters demonstrates critical points on the line where bus bunching is signif-

icantly increased. Moreover, this analysis allows to differentiate problems associated

with varying passenger demand from uncertainties associated with traffic conditions.

Furthermore, both expected travel time and travel time variability can be calculated

from low-frequency localization data. The above results can be used to calibrate a

simulation model which can test bus control strategies. The methods are applied to

data obtained from bus route number 1 in Boston.

The final chapter concludes the paper.
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Chapter 2

A Multi-Scale Multi-City Study of

Commuting Patterns Incorporating

Digital Traces

2.1 Introduction

In order to describe the commuting flow patterns of people, various aggregate models

of trip distribution have been proposed (89; 128; 118; 101; 117; 116). Among all these

efforts, the gravity model, which assumes that the number of movements between

an origin-destination pair decays with their distance, is the most widely used one

(128; 42; 33). On the other hand, the intervening opportunity model argues that

the trip volume is more related to the number of opportunities between the origin

and the destination rather than to just their distance (101; 102). Inspired by the

intervening opportunity model, the recently proposed radiation model (97) has an

analytical formulation that can estimate trip volumes using only population density.

This is indeed a remarkable achievement of the radiation model, since previous models

require existing Origin-Destination (OD) data for parameter calibration, and such

data is not generally available worldwide.

In this chapter, first the performance of the doubly constrained gravity model
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with the radiation model (97) at different scales from San Francisco to the entire

west coast of the US is compared. Either model is applicable to certain scales. Then

based on these two models, an extension to the radiation model with one parameter

a is proposed. This extension provides enough flexibility to reach good performance

at all scales. Moreovera functional relationship, a = 0.34 * logio(l) + 0.22, between

the parameter a and the linear scale (square root of the area) of the study region 1 is

established.

This functional relationship was found by randomly selecting 1000 different regions

in the US with different region centers and region sizes (ranging from a few kilometers

to 1000 kilometers). Then the census commuting OD statistics is used to calibrate

the best a value for each region. The results show a clear functional relationship

between the parameter a and the size of a region, which is rooted in the difference in

the heterogeneity of the distribution of opportunities. This makes the a parameter

predictable so that the model is applicable to regions without empirical OD matrices

for parameter calibration.

The gravity model, the intervening opportunities model and the radiation model

commonly use population density as a proxy for both the trip generation and trip

attraction rates. While this approximation is reasonable at large scales, at the inner

city scale it does not hold. When a city is divided into block groups, population

density can only represent the trip generation but not the attraction rate. However,

the availability of various kinds of urban digital traces provide us with more choices

of data sources. Digital geo-located information such as the point of interests (POIs)

is a good representation of trip attraction rates. In the US and some other countries,

the validity of the newly proposed model can be tested by comparing its prediction to

empirical census data on commuting. However, since a detailed census on commuting

flows is costly and time consuming, many countries lack this information. As an

alternative opportunity, cell phone providers serve nowadays almost all populated

regions in the world. Cell phone records in some cities are sufficient to provide a

seed commuting OD matrix, which can be expanded to recover the full commuting

OD matrix for the whole population under study. Thus cell phone records, together
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with population and POI densities are suitable and very economical alternatives for

generating commuting flow patterns of regions that lack traditional survey data.

2.2 Data Description

2.2.1 Census Data

The LEHD Origin-Destination Employment Statistics (LODES) datasets (23) used

by OnTheMap version 6 were reported using 2010 census blocks. Data files are

state-based and organized into three types: Origin-Destination (OD), Residence Area

Characteristics (RAC), and Workplace Area Characteristics (WAC), all at census

block geographic detail. Data is available for most states for the years 2002-2010.

The sources of data include:

* Unemployment Insurance (UI) Wage Records reported by employers and main-

tained by each state.

" The Office of Personnel Management (OPM) provides information on employees

and jobs for most Federal employees.

" The Quarterly Census for Employment and Wages (QCEW) provides infor-

maiton on firm structure and establishment location.

What is used in this study is the Origin-Destination (OD) data. The structure of

the OD files is in Table 2.1.

2.2.2 Bay Area Cell Phone Data

The Bay Area cell phone data are collected by a US cell phone operator and con-

tain about half a million customers. Each time a person uses a phone (call/text

message/web browsing) the time and the cell phone tower providing the service is

recorded. This altogether generates 374 million location records in the three week

observational period. A Voronoi tessellation is used to estimate the service area of a
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Table 2.1: Data format description for the OD files

Pos Variable Type Length Description
1 wgeocode Char 15 Workplace Census Block Code
2 hgeocode Char 15 Residence Census Block Code
3 5000 Num 8 Total number of jobs
4 SA01 Num 8 Jobs of workers age 29 or younger
5 SA02 Num 8 Jobs for workers age 30 to 54
6 SA03 Num 8 Jobs for workers age 55 or older
7 SE01 Num 8 Jobs earnings $1250/month or less
8 SE02 Num 8 Jobs earnings $1251/month to $3333/month
9 SE03 Num 8 Jobs earnings greater than $3333/month

10 SIM1 Num 8 Jobs in SIO1 sectors
11 S102 Num 8 Jobs in S102 sectors
12 S103 Num 8 Jobs in S103 sectors
13 createdate Char 8 Date on which data was created

cell phone tower. It provides the rough region where a cell phone user can be located

by his/her phone usage. Among these half a million users, The 189,621 most frequent

users are selected to study the commuting flows of the Bay Area (113). For each user,

the most frequently connected tower during day time (6 am to 6pm) is assigned as

the tower of the working location while the most frequently connected tower during

night (6 pm to 6 am) is assigned as the home tower location.

2.2.3 Rwanda, Lisbon and Santo Domingo Cell Phone Data

The Rwanda cell phone data are collected by a phone company and contain more

than 1 million users. Each time a person calls the time and the cell phone tower

providing the service is recorded. There are around 215 million records over a period

of 40 days. The entire Rwanda is covered by 196 towers while the capital city Kigali

is covered by 47. The 410,309 most frequent users are selected for this study. The

cell phone data from Portugal and Dominican Republic are similar. Lisbon has 62790

frequent users while Santo Domingo has 52125 frequent users.
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2.3 The Radiation and the Gravity Model

Different forms of the gravity model are used when applied to different areas of study.

In epidemics study (9; 41; 111; 95) it usually takes the form:

n n '
Ti =(2.1)C(rij)

where Ti is the flow between zone i and j. ni and nj are the population of the two

zones. rij is the distance between them and C is a distance decay function. a and #
are parameters to be fitted from data. -y is an adjustment parameter controlling the

sum of the flows. This is usually called the unconstrained gravity model because it

does not guarantee the obtention of the desired marginals (the total production and

attraction at each zone).

In transportation planning, gravity model usually takes the form(5; 42; 119):

T- -= ai#jOiDj (2.2)
C(rij)

where Oi and Dj are the total trip production and attraction volumes of zones i and

j respectively. For a study region with N zones, there are 2N parameters ai and #.
These parameters are calculated by iteratively applying the condition:

ai = 1/ Z #Dj C(rij) (2.3)

= 1/ aiOiC(rij) (2.4)

This is called the doubly constrained gravity model because it ensures consistent

values of the trip production E Tij = O, and trip attraction Ei Tij = Dj per zone.

In order to calibrate the ai and #% parameters, the model requires accurate input of

the total trip production and attraction volumes Oi and Dj. Since the number of

parameters grows with the number of zones, when the number of zones is large it is

computationally hard to get the calculation to converge.

33



An alternative for trip distribution is the recently proposed radiation model, which

is inspired by the intervening opportunity model but has a closed analytical form of

the Tij distribution. It takes the form:

Ti = Oi n(2.5)
(ni + sij) (ni + nj + sij)

where sig is the population within the circle of radius rij centered at zone i (not

including the population in zones i and j) and the rest of the notations are the same

as in the gravity model.

First the suitability of the doubly constrained gravity model and the radiation

model on predicting commuting flows is explored at three different scales: the west

coast of the US, the Bay Area, and San Francisco. The three regions are shown

in Fig. 2-1(a). The west coast of the US is divided into 183 counties while the

two smaller regions are divided into 100 zones. Each zone is a cluster of blocks

determined by applying the k-means clustering method on the 7,348 census blocks in

San Francisco and 117,219 blocks in the Bay Area. The unconstrained gravity model

is not compared because it is often prevailed by the doubly constrained gravity model.

Detailed comparisons between these two models are in the appendix.

A basic assumption in both models need to be tested: the population density could

represent well both the commuting trip generation and attraction rates at different

scales. The 2010 census LEHD Origin-Destination Employment Statistics (LODES)

(23), which provides home and employment locations for the entire US population

at block level, is used as a benchmark. Fig. 2-1(b-d) shows the densities (volumes

per unit area) of commuting flow generation, attraction and population at the west

coast of the US. All the three of them have similar distributions, so at this scale the

assumption holds. Fig. 2-2(a, b) shows the commuting trip generation and attraction

rates in San Francisco. Their distributions are different. The correlations between

them at the three scales are shown in Table 2.2. This evidence shows that the smaller

the scale, the lower is the correlation between the commuting trip attraction rate

and the population density. Thus another proxy for the commuting trip attraction
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Figure 2-1: Different features of trip production and attraction at country level. (a)
Three scales of study: West coast of the US, the Bay Area, and San Francisco. (b-d)
Commuting trip generation rate, trip attraction rate and the population density in
(#/km2) in the west coast of US. Their distributions are similar.

rate is needed. Digital traces of facilities are available online, which provide novel

sources of information for modelling human mobility (103; 58). The density of point

of interests (POIs), which is defined as point locations that someone may find useful

or interesting on digital maps or GPS software, is a suitable proxy for the attraction

rate of commuting trips at different study region scales. For example, Google Places

provides the name, the longitude, the latitude and functions of each POI. The three

study regions contain 1,774,154; 319,170 and 85,230 POIs respectively. According to

Table 2.2, all the scales the POI density has high correlation with the commuting trip

attraction rate. Therefore in the following calculation the density of POIs is used to

represent the commuting trip attraction rate. To be more specific, the POI density

is used to calculate Dj in the gravity model and ni, nj, sij in the radiation model.
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Table 2.2: Correlation between commuting trip generation, attraction, population
and POI

West Coast Bay Area San Francisco
Population POI Population POI Population POI

Generation 0.99267 0.92607 0.97065 0.49074 0.95638 0.29172
Attraction 0.98907 0.92958 0.41712 0.85853 0.15693 0.88003

Figure 2-2: Different features of trip production and attraction at city level. (a-
d) Commuting trip generation rate, trip attraction rate, the population density and
the POI density in (#/km2 ) in San Francisco. In San Francisco the commuting
trip generation and attraction rate distributions are different. While the population
density has high correlation with the commuting trip generation rate, the POI density
has high correlation with the commuting trip attraction rate. See details in Table
2.2.

The doubly constrained gravity model with power distance decaying function

C(r) = rk is compared with the radiation model. Fig. 2-3 shows the comparison

of the census data, the gravity model, the radiation model, and the extended radia-

tion model. The 3 rows represent San Francisco, the Bay Area, and the west coast of

the US respectively. The first column shows the commuting distance (P(r)) distribu-

tion, the second column is the commuting destination zone rank (P(k)) distribution.
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For each traveler, the closest zone to the origin zone is of rank 1, the second closest is

rank 2, etc. The third column is the P(sii + ni) distribution. sij and ni are defined in

the formulation of the radiation model. The sum of them represents the total number

of opportunities within the circle defined by the origin and the destination zone. The

radiation model gives satisfying prediction only at the west coast scale. At the two

smaller scales the radiation model predicts too few relatively long distance trips. The

doubly constrained gravity model gives closer predictions to the census data but has

much more parameters. The extended radiation model, with one parameter a, gives

close predictions to all the scales at all the measurements.

At San Francisco and the Bay Area scale, the radiation model constantly under-

estimates relatively long distance trips. In other words, it chooses mostly the top

ranked locations. This result is in agreement with the approximations of the pre-

dictions reported by (97) which states that the radiation model is equivalent to a

gravity model with C(r) = r4 under homogeneously distributed opportunities. This

indicates a high cost for long distance trips, while empirically the gravity model cost

functions have values in the range r0 .5 and r2). The radiation model has been proved

to be successful at country scale since the population distribution is generally flat

but with a few high peaks corresponding to highly urbanized areas, which indicates

higher heterogeneity in the distribution. In contrast, at inner city scale, both the

population and the POIs are distributed more homogeneously which causes short tail

of the commuting distance distribution for the radiation model.

The parameter free feature of the radiation model becomes a double-edged sword

in such multi-scale studies. As long as the density of distributions of opportunities

and population are the same, the radiation model would give the same prediction

regardless of the size of the study region.

The doubly constrained gravity model gives very close predictions to the census

data at the two smaller scales since the large number of parameters makes the model

flexible. At the US west coast scale, even adjusting the ai, 3 and the parameter k

in the power distance decay function cannot fit the model well in both short distance

trips and long distance trips. At this scale, the doubly constrained gravity model
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Figure 2-3: Comparison of the census data, the gravity model, the radiation model,
and the extended radiation model.

gives similar prediction results to the radiation model.

2.4 Extension to the Radiation Model

It is desirable to introduce the scale dependency on the homogeneity of opportunities

in order to keep the advantages of the radiation model. Although compared with the

radiation model, the doubly constrained gravity model gives a better or equivalent

prediction at the three scales, it still has the following disadvantages:

1. The large number of parameters indicates high flexibility of the model. While

this gives very good fits to a particular dataset, it generalizes poorly, meaning

that the parameter values cannot be applied to different regions of study.

2. It needs an empirical OD matrix as a seed for parameter calibration.
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3. Compared with the radiation model, it needs a much longer time for the iterative

fitting to converge.

4. It cannot account for the effect of the number of intervening opportunities be-

tween the origin and the destination. Gravity models make the same prediction

for 10 km trips in rural Iowa than in New York City, while empirical data shows

people in rural Iowa are more likely to move further in other to satisfy their

needs.

The proposed extension of the radiation model is inspired by the way the intervening

opportunity model handles the homogeneity of opportunities (102). The model defines

the probability that one opportunity cannot satisfy the traveler's need as eA. For

a given region with S opportunities, the probability that none of them can satisfy

the traveler's need is e-As". The modification factor of a is introduced to represent

the equivalent number of independent opportunities. The parameter a is introduced

similarly to the intervening opportunity model so that the new model takes the form:

ninq
Ti. = Oi 3(2.6)(ni + sg)(ni + n + s)(.

a represents the correlation of the attractiveness of different opportunities in one

zone. In one limiting case, when a -+ 0, s' - 1, which means that the correlation

of different opportunities in a zone is 1, so that the effective number of opportunities

in a zone is always 1. In this case the number of opportunities in a zone doesn't

influence the traveler's decision while only the zone's relative distance to the origin

matters. This parameter is sufficient to successfully introduce the desired features

because:

1. Homogeneity of Opportunities: since sij is usually one order of magnitude larg-

er than ni and nj, it dominates the denominator, particularly in regions where

opportunities are homogeneous. In the original radiation model, regions with

more homogeneously distributed opportunities give too much cost to long dis-

tance trips, so we'd expect a to be smaller than 1 to correct this feature.

39



2. Multi-scale Expression: the larger the region size, the larger the a should be in

order to introduce higher costs and to limit mobility.

3. Scale and Homogeneity of Opportunities: These two quantities are usually high-

ly correlated. Large regions have only a few peaks of opportunities which repre-

sents urban centers while smaller regions have more homogeneous opportunities.

Fig. 2-1 and 2-2 clearly shows this effect.

The detailed derivation is as: In the original radiation model (97) which mimics

the mobility pattern by a particle emission and absorption process, the closed form

probability to travel from an origin zone with m opportunities to a destination zone

with n opportunities with S opportunities in between is:

P(1m, n, s) = j Pm(Z)P,(< Z)Ps(> Z)dz (2.7)

z can be an arbitrary random variable. The calculation of P(lm, n, s) is composed of

three parts. Pm(Z) is the probability to emit a particle with absorption threshold Z.

P,(< Z) is the probability that none of the S opportunities in between absorbs the

particle. P(> Z) is the probability that the particle is finally absorbed by a zone

with n opportunities. These three elements can be expressed as:

Pm(Z) dPp(< z) )dp(< z) (2.8)
dz dz

P, (< z) = p(< z)' (2.9)

Pn(> z) = 1 - p(< z)" (2.10)

The two flaws of the radiation model have been identified: the performance is not

good under homogeneously distributed opportunities and cannot deal with different

sizes of the study region. These are issues in the particle transmission and absorption

processes. So the Pm(z) is unchanged and a modification factor a is introduced to the
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transmission and absorption processes. So and n' are used to represent the effective

number of opportunities. So that:

Ps(< z) = p(< Z)" (2.11)

Pn(> z) = 1 - p(< Z)" (2.12)

Now the probability of travelling between two zones becomes:

P(1m, n, s) = j Pm(z)Ps(< z)Ps(> z)dz =

= f0mp(< )m-ldp(< z)p(< z)""(1 - p(< z)")dz
Jo dz

= mu dzdp(<z)[p(< z)m+s-1 p(< Z)m+nc+s-]
Jo dz

1 1 mn"
m 1 - 1 (2.13)

m+s m+n+s" (m+s"e)(m+na+s"))

Now it s till has a closed form solution but is flexible enough to adapt to different

opportunity homogeneities and region sizes.

Fig. 2-3 shows that with one parameter the extended radiation model is flexible

to work at all the three scales. The a values are 0.62, 0.88 and 1.15 respectively.

Secondly, how the parameter a systematically changes as the size of the study

region changes is studied, measured as the square root of the region area. 1,000 study

regions are selected randomly. They all have population 200,000 or more in order

to avoid unpopulated regions such as national parks. The linear scale of the regions

range from a few kilometers to about 1,000 kilometers. The census commuting OD

data is used to obtain the best a value in the extended radiation model for each

case. Fig. 2-4 shows how a increases as the region size increases. The linear relation

on the log-log plot indicates that a increases as a power function of the region size:

a = 0.34 * logio(l) + 0.22. This means that the parameter a, as expected, reasonably

depend on the scale of the study region and the model is applicable to regions without

empirical OD matrices for parameter calibration.
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Figure 2-4: Functional relationship between the parameter a and the region size.

1000 regions with random centers and sizes are seleted. The sizes range from a

few kilometers to 1000 kilometers and the population in each region is limited to
be greater than 200,000. In each case the corresponding a value is calibrated by

the census commuting OD statistics. The relationship between a and the size of

the region is in the red line and the error bar is in blue. Three special cases in

the US: San Francisco, the Bay Area, and the west coast of the US are marked

in magenta. The a values for the cell phone users in Lisbon, Santo Domingo, and
Kigali are in green. All of them, except Kigali, conform to the functional relationship
a = 0.34 * logio(l) + 0.22. 1 is the linear size of the region. In Kigali the actual a value
is smaller than the predicted value because a much smaller cell phone tower density
and higher percentage of unpopulated area.

2.5 Multi-city Study and the Role of Mobile Phone

Data

Not many countries in the world have detailed census data for commuting flow predic-

tion and model calibration. Those countries with data scarcity are often developing

countries that need this kind of modeling the most. For these countries finding an al-

ternative data source to provide guidance for their urban growth, economic planning

and epidemics controlling is a pressing need. Cell phone records are increasingly show-

ing the potential to become such a data source of valuable information (78; 115; 8)

since most populated areas have cell phone service coverage and the value of cel-
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1 phone data in modeling human mobility has recently been highlighted in various

studies (56; 100; 99; 9). For instance, in Rwanda there is no detailed commuting

census data available yet. Even if there were, the high migration rate of people would

make the census outdated quickly. Luckily, the country has 215,030,420 cell phone

records from one cell phone service provider in just three months. Cell phone records

can be used to provide a seed cell phone user commuting OD matrix, which can be

expanded to recover the full commuting OD matrix for the whole population under

study.

Each cell phone record has a time stamp and a corresponding cell phone tower.

For each user, the most frequently used tower between 6PM and 6AM is assigned as

the home location and the most frequently used tower during day is assigned as the

work location. Again using the 2010 census home and employment location data as a

benchmark, the Bay Area is used as an example to validate that the cell phone data

could provide accurate predictions to commuting flow patterns. The sample includes

the 189,621 most active cell phone users in order to eliminate the bias of having too

few records. The 892 cell phone towers in the Bay Area are mapped to the previously

defined 100 block clusters to form the commuting OD matrix for the cell phone users.

In order to compare this with the census commuting OD matrix of the entire popula-

tion Iterative proportional fitting (IPF) method is used to expand the cell phone user

OD matrix (44). The basic procedure is first getting the distribution of population

and POIs to represent the marginal distributions of commuting trip generation and

attraction rates for each block cluster. Then iteratively adjust the elements of the

seed matrix to let them match the desired marginals. Fig. 2-5(a-c) shows the compar-

ison results of the distribution of commuting distance, the distribution of the number

of commuters between O-D pairs, and the comparison of the census commuting flow

Ti and the expanded cell phone user commuting flow T!. The close fitting in all

the three figures shows that the commuting patterns of the whole population can be

recovered from the seed matrix provided by cell phone records. For countries that

do not have population density census statistics for the IPF expansion, the Landscan

(18) population density estimation is available worldwide at 1km 2 resolution. This
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Figure 2-5: Cell phone users' commuting patterns in different cities.

method is extended to three different countries: Portugal, Dominican Republic and

Rwanda. The capitals in the three countries, Lisbon, Santo Domingo and Kigali,

are selected as examples. Their records contain 40,999; 49,502; and 31,532 frequent

users respectively. Since for these three regions there are no empirical commuting

OD matrices for benchmarking, in the next step instead of doing the IPF expansion

to get the commuting OD for the whole population under study, the gravity model,

the radiation model and the extended radiation model are applied to the cell phone

users and test how much can they recover cell phone users' commuting patterns. The
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inferred home and work locations for each user are aggregated to get the commuting

trip generation Oi and attraction Di for each tower location. The three models' results

are shown in Fig. 2-5(d-i). The lineal scales of these three regions are respectively

9 km, 13 km and 16 km. The best a values for the extended radiation model are

respectively 0.55, 0.65 and 0.45. Their scale vs. a relationships are marked in green

on Fig. 2-4. Two of them agree well with the fitting curve observed from the US

regions. The functional relationship between a and the size of the study region seems

to be generalizable across different cities. Kigali is an exception. Several reasons can

account for this. First, a large proportion of Rwanda's territory is unpopulated land,

so the effective size of the study region should be much smaller than the city's area.

Secondly, this area has considerably less number of towers and POIs per area.

Some particular commuting characteristics can be observed in different cities.

Santo Domingo and Lisbon have similar city sizes and frequent user numbers, but their

P(r) and P(n) distributions are quite different. In Santo Domingo the commuting

distance distribution has a fatter tail, which indicates that people generally have to

travel longer to work. The ranking plot also shows this fact since the slope in Santo

Domingo is smaller than the one in Lisbon. In the case of Kigali the P(n) plot shows

a different pattern from the other two cities. There are more OD pairs with relatively

large flows while much less OD pairs with small flows. The rank plot trend is more flat

presenting two peaks. This is probably because in Rwanda the commuting flows are

more agglomerated; the residential and working opportunities are highly concentrated

at a few places, unlike the cases in Lisbon and Santo Domingo where the opportunities

are more scattered across the region. In consequence, the commuting destination is

less influenced by the distance but more influenced by where the hubs are. In this

sense the commuting flows in Rwanda have higher predictability once the hubs are

identified.

As is proposed in some previous studies (12; 62; 63; 65), there may exist some

simple scalings for a given region of total area A and population P. The length scale

of a region is represented by v'A1 . The expected scaling of the total distance travelled
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by all the population ld should be of the form:

PO (2.14)

In one limiting cases, if every individual is going to the nearest neighbor (with a

typical distance 1//- while p = P/A is the average density of the city), 3 = 1/2. In

another case, if everyone goes randomly, # = 1. The empirical cases show that the #

value is usually around 0.6.

The same measurement for the 1000 different regions in the US and the cell phone

users in Rwanda, Santo Domingo, and Lisbon is calculated. The results are shown

in Fig. 2-6. The corresponding # value is 0.75. Since only the commuting distance

is counted here, the larger 3 value shows that people would travel longer for working

than doing other activities.

2.6 Discussion

In summary, in this chapter an extension of the radiation model is proposed that could

predict the network of commuting flows at different spatial scales and in different

cities worldwide. In addition, the spatial density of the distribution of facilities as

downloaded from Internet's digital maps, also known as POIs, together with the

density of population are the two basic ingredients for modelling commuting networks.

The proposed extension uses one parameter to adjust to the different degrees of the

homogeneity of opportunities when the scale of the study region changes. In contrast,

while due to the large number of fitting parameters, the doubly constrained gravity

model also fits the number of trips in most of the studied datasets, the obtained pa-

rameters cannot be generalized and depend on empirical flows of the particular region

under study for their calibration. The parameter a in the extended radiation model,

takes into account the effects of both the scale and the heterogeneity of opportunities,

which are highly correlated. Thus, a to a large extent can be estimated by knowing

only the size of the region under consideration.
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Figure 2-6: A scaling measurement of ld/v/4 vs. /. ld is the total distance travelled
by all the population in a region. A is the total area. P is the population. They
should follow the scaling relationship: 'a P'. The blue dots are 1000 randomly
selected regions from the US with different sizes and population. Three special cases:
the west coast of US, the Bay Area, and San Francisco are marked in green. The
measured values for cell phone users in Rwanda, Santo Domingo and Lisbon are also
marked. The # value is 0.75, larger than the empirical result of 0.6 which measures
travels for all activities, which indicates that people are willing to travel further for
commuting than for other activities.

In order to explore the validity of the new model in diverse cities that lack of

census data, first the Bay Area is used as an example to show that cell phone records

are a very good alternative data source to extract commuting patterns. Home and

work locations are inferred at individual level from the cell phone records and then

aggregated to show its equivalence to the commuting information obtained by census

data. Then commuting flows are extracted from cell phone users in three different

countries where census commuting data is not available. These results show not only

the applicability of the proposed model to successfully model the commuting patterns

for the cell phone users in cities from these three countries, but also show some unique

commuting characteristics in each city.
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Taken together, the proposed extension to the radiation model is readily available

to be incorporated into mobility modeling at different scales and different regions

worldwide under different data availability. The sample of US county level commuting

flow prediction is shared on a webpage to help in this direction (64).
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Chapter 3

Using Low-frequency AVL Data for

the Monitoring and Control of Bus

Performance

3.1 Introduction

Modern advanced traveler information systems (ATIS) are capable of providing infor-

mation on expected travel times for all modes and any given origin-destination pairs in

real time by incorporating many different data sources including past measurements

of vehicle trajectories, passenger demands and current traffic conditions. However,

collecting these data is still costly and many data sources are not universally avail-

able. In particular automatic fare collection (AFC) or boarding and alighting counts

(both of which play a significant role in some ATIS) are currently not available in

many systems, whereas automatic vehicle location (AVL) information is widespread.

However, many AVL systems provide location-at-time data with a low sampling

frequency (on the order of a minute). In this situation travel time prediction and

bus arrival time prediction can only be based on such AVL data sets. For example,

Nextbus is a major provider of AVL data services to transit agencies across North

America and offers those agencies web services so that agencies can release their data
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to the public. The agencies control the amount, quality, and frequency of the updates,

and many agencies chose to provide low-frequency data due to budget constraints.

Transit agencies need to collect data for performance evaluation. Traditional

manual data collection is both time consuming and expensive. The implementation

of automatic data collection systems (ADC) has provided new alternatives for data

collection and system evaluation. Many transit companies have implemented both au-

tomatic vehicle location systems (AVL) and automatic fare collection systems (AFC)

on transit vehicles. These AVL data are also used by transit agencies to evaluate their

transit system performance. It provides the opportunity to gather large amount and

long term transit operation information at relatively low costs. This kind of data has

the potential to enable operators to evaluate transit system performance, diagnose

service bottlenecks, and improve the system level of service (53; 71).

While low-frequency AVL data are widely available, The main limitation of AVL

data are measurement errors due to the GPS devices and recording or transmission

errors. To be more specific, the limitations of AVL data include: GPS devices have

drifts of 1 meter to 40 meters; Errors may occur when recording and transmitting

data; GPS pulling interval might be as long as 60s. These limitations pose higher

requirements on public transportation researchers. How to transform raw AVL data

into useful information for transit riders and operators is not trivial.

The low sampling frequency implies that stop dwell times and on-route travel

times are not trivial to separate. Linear interpolation methods that are often used

(see e.g. (24) and (35)) distort travel speed and headway measurements significantly.

Therefore better alternatives are desirable.

In this chapter a new methodology for re-sampling of low frequency location-

at-time AVL records is adopted. The methodology is based on the distribution of

GPS measurements providing information on typical dwell times. It is shown using

both experimental and real world data that the new method performs superior in

comparison to other resampling schemes. This consists of: data prepossessing which

refines data quality, service performance analysis which diagnoses service bottlenecks,

and finally shows how to apply the measured statistics in the calibration of bus
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movement models.

The data prepossessing step includes map-matching and re-sampling. For the

map-matching problem, Ref. (94) provided a formal and up-to-date review of the mul-

tiple existing techniques. The problem here is the low-frequency of record polling, for

which two researches (122; 120) both propose to first collect the subset of likely match-

es found by point-to-point and point-to-curve matching for each GPS coordinate and

then searching for the most likely route through them. This is the map-matching

method adopted here for being the most suitable to the Nextbus data.

For the re-sampling problem, data interpolation is needed because both passengers

and transit agencies are more interested in when buses arrive at certain points (such

as stops) while the available AVL records are only recorded every 60s. For high

frequency AVL data, it is relatively easy to judge when a bus is staying at stops. But

for low frequency AVL data, stop arrival and departure times are not apparent. In

previous studies, most AVL data interpolation methods were performed on time-at-

location data which AVL records are pulled when buses pass certain points on their

routes (52). For location-at-time data, some researches (24; 35) assumed that between

pulled AVL records buses are travelling at a constant speed and then performed

analysis on bus speed distributions, headway regularity and adherence to schedule.

This assumption made the analysis convenient. But in order to get more accurate

results a more realistic interpolation method is required. Here a convenient method

is presented that does not assume constant velocity but correct by pauses at stops.

Using the re-sampled data, analysis on transit service quality is performed. Among

all the service quality measurements, headway distribution (75; 29), adherence to

schedule and in-vehicle travel time are the most studied (3). For high frequency

urban transit service, headway distribution is the measurement directly related to

operations (75; 2). It determines passengers' experienced waiting time and could

be effectively improved by operational strategies such as holding and stop skipping

(90; 60). The variation in the distribution of headway across the entire route is chosen

as a proxy of the deterioration in service quality.

In this chapter the goals are threefold:
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" to provide a more accurate data preprocessing methodology which enhances low

frequency AVL data (see section 3.2) into data which is applicable;

" to show that the such obtained data can be used to evaluate bus service qual-

ity (including travel time uncertainty) and diagnose service bottlenecks (see

section 3.3) using the preprocessed data;

" to use the acquired statistics to calibrate a bus movement model, which subse-

quently can be used to evaluate different control strategies for mitigating bus

bunching effects (see section 3.4).

To achieve these goals, first map-matching is performed on low-frequency location-at-

time AVL data to assign transit vehicles to their route shapes. Second, re-sampling is

performed incorporating both buses' actions of traveling on route segment and staying

at stops. Kernel density estimator observed from the preprocessed AVL data is used

to calibrate the interpolation method. Stop arrival and departure times are inferred.

Based on the interpolated data, statistics of in-vehicle travel time could show how

bus headway deviation propagates along the route. Bottlenecks are identified and

investigated to show underlying causes. Methods to estimate route travel time and

travel time variability are provided. The final section shows how the results could be

used to calibrate bus movement models.

The research in this chapter is also contributed by David Gerstle, Peter Wid-

halm and Dietmar Bauer. David did the map-matching analysis, Peter analyzed the

travel time variability and Dietmar did the re-sampling procedure. Here I want to

acknowledge their contributions to this research.

3.2 Data Prepossessing

In this chapter location-at-time AVL data provided by the Nextbus service is used.

NextBus, Inc., provides data for a large number of US and Canadian transit companies

(including LA Metro, MBTA, NYC MTA, San Francisco Muni, and the Toronto

Transit Commission). The Nextbus server is polled every 60 seconds and returns the
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bus locations in the form of an XML document. Additionally, schedule and route

information are given in the form of general transit feed specification (GTFS) format

introduced by Google. Both data sources are combined in order to match the observed

locations to the route specified in the GTFS. Locations of bus stops from the GTFS

are used in order to derive arrival and departure times from the AVL records.

To illustrate the methodology, the AVL records of all the workdays between May

1st 2011 and June 15th 2011 from the route 1 of the MBTA (Massachusetts Bay

Transit Authority), totalling 4624 trips during weekdays and 796 trips on weekends,

are used. MBTA route 1 runs from Dudley station in Boston to Harvard university

in Cambridge. The outbound and inbound stops near Harvard university are not

symmetric because of the one way streets. The data used contains outbound runs'

records which have 33 stops starting at Dudley station and ending at Quincy St at

Harvard St. The average distance between stops is about 250m. A map of MBTA

route 1 is shown in Fig. 3-1 where also significant stops are indicated: between stops

8 and 9 the route turns into a main arterial. Between stop 18 and 19 there are 3

intersections and the bus transfers with a metro line here. At stops 12 and 25 large

traffic volumes during peak hours are observed.

The scheduled headway during morning peak hours equals 8-9 minutes, during

the afternoon peak 7-8 minutes while at off-peak times a 12 to 13 minute interval is

scheduled.

Next two sub sections describe the two steps of data prepossessing in order to

obtain a dataset suitable for further analysis.

3.2.1 Map-matching

The first step in the data preprocessing is map-matching, see ref. (94) for an up-

to-date review. Service performance evaluations require correct distance along shape

information. The available AVL data contains different kind of errors. Thus per-

forming map-matching on the raw AVL data to rule out as many errors as possible

is necessary. In order to open the discussion for future research on this type of data,

here the main types of errors found in the AVL data are summarized.
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Figure 3-1: MBTA route 1: Significant stops discussed in the text are marked. Map
obtained from Google maps.

In the data set at hand map-matching has to deal with the following most frequent

problems:

1. Wrong temporal order: time stamp and location pairs appear to be in the wrong

order. This makes buses appear to be going backwards along the shapes.

2. No matching from the shape: the locations provided in AVL records are far

from the route shape. Such points occur in particular at the start or the end of

trips.

3. Wrong interval: some trips only have a few data points recorded at irregular

intervals. This may indicate the buses are out of service or the GPS devices are

broken.

After ruling out the erroneous records, the rest records are matched to bus route

shapes using point-to-point and point-to-curve matching methods. Point-to-point

method matches each GPS coordinate to the closest node on the route shape while
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point-to-curve method takes the route as a polyline and match each GPS coordinate

to the polyline. For detailed descriptions please refer to (122) and (120). On average

97.6% of the observations could be map-matched directly. For the rest 2.4% erroneous

observations, 0.6% could be fixed using obvious heuristics, which are mainly wrong

temporal order observations. 1.8% of the observations are finally discarded, two thirds

of which correspond to a no matching from the shape.

3.2.2 Re-sampling Procedure

The output of the map-matching procedure are sequences of (tij, xi,j) pairs (tij: time

stamp for j-th observation of trip i, xi,: distance along shape) sequences for all trips

on a given shape for given route. Since the GPS tracks of the AVL data is only

available approximately every 60 seconds, a re-sampling scheme is needed in order to

obtain information on arrival and departure times at stop locations.

Two different approaches could be followed: Viewing time as a function of the

distance along the shape, re-sampling may use interpolation (e.g. linear) or smoothing

methods such as spline smoothing. This has the disadvantage that the result reflects

the properties of the interpolation scheme which might not be desirable. E.g. in the

case of three consecutive observations of a bus, the middle one occurring while the

bus was in a stop s (defined as a small interval [X(s) - G, X(s) + G] around the

stop location X(s) according to the shape of length, 2G = 30m) while the remaining

two are on the road linear interpolation implies that the bus is at the stop only for

a short duration. For spline smoothing the stopping time will depend heavily on the

smoothing parameter. This behavior clearly is undesirable.

As an alternative, explicit modeling of bus travel explains time t(x) as a function

of distance along shape x. The simplest model for bus movement is constituted by

assuming constant speed v, for the travel between stops s and s + 1 leading to travel

time TTi,s = (X(s+1) -X(s) -2G)/v, for trip i on route segment s and non-negative

stopping times STi,, inside the stop (seen as intervals [X(s) - G, X(s) + G] around

the location of stop s). For a shape with S stops (not counting the start of the trip)

this leads to 2S parameters. For this model TTi,,, STi,, and the time ti,1 of the start
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Figure 3-2: Kernel density estimator for observed location of buses of route 1 in
Boston in the inbound direction. Dashed lines indicate places of stops.

of the trip fully determine the trajectory of the bus according to

x -X(s)-G-t(x) = t, 1 + (TTi,s + STi,,) + X - X(S) TTi,s+1 (3.1)
S:X(s)<x X(s + 1) - X(s) - 2G

for each x ( [X(s) - G, X(s) + G] not in a stop. Inside the stops linear progression

between entering the interval and exiting the interval can be assumed without loss of

generality.

This model needs to be calibrated with real world data in order to be useful. In

this respect the following observation will be used: For an observer that searches

for the location of a bus at a random time instant, the chance to find the bus in an

interval of 10m, say, is proportional to the share of time the bus spends in this interval

during the observation period. The same holds true for more frequent sampling of

bus location. Fig. 3-2 provides a snapshot of the location of observations of buses

on route 1 in the inbound direction (i.e. in direction of Harvard).

It can be seen that at some stops buses are more frequently found. Other spikes

occur at traffic lights. Sampling this distribution on a spatial grid of grid size 10m

one obtains the probability to find a bus at a random time point in the corresponding

region. This can be related to average dwell time percentages STs inside the stop
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intervals as well as on the segments between the stops.

In order to calibrate this model the observations are split into two groups: Obser-

vations in the stops [X(s) - G, X(s) +G] are termed in-stop observations and denoted

as Zi,k, k = 1, ... , K with corresponding time ti,k and stop si,k. The remaining ones are

termed on-road observations and denoted as yi,l, 1 = 1,... , L with corresponding time

ti,l and segment si,1. In-stop observations impose restrictions as i(X(si,k) - G) ti,k

and i(X(si,k) + G) ti,k, i.e. the trip must arrive at the stop prior to being observed

in the stop and depart after being observed there. The on-road observations should

be replicated as good as possible using the model. From the assumption of constant

speed between stops it is clear that there will be no perfect match in particular in

situations where the bus needs to wait at a traffic light.

At the same time the model is desired to match the dwell time profile as closely

as possible in order to incorporate information on typical dwell times. Hence the

re-sampling is achieved by finding the parameters minimizing the squared distance

to the scaled (with the actual total travel time TTT for the whole trip) dwell time

profile and the weighted on-road observations subject to the restrictions on arriving

and departure times implicit in the on-stop observations:

L S

min L(ti,1, TTi,s, STi,8, s = 1, ... , S) := Z(tii - f(yi,l))2 + w Z(STi,s - TTT * STs)2,
1=1 s=1

s.t. i(X(si,k) - G) ti,k,

i(X (si,k)+ G) 2_ ti,k, k = 1,.. .1, K,

TTi,s > (X(s + 1) - X(s) - 2G)/V, s = 1,1...,7 S,

STi,s > 2G/V, s = 1,... , S. (3.2)

Here w > 0 is a weighting factor. Large w results in closer fit to the average dwell

times, small w puts emphasis on being close to measured observations. V imposes

a maximal travel speed. This leads to a linear least squares problem with linear

restrictions which can be efficiently solved using general purpose optimizers.

The re-sampling procedure uses the assumption that the expected dwell times
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are identical for all buses, i.e. that there are no systematic deviations from the

expectations. This is not realistic for a full day, while it appears tenable for time

intervals across different days. Consequently the re-sampling is calculated separately

for a segmentation of the day into ten time intervals.

Below the re-sampling procedure is validated in two ways: First the results from

the re-sampling are compared to the observations in a synthetic simulated data set.

Second, real data using a GPS logger with a higher temporal resolution has been

obtained.

Validation Using Synthetic Data

In order to validate the re-sampling procedures a synthetic data set of buses running

on route 1 has been generated using a microscopic simulator implementing the optimal

velocity model (OVM) as presented in (107) with a discrete time update of one

second and a total duration of 10 hours. Only one direction with no overtaking is

simulated. The shape contains 33 bus stops. If a bus reaches a stop, a random integer

is drawn simulating uncertain boarding and alighting processes. The stop duration

is distributed discretely uniform {0, 1, 2} seconds except for stops 6, 21 and 31 where

the range is 30 to 149 seconds and stops 7 to 20, where the range is 5 to 19. On

the route twenty intersections with traffic signals are simulated. The signal timing is

coordinated using the maximum allowed speed with red and green time split evenly

at 30 seconds each. During the red light periods of signal 2, 7, 12, 17 and 18 cars

enter the road segment with intensity t/36000 * 0.75 according to a Poisson arrival

process. Other than that cars enter the road at the start of the shape at an arrival

rate of 0.2. Every three minutes a bus is drawn. The stopping of a bus in a stop is

not modelled in detail, but rather buses stop immediately when reaching the stop and

leave after boarding and alighting is completed. In between cars pass the bus. The

added complexity of deceleration into the stop is included in the random boarding

and alighting, the reintegration into traffic follows the rule that cars need to stop for

reentering buses.

195 bus trajectories are generated at a sampling frequency of one second. Sub-
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sequently the trajectories are sub-sampled to a sampling frequency of sixty seconds

using random starting time stamp. The two re-sampling strategies (simple linear as

well as the procedure proposed above) are applied and stopping times as well as travel

times between bus stops are calculated with the two approaches. For the distribution

based re-sampling the 10 hours are partitioned into three intervals.

A sample of the output of the resampling procedure can be found in Figure 3-

3 below. It can be seen that the resampling follows the true observations more

closely than linear interpolation. The results show that the more complicated re-
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Figure 3-3: MBTA route 1: Sample output of the resampling scheme. Blue dots:
high frequent observations. Magenta boxes: Observations with sixty second tem-
poral resolution. Thin magenta line: linear resampling. Thick red line: Proposed
resampling.

sampling pays off resulting in a smaller mean absolute deviation for stop duration

of 8.8 seconds compared to 11.2 seconds for the simple linear interpolation based

re-sampling. Also the travel times between the stops are replicated with a higher

accuracy (mean absolute deviation of 10.3 compared to 12.0 second). Additionally

note that the absolute performance is high in comparison to the sampling interval 60

seconds. This is mainly due to a better capturing of the long stops. For the three

long stops 6, 21 and 31 the mean absolute deviation of the re-sampling equals 21.4
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seconds compared to 46.3 seconds for the simple method.

Validation Using High-Frequency GPS Data

In order to validate the methodology, high-frequency GPS records with a sampling

frequency of one second are collected on bus route 1 on two days, Thursday February

23rd 2012 and Saturday February 25th. A total of 15 trips provide data which is map

matched and converted to sequences of (time stamp, distance along shape) pairs. The

one second interval GPS data provides ground truth against which the two sampling

strategies are validated. To this end the trips are separated into different regimes

according to weekend or weekday as well as five intervals during the day.

The two re-sampling schemes have been applied to sub-sampled (using each six-

tieth observation) copies of each of the 15 trips. In order to remove random effects

due to the starting point all 60 sub-sampled versions are used.

The results are less pronounced than for the synthetic data but still an advantage

of the more complex re-sampling scheme compared to the simple method can be

observed. The mean absolute deviation in stopping time over all stops in direction

1 totals 4.83 seconds for the presented re-sampling method and 7.7 seconds for the

simple interpolation. In direction 0 the numbers of 6.5 for the proposed method

compared to 7.7 for the simple method results in a slight advantage of the proposed

method.

Note in this respect that the errors are comparable but smaller than in the syn-

thetic data set. Thus, in the following the presented re-sampling method will be

used.

3.3 Analysis of Service Quality

The resampled data represents a great opportunity to make statistics of the bus

service performance. The usual service quality measurements relate strongly to vari-

ations of headway, travel time and variability of travel time. Transit operators are

interested to optimize indicators based on these components which include elements
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not under the influence of the transit operators such as traffic conditions and demand

fluctuations. In this section I'll demonstrate that the resampled data set can be used

in order to extract useful information about these three components of service quality

measurement.

The total travel time in a transit trip can be decomposed into walking access time

(time from origin to bus stop/ train station), waiting time, in-vehicle travel time, and

transfer time (walking time from the alighting stop of the first route to the boarding

stop of the second route). Among these components, waiting time and in-vehicle

travel time are determined by transit operations and traffic road conditions. It is

those dynamic components that transit operators are interested in optimizing. In

this section the variations of headway, the travel time and the variability of travel

time are analyzed.

3.3.1 Headway

Headway is defined as the time interval from the tip of one vehicle to the tip of the

next one behind it arriving at a certain place (usually a stop). The expectation yu

and the variance o 2 of headway influence expected waiting times at stops according

to the following formula (see (61)):

W 2ux 2 (3.3)

W is the expected waiting time, y is the average headway and S is the standard

deviation of headway. When S = p, the expected waiting time is twice as when

S = 0. This shows that the variance of headway also has a significant influence on

passenger's waiting time.

For MBTA route 1, Fig. 3-4(a) to Fig. 3-4(c) show how the actual headways

compare to the scheduled ones at the initial stop, the 15th stop, and the last stop on

one of the workdays. The headway deviation is defined as the difference between the

actual headway and the scheduled headway. Even at the initial stop the deviations

are significant. The deviations at the initial stop are caused by operation issues:
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Figure 3-4: Actual vs. scheduled headway at the initial, the middle and the last
stops.

either because there are buses available at the terminal but the operators fail to

dispatch them in time, or because bus slack time at the terminal is not enough so

that buses are not ready at their scheduled departure time. For the first case, more

timely dispatching is needed. For the second case, bus slack time at terminals should

be re-optimized or simply more buses are needed. To explore how headway changes

from the first to the last stop during the evening peak, the headway distribution at

each stop is calculated and various distributions such as exponential, Erlang, gamma

and normal distribution (54; 15) are fitted. The best statistical fit is obtained by the

three parameter gamma distribution which is recommended by the traffic engineering

handbook (93): The corresponding probability density function equals

(X - 7)a-l
f (x) = - exp(-(x - ')/0), x ;> y, f(x) = 0, x <-y. (3.4)

Sa r(a)

Here a > 0 is the continuous shape parameter. When a is 1 the distribution becomes

an exponential distribution and when a is 4 or 5 the shape is close to a normal

distribution. # > 0 is the continuous scale parameter. The larger the scale parameter,

the more spread out the distribution is. -y is the continuous location parameter which

determines the center of the distribution. F is the Gamma function. The comparison

of headway histograms and fitted distributions are shown in Fig. 3-5. The three

parameter gamma distribution fits quite well from the initial stop to the last stop.

Fig. 3-6 shows how the three parameters change from the first to the last stop. At the
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Figure 3-5: Headway fitting results at different stops using the three parameter
gamma distribution.

initial stop, the shape parameter is close to 4 which shows that it is relatively close

to a normal distribution. The shape parameter decreases quickly along the route.

After stop 9 it stabilizes at around 1 which indicates that it is close to an exponential

distribution. The location parameter also stabilizes at around 0 after stop 9. This

means that after stop 9 a large proportion of headways are close to 0, which indicates

that bus bunching is severe. After the shape and the location parameter stabilize,

the scale parameter keeps increasing which shows that the variance of headway keeps

increasing. These three parameters show that the headway changes from a rather

deterministic manner (close to schedule) at initial stops to a random manner (severe

bunching) at around stop 9. The analysis below will explain why stop 9 is a critical

point. To further understand the headway variations, the headway coefficient of

variation Cvh, a measurement proposed in TCQSM (72), is calculated at different

stops:

0 vh = Standard deviation of headway deviations (3.5)
Mean scheduled headway

Fig. 3-7 shows how the headway coefficient of variation at each stop changes along the
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Figure 3-6: Evolution of the parameters of the gamma distribution across the bus
route during the evening peak.

route. The general trend is that the headway coefficient of variation keeps increasing,

but the rate of increase varies from stop to stop. Between some stops it increases

more quickly, which shows that in these segments travel times (between arriving at

consecutive stops) are more unstable. In order to observe the change rate, the gradient

of headway coefficient of variation at each stop is shown in Fig. 3-7. At stops 8 and

19 it increases the most. Inspection from the map shows that between stop 8 and

9 the bus turns from a secondary road (Albany St.) to the main artery connecting

Boston and Cambridge (Massachusetts Avenue). The traffic signal waiting time at

this intersection could vary a lot which causes higher headway variance. Bus priority

at this intersection hence could greatly increase headway regularity. Between stop

18 and 19 there are three closely spaced intersections. The Metro Green line also

transfers with route 1 at stop 18. Hence both the waiting times at intersections

and varying passenger flows make the headway unstable here. Two possible ways to

improve the service quality are better bus priorities at these traffic lights and holding

strategies in order to better synchronize buses and the metro line. Notice that while

the headway variance increases from the first to the last stop, the average headway
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Figure 3-7: Headway coefficient of variation (left axis) and its gradient (right axis)
showing bottlenecks with high headway variation increase at stop 9 and 19.

remains almost the same. The average headway at the first, 15th and the last stop

are respectively 485s, 487s, 490s. Passengers at latter stops would experience much

longer average waiting time not because there are not enough buses, but because

the variance of headway is higher. Solutions for this situation typically include bus

holding strategies and stop skipping strategies which could be further explored.

3.3.2 In-vehicle Travel Time

Another component of the total travel time is in-vehicle travel time which is composed

of two parts: travel time between stops and stop dwelling time. In-vehicle travel time

is largely determined by traffic conditions and the road network structure. Fig. 3-8

shows how the average total trip time, running time and stop dwelling time change

during different times of day. The total trip time has clear morning and evening peaks

at 8am and 5:30pm respectively. Running time and stop dwell time show identical

peaks, which means that the increase in the total peak trip time is caused by both
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increasing passenger volumes and slower travel speed. Running time has a larger

influence on the increase of the total peak trip time.

Fig. 3-9 compares the average travel speed (stop dwell time not included) and the

percentage decrease from off-peak to peak hours at each segment. Segment i is the

road between stop i and i +1. At segment 20 the average speed is always the highest

because this segment is at Harvard bridge and on the bridge there are no traffic lights

or stops. The peak hour speed is generally lower than the off-peak hour speed. The

highest percentage decreases are at segment 12 and 25 which are respectively at the

intersection of Massachusetts Avenue and Tremont St. and at Central Square, both

are crowded commercial areas in Boston and Cambridge respectively. Traffics could

be guided to parallel roads during peak hours to relief the burden on these segments.

It is interesting to notice that stops with the most percentage decrease in peak hour

60

50-

40

30

20

10

A
6 8 10 12 14 16 18 20

Time of day (h)

Figure 3-8: Trip time composition at different times of
sum over the entire route.

22 24

day. Values represent the

speed do not correspond to stops where the statistics of headway varies the most.

This is because the headway coefficient of variation is a measurement of stability

while the in-vehicle travel time is a measurement of the average speed performance.
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Figure 3-9: Trip time at different times of day and peak/ off-peak travel speed
comparison.

3.3.3 Variability of Trip Travel Time

Another component of bus performance is constituted by travel time variability. High

variability implies low predictability and hence uncertain travel times. Thus alongside

the expected travel time, travel time reliability is one of the most important factors

when selecting a route to a desired destination. The expected travel time can be

calculated easily by summing up the mean segment travel times along the route in

the transportation network. On the other hand, in order to estimate variability, it is

necessary to account for correlations between the individual segments composing the

trip. Figure 3-10(a) shows the correlation matrix of the segment travel times along the

bus route. The probability distribution of the trip travel time can be approximated

by building clusters of highly correlated segments and assuming full correlation within

each cluster and independence between segments in different clusters. The quantile

function, i.e. the quasi-inverse of the cumulative distribution function (CDF), of the

sum of fully correlated segment travel times TT., s E C in cluster C is computed as
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the sum of the quantile functions of the individual constituents, i.e.

Qc(p) = E Qf (p) (3.6)
sEC

where Qc(p) denotes the p-th (0 < p < 100, percent) quantile of the travel time for

cluster C. The distribution of the sum of independent cluster travel times is approx-

imated by Monte Carlo simulation, where cluster travel times are drawn repeatedly

and randomly according to the previously calculated probability distributions of the

respective clusters. Figure 3-10(b) compares the resulting estimations with empirical

travel time distributions for trips from the first to the last stop of MBTA route 1. For

comparison, also depicted are the results under the assumption that all segments are

independent and assuming that every segment is fully correlated with every other.

These results show that not accounting for dependencies leads to underestimation of

travel time variability, whereas the proposed approximation yields good agreemen-

t with the observed distribution. Thus the low frequency localization data can be

used in order to infer route travel time reliability for arbitrary routes along the line

providing another way to investigate bus performance.

3.4 Application: Calibration of a Bus Movement

Model

Beside performing service quality analysis and bottleneck diagnosis, transit agencies

may be interested to evaluate the effect of different measures to improve service

quality. This section shows that the headway and the travel time statistics calculated

in the previous section can be used to calibrate bus movement simulation models.

The bus movement is affected by traffic conditions, traffic signals and the number

of passengers boarding and alighting. The number of passengers is both related

to passenger arrival rates and the arrival time of the previous bus. In ref. (36) a

very convenient bus movement model is built incorporating the effect of the previous

bus and the random noise caused by road conditions and traffic signals. Using the

68



4000 -

3500-

3000-

'0

q 2500-

2000-

1500-

1000-

fully correlated clusters independent oberved
Driving direction -> 10th and 90th percentile

(a) Correlation matrix of segment trav- (b) From the left to the right: the spread between
el times on MBTA Route 1. White indi- the 1 0th and 90 th percentile of the estimated trav-
cates high correlation and black indicates el time distribution assuming (a) full correlation
low correlation. Red lines mark the po- between all segments, (b) full correlation within
sitions of stops. and independence between segment clusters, (c) in-

dependence between all segments and (d) the ob-
served travel time distribution.

Figure 3-10: Correlation between segment travel times and comparison of estimated
travel time under various assumptions to observed travel time.

measured statistics of service performance this model can be calibrated with more

accurate statistics from headway and travel time of different segments in a route,

which are in general introduced as random variations.

3.4.1 The Model

The bus movement model of (36) can be expressed as:

Un,S = Cs + ,(hn,s - H) + vn,sel (3.7)

Here Un,, is the nth run's segment travel time from stop s to s + 1. The dwell time at

stop s is included while the dwell time at stop s + 1 is not. CS is the scheduled travel

time from s to s + 1. H is the scheduled headway while hn,, is the actual headway

for the nth run at stop s. 3 is a dimensionless parameter expressing the effect of

the deviation from the scheduled headway on the dwell time. If a headway is longer

than the scheduled value and the passenger arrival rate remains constant, there will
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be more passengers arriving than expected which causes longer than expected stop

dwell time. The inclusion of 3 makes two buses "attract" each other when their

headway is shorter than H and "repel" each other when the headway is longer than

H. it is mentioned (36) that 3 typically ranges from 10-2 to 1. The noise term Vn,s+1

incorporates effects such as road conditions and traffic signals. It is assumed to have

zero mean, variance o- 12 and to be independent of ha8 .

an,s represents the arrival time of the nth run at stop s. The above equation could

be transformed as:

an,s+1 - an,s = Cs + #B(an,s - an_1,s - H) + vn,s+1 (3.8)

3.4.2 Model Calibration

As an,s+1, an,s, and an_1,s can be acquired directly from the interpolated data, esti-

mates of #, can be obtained using regression. Since the random noise term on,s+1 is
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Figure 3-11: Regression result of #, (see equation (3.7)) at each segment.

assumed to have zero mean and to be independent of hn8 , an,s+1 - an,, - C, can be

regressed on an,s - an_1,s - H to obtain estimates for 3,.

The regression results with error bars, provided in Fig. 3-11, show the expected

positive signs for 27 out of 32 segments. None of the negative coefficients are sig-

nificant. All coefficients are of the expected magnitude. Of all the 32 segments, 27

are above zero (the upper bounds are all above zero). The rest 5 show unexpected
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negative signs. They are respectively segment 2, 4, 10, 17, 31, which are all stops

with light passenger flows. This may also be caused by unstable passenger arrival

rates. The maximum #, is 0.1047 at segment 28 while the average value of 3 is

0.0287. These values all agree with the typical 3 values (36). which ranges from

102 to 1. Note that the low number of significant coefficients may be an indication

of insufficient sample size and hence small power of the tests.

With #3 known, the distribution of the residual random noise term could be es-

timated. First the assumption that v,+1 and h, are independent needs to be tested.

The correlation between v,+1 and h, for each segment is calculated. The maximum

value is 4.74 * 10-16 while the minimum value is -4.43 * 10-16. This confirms that

v,+1 and h, are independent. It can be observed that when using the interpolated

data the shape of v,+ 1 estimated at each segment separately fits well a lognormal

distribution.

Notice that with the interpolated AVL data all the components needed for the

movement simulation model are available. C, and H can be acquired from the sched-

ule. Headway distributions using the Gamma family of densities have been fitted

above, v+1 is approximated using a log-normal distribution.

Fig. 3-12 provides a comparison between the results of three different ways to

calculate segment travel time U, are compared. The first one calculates U, directly

from the interpolated AVL data. It is regarded as the true segment travel time.

The second one, the red line on each plot, calculates U, from the right hand side of

equation (3.8) using the observed three parameter gamma distribution for h, and the

lognormal distribution for v,+ 1 . The third one, the green line on each plot, shows

the model without calibration, that is when using the most common form, random

values (e.g. a normal distribution) for both v,+1 and h,. The latter two can be

regarded as simulated values and the calibrated model gives clearly more accurate

results to all the segments along the route. Kolmogorov-Smirnov statistics is used to

test quantitatively how close the simulation results are to the true values. The legend

on each plot shows Kolmogorov-Smirnov test values for each of the two simulation

methods. The calibrated model has smaller Kolmogorov-Smirnov test values at all
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the segments. This shows that important corrections can be obtained applying the

two presented functions (the three parameter gamma and the lognormal distribution)

into bus movement models.
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Figure 3-12: Comparison of bus travel time (U) at different segments of the route.
The original data and two simulated bus models are shown. One (green dashed
line) assuming normally distributed random noise term and the other one (red solid
line) calibrated with the statistical distributions observed in this study. Kolmogorov-
Smirnov test values are shown on the legends.
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3.5 Conclusions and Outlook

Public transportation is playing an increasingly important role in urban transporta-

tion systems since limited road capacities largely restricts the private car growth.

ADC provides a new but not yet perfect source of data for transit agencies. How

to transform the data to overcome the limitations and to extract useful information

becomes an interesting topic.

In this chapter a low-frequency AVL data analysis procedure is proposed which

allows service performance evaluation and the calibration of a bus movement model.

It is demonstrated how this procedure step by step turns the raw AVL data into

information for service bottleneck diagnosis and bus movement simulation. The data

used are low-frequency location-at-time AVL records as provided e.g. by Nextbus.

In particular the point-to-point and point-to-curve map-matching are applied to rule

out errors such as wrong temporal order, no matching from the shape, and wrong

interval. Kernel density estimator observed from the preprocessed AVL data is used

to estimate arrival and departure times at stops. Once the stop arrival and departure

times are estimated, service quality is analyzed by measuring statistics of headway

and in-vehicle travel time. Headway evolve from a normal distribution at the initial

stops to an exponential distribution at the last stops. The headway analysis helps to

identify bottlenecks caused by the road network layout and passenger volumes while

the comparison of peak vs. off-peak hour travel speed helps to identify bottlenecks

caused by traffic conditions. Finally, these observations are used to calibrate a model

of bus movement to show its further application prospects.

The main contributions of this study to the state-of-the-art research can be con-

cluded as:

1. A more robust and accurate data prepossessing methodology is provided which

is demonstrated to be superior to the widely applied linear interpolation method.

Different kinds of errors in AVL data are discussed and ruled out. More accu-

rate stop arrival and departure time estimates are obtained by using a kernel

density estimator of bus dwell time.
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2. Using this preprocessing method, headway distribution evolution along one bus

route is studied in detail. It is demonstrated that the method can be used in

order to detect bottlenecks caused by both road layout and traffic conditions

separately so that they can be treated differently to improve service quality.

3. Route travel time variability can be inferred from clustering of segments based

on segment travel time correlations. This delivers hints on bus performance

problems via increases in variability thus providing a more complete view on

the performance of the bus line.

4. These results can be used to calibrate bus simulation models which in turn can

be further applied to evaluate various bus control strategies.

Therefore this chapter demonstrates the potential of widely available (and hence

low cost) low-frequency AVL data to improve bus service and to provide valuable

information for the passengers in terms of travel time predictions including travel

time reliability. In particular it is shown show that such data provides an alternative

means for monitoring and controlling bus performance for transit authorities not

willing to invest in more expensive solutions.
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Chapter 4

Conclusion

Our current digital age is characterized by the shift from traditional industry to an

economy based on the information computerization. The sweeping changes brought

about by digital computing and communication technology during the latter half of

the 20th century have provided new data sources for transportation modeling.

In this thesis, two mainstream trend in utilizing digital traces in transportation

modeling are exploreds. The first is to use mobile phone data, combined with digital

map point of interests, to calculate commuting OD matrix. The second is to use

pre-processed low frequency bus GPS data to evaluate public transit service quality

and diagnose service bottlenecks.

Human mobility modeling is an essential component of various areas of study

ranging from epidemiology to urban and transportation planning. Commuting flows

take up a large proportion of the total flows of a population. Current mainstream

models for commuting flow prediction are the 'gravity model' and the 'intervening

opportunity model'. These models require previous Origin-Destination (OD) matri-

ces as input for parameter calibration. The recently proposed 'radiation model' is

parameter-free, has a closed analytical form and presents the potential to become an

universal model for OD generation.

In chapter 2 an extension of the radiation model is proposed that predicts the

network of commuting flows at different spatial scales and in different cities worldwide.

In addition, the spatial density of the distribution of facilities as downloaded from
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Internet's digital maps, also known as POIs, together with the density of population

are the two basic ingredients for modelling commuting networks.

The proposed extension uses one parameter to adjust to the different degrees of the

homogeneity of opportunities when the scale of the study region changes. In contrast,

while due to the large number of fitting parameters, the doubly constrained gravity

model also fits the number of trips in most of the studied datasets, the obtained pa-

rameters cannot be generalized and depend on empirical flows of the particular region

under study for their calibration. The parameter a in the extended radiation model,

takes into account the effects of both the scale and the heterogeneity of opportunities,

which are highly correlated. Thus, a to a large extent can be estimated by knowing

only the size of the region under consideration.

In order to explore the validity of the new model in diverse cities that lack of

census data, first the Bay Area is used as an example to show that cell phone records

are a very good alternative data source to extract commuting patterns. Home and

work locations are inferred at individual level from the cell phone records and then

aggregated to show its equivalence to the commuting information obtained by census

data. Then commuting flows are extracted from cell phone users in three different

countries where census commuting data is not available. These results show not only

the applicability of the proposed model to successfully model the commuting patterns

for the cell phone users in cities from these three countries, but also show some unique

commuting characteristics in each city.

In chapter 3 a low-frequency AVL data analysis procedure is proposed which

allows service performance evaluation and the calibration of a bus movement model.

It is demonstrated how this procedure step by step turns the raw AVL data into

information for service bottleneck diagnosis and bus movement simulation. The data

used are low-frequency location-at-time AVL records as provided e.g. by Nextbus.

In particular the point-to-point and point-to-curve map-matching are applied to rule

out errors such as wrong temporal order, no matching from the shape, and wrong

interval. Kernel density estimator observed from the preprocessed AVL data is used

to estimate arrival and departure times at stops. Once the stop arrival and departure
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times are estimated, service quality is analyzed by measuring statistics of headway

and in-vehicle travel time. Headway evolve from a normal distribution at the initial

stops to an exponential distribution at the last stops. The headway analysis helps to

identify bottlenecks caused by the road network layout and passenger volumes while

the comparison of peak vs. off-peak hour travel speed helps to identify bottlenecks

caused by traffic conditions. Finally, these observations are used to calibrate a model

of bus movement to show its further application prospects.

The research conducted in this thesis opens the door to many future research

topics:

The potential of both the cell phone records and the point of interests can be

further exploited in future studies. From cell phone records we can observe long

term regularities in daily activity patterns at individual level, which are very hard

to acquire by traditional survey methods. Future mobility models should include not

only commuting trips, but also trips of other purposes. With digital footprints such

as the point of interests or Foursquare records (49), non-commuting trips, which have

higher flexibility, can also be traced.

For the public transit analysis, further questions need to be answered: How to

expand the performance analysis from one single line to the entire transit network?.

How does translate in the practice the advantage of having a calibrated bus movement

simulation model compare?, or How to use the model to develop strategies improve

service quality?

Taken together, the thesis explores new digital data sources and methods in trans-

portation modeling. The purpose is to provide analysis procedures that are of lower

costs, higher accuracy and are readily applicable to different countries in the world.
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Appendix A

Comparison of the No Constrained

and Doubly Constrained Gravity

Model

In this section we compare the estimation results of no constraint gravity model and

doubly constrained gravity model on cell phone user commuting OD at city level.

Here we use the cell phone records because the data is available at different countries

so that we can perform a cross culture comparison. We choose 9 cities from the Bay

area, Rwanda, Portugal and Dominican Republic: San Francisco, Oakland, San Jose,

San Rafael, Lisbon, Kigali, La Romata, Santo Domingo, and Santiago. For each cell

phone user we can estimate his/ her home and work location. Aggregate such results

gives us the cell phone users' commuting OD matrix. Use the marginals (cell phone

user commuting trip production and attraction number for each tower) as inputs for

the following models.

No constraint gravity model takes the form:

n1n
Tj = - (A.1)

f(rig)

Tij is the flow between location i and j. Each location is a tower. ni is the number

of cell phone users whose home location is tower i, nj is the number of cell phone
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Table A.1: Regression parameters for the 9 cities

parameter a 3 7
San Francisco 0.17 0.09 0.46

Oakland 0.21 0.18 0.67
San Jose 0.16 0.15 0.56

San Rafael 0.21 0.23 0.73
Lisbon 0.21 0.23 0.73
Kigali 0.16 0.11 0.43

La Romata 0.53 0.33 0.91
Santo Domingo 0.25 0.20 0.68

Santiago 0.34 0.27 0.73

users whose working location is tower j. rij is the distance between them and f is the

distance decay function. a and # are parameters to be fitted from data. We adopt

the power distance decay function:

f(rij) = r7- (A.2)

The model turns into:

Ti = (A.3)

The parameters a, #, and -y could be estimated using least square linear regression

(48) after a simple transformation:

log(Tij) = alog(ni) + 3log(n) - 7log(rij) (A.4)

The inputs of the regression model are Tiy, ni, and nj, the outputs are estimation

results of a, #, and -y. The a, #, and y regression results for the 9 cities are:

In (111; 9) a similar regression method is applied. The difference is that trips are

divided into short and long trips and the parameters are estimated separately. In

[nature] the estimations of [a, 3, 7] are [0.30,0.64,3.05] for short distances (rill9km)

and [0.24,0.14,0.29] for long distances. The doubly constrained gravity model takes

the form:

Ti = ai#,OjD (A.5)
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Table A.2: Seed sample matrix without expansion

Zone 1 2 3 4 02
1 0 1.5 2 3.5 150
2 1.5 0 2.5 3 200
3 2 2.5 0 2 100
4 3.5 3 2 0 50

Dj 30 70 250 150 Total=500

O and D are total trip production and attraction volumes at location i and j. For a

study region with n locations, there are 2n parameters of a and #j, and one parameter

of -y. Unlike the no constrained gravity model, those it has 2n+1 parameters, only one

parameter, -y, needs to be predetermined. a and #3 can be estimated even without

knowing Tij by iterating:

aj = 1/ #jDjC(rjj) (A.6)

(A.7)f35 = 1/5aiOiC(rij)

Let's use a very simple example to illustrate the algorithm. Suppose an area with 4

zones. Their distance Matrix and Oj, Dj are as followed: Initially a and #j are all

set to 1 and #j are updated as:

== 0.00848
1 * 200 * 1.52 + 1* 100 * 22 + 1* 50 *3.52

1
/2 = 11 * 150 * 1.52 + 1 * 100 *2.52 + 1 * 50 * 32

= 0.01134

3 = 0.01220
1 * 150 * 22 + 1 * 200 * 2.52 + 1 * 50 * 22

1
#4 = 1 0.01681

1 * 150 * 3.52 + 1 * 200 * 32 + 1 * 100 * 22
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Table A.3: Converged sample OD matrix

Zone 1 2 3 4 Oj a
1 0 45 86 19 150 0.71159
2 22 0 120 58 200 1.16540
3 7 20 0 73 100 1.31410
4 1 5 44 0 50 1.07820

D 30 70 250 150
# + j 0.00710 0.01343 0.01291 0.01482

Then a are updated:

1
a1J = 0=13 0*15200 .04

0.01134 * 70 * 1.52 + 0.01220 * 250 * 22 + 0.01681 * 150 * 3.52 0.00848
1

0.00848 * 30 * 1.52 + 0.01220 * 250 * 2.52 + 0.01681 * 150 * 32 34

1
0.00848 * 30 * 22 + 0.01134 * 70 * 2.52 + 0.01681 * 150 * 22 = 0.01220

1
0.00848 * 30 * 3.52 + 0.01134 * 70 * 32 + 0.01220 * 250 * 22 = 0.01681

After 4 iterations ao and #j values converge. The final OD matrix is:

Here we compare the results from: no constraint gravity model with parameters

estimated in this study, no constraint gravity model with parameters estimated in

previous study (97), doubly constrained gravity model with parameters estimated in

this study. For each model we compare the model estimation results with the cell

phone user commuting OD matrix and calculate the correlation between them. Fig.

A-1 shows how the correlation changes from city to city and from model to model. In

all cities the doubly constrained gravity model outperforms the no constraint gravity

model. It has correlation more than 0.8 in all the cities except in Kigali, the capital

city of Rwanda. We've mentioned that the commuting flow in Rwanda is special

because it's more agglomerated: a few OD pairs have very large flows and these OD

pairs are not necessarily close to each other. This makes it hard for gravity model

prediction. The comparison of the doubly constraint gravity model and the no gravity

model with parameters estimated in this study are in Fig. A-2 and A-3. Again the
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doubly constraint gravity model prevails at each measurement. The 8 rows represent

the 8 different cities and the three columns show: 1) the comparison between the

actual and estimated flow volume from the doubly constraint gravity model; 2) the

comparison between the actual and estimated flow volume from the no constraint

gravity model; 3) the travel distance P(r) distribution. Again the doubly constraint

gravity model prevails at each measurement.

1

0.8

0~ 0.6-

o 0.4-
U

-- Simple-1
0.2- Simple-2

-.- Doubly
0

0

Figure A-1: The correlation between the census commuting OD pair volumes and
results from different models. The doubly constraint gravity model's result is in red.
The no constraint gravity model with parameters estimated from a previous study is
in blue. The no constraint gravity model with parameters estimated in this study is in
green. In all cities the doubly constraint gravity model outperforms the no constraint
gravity model. It has correlation more than 0.8 with the actual census data in all the
cities except Kigali
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Appendix B

Methods

B.1 K-means Clustering of Blocks

The 2010 Census LEHD Origin-Destination Employment Statistics (LODES) datasets

contains home and work location counts at block level. San Francisco has 7348 blocks

while in transportation planning a city is often divided into a much less number of

regions (85; 79). To make the estimation results at different scales comparable, here

we adopted k-means clustering (59; 20) to divide each study region into 100 locations.

The blocks are clustered according to their geographical locations. The procedure is

performed in the following way:

Randomly pick 100 (lon,lat) coordinate pairs in the study region to represent the

centers of the clusters. They are denoted as k, k = 1,, 100. Each block's center

location is denoted as a vector Xi, i = 1,, numberof blocks. The goal is to find

an assignment of Xi to clusters, as well as a set of vectors pk, such that the sum

of the squares of the distances of each data point Xi to its closest vector pk, is a

minimum. Use 1-of-K coding scheme to represent which cluster each data point Xi

should belong to. For each data point Xi, we introduce a corresponding set of binary

indicator variables rik E 0, 1,k = 1,, 100, describing which of the 100 clusters the data

point Xi is assigned to. If data point Xi is assigned to cluster k then rik = 1, and

rijo for j # k. The objective function, J, is to minimize the sum of the squares of
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the distances of each data point to its assigned vector plk:

N2

J = 100rik Xi - p2
i=1 k=1

Here the distance measure xi -
2

pk is the distance of the two coordinate pairs on

earth. To find the values for rik and Pk iteratively perform:

1. Keep pk fixed, find the rik values to minimize J. This is simply to find the

closest pk to each data point Xi.

2. Keep rik fixed, find the yk values to minimize J. J is a quadratic function of

p'. Take the derivative and with respect to yk and set it to zero shows that:

lk -Ei rikXi

Ei rik
(B.2)

Iteratively perform these two steps until converge. Fig. B-1 and B-2 shows the

comparison of San Francisco's blocks before and after clustering.

Figure B-1:
Francisco.

The 7348 blocks of San Figure B-2: 100 block clusters acquired
from k-means clustering
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B.2 IPF Procedure for OD Expansion

We use the Bay area as an example to show that cell phone data could provide a

good commuting OD seed matrix. We have deduced home and work location for each

user. Here a location is a cell phone tower. There are 892 towers in the Bay area

while in previous methods we divided San Francisco into 100 locations. In order to

match these two different types of divisions we mapped the 892 cell phone towers to

the previously defined 100 block clusters to form the 100100 commuting OD matrix

for the cell phone users. We should notice that the cell phone users we chose are like

a sample from the whole population and the sampling rates in different block clusters

may differ from one another. In order to get the commuting OD matrix for the whole

population from the cell phone user commuting OD matrix, we need to reweight or

perform seed matrix expansion on the cell phone user commuting OD matrix. The

iterative proportional fitting method is adopted (45).

Iterative proportional fitting is a procedure for adjusting a table of data cells

such that they add up to selected totals. Unadjusted data cells may be referred

to as "seed", and the selected totals may be referred to as "marginal". In our two

dimensional case, the "seed" is the cell phone user commuting OD matrix denoted as

tij, i is the home location while j is the work location. We've shown that population

and POI are good representations of trip generation and attraction. We use them

to represent the "marginals". The column marginal Di is the trip attraction of each

location and the row marginal O is the trip generation of each location. Di are

normalized to have the same sum as O. The numerical solution is:

1. ij = tij, m = 0

2. al) For i = 1,, N

i. Solve for a : E>jiI Ca = O

i tm+1/ 2 = Ta

a2) m = m + 1/2

b1) For j = 1,, N

i. Solve for a: Ti TZ7a = Dj
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i. tm+1/2 -
- i

b 2) m= m+ 1/2

3. Repeat step 2 until converge.

Some may doubt that the close fit of the expanded Bay Area cell phone user seed

matrix to the actual census data is because we used quite accurate marginal (in this

case the population density and the density of POIs), so that the seed matrix do not

have much influence. We test this assumption by doing the following comparison:

compare the travelling distance P(r) distribution of: 1) the census commuting OD

data; 2) the cell phone user seed OD matrix without IPF expansion; 3) the IPF

expanded cell phone user seed matrix; 4) the IPF expanded random seed matrix.

The result is shown in Fig. B-3. Among all others, only the IPF expended cell phone

user seed matrix gives close fit to the census data. As for the IPF expanded random

seed matrix, even though it has accurate marginal, it still deviates from the actual

P(r) distribution. In this way the value of both the IPF method and the cell phone

user seed matrix are shown.
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Figure B-3: Comparison of the travelling distance P(r) distributions. The census
commuting OD data is in black. The cell phone user seed OD matrix without IPF
expansion is in green. The IPF expanded cell phone user seed matrix is in purple.
The IPF expanded random seed matrix is in red. Only the IPF expended cell phone
user seed matrix gives close fit to the census data. As for the IPF expanded random
seed matrix, even though it has accurate marginal, it still deviates from the actual
P(r) distribution.
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